

муниципальное бюджетное общеобразовательное учреждение города Ростова-на-Дону «Школа № 109»

Приложение № 1 к основной образовательной программе среднего общего образования МБОУ «Школа №109» (в соответствии с ФОП), утвержденной приказом МБОУ «Школа №109» от 29.08.2025 №293 /од

рабочая программа по физике

СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ МБОУ «Школа №109

СОДЕРЖАНИЕ

Наименование	Страница
Пояснительная записка	3
Содержание обучения	6
10 класс «Физика» 68 часов	
11 класс «Физика» 68 часов	
Планируемые результаты освоения программы по физике на	19
уровне среднего общего образования	
Личностные результаты	19
Метапредметные результаты	20
Предметные результаты	23
Тематическое планирование	27
10 класс	28
11 класс	42
Перечень (кодификатор) проверяемых требований к результатам	57
освоения ООП СОО и элементов содержания по Физике	
10 класс	57
<u>11</u> класс	65

Программа МБОУ «Школа №109» по учебному предмету «Физика» далее соответственно-программа по предмету «Физика» включает пояснительную записку, содержание обучения, планируемые результаты освоения программы тематическое планирование, поурочное планирование.

Пояснительная записка

Рабочая программа по физике базового уровня на уровне среднего общего образования разработана на основе положений и требований к результатам освоения основной образовательной программы, представленных в ФГОС СОО, а также с учётом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Содержание программы по физике направлено на формирование естественнонаучной картины мира обучающихся 10–11 классов при обучении их физике на базовом уровне на основе системно-деятельностного подхода. Программа по физике соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также учитывает необходимость реализации межпредметных связей физики с естественнонаучными учебными предметами. В ней определяются основные цели изучения физики на уровне среднего общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне).

Программа по физике включает:

планируемые результаты освоения курса физики на базовом уровне, в том числе предметные результаты по годам обучения;

содержание учебного предмета «Физика» по годам обучения.

Программа по физике может быть использована учителями как основа для составления своих рабочих программ. При разработке рабочей программы в тематическом планировании должны быть учтены возможности использования электронных (цифровых) образовательных ресурсов, являющихся учебнометодическими материалами (мультимедийные программы, электронные учебники и задачники, электронные библиотеки, виртуальные лаборатории, игровые программы, коллекции цифровых образовательных ресурсов), реализующими дидактические возможности информационно-коммуникационных технологий, содержание которых соответствует законодательству об образовании.

Программа по физике не сковывает творческую инициативу учителей и предоставляет возможность для реализации различных методических подходов к организации обучения физике при условии сохранения обязательной части содержания курса.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики — системообразующий

для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, физической географией и астрономией. Использование и активное применение физических знаний определяет характер и развитие разнообразных технологий в сфере энергетики, транспорта, освоения космоса, получения новых материалов с заданными свойствами и других. Изучение физики вносит основной вклад в формирование естественно-научной картины мира обучающихся, в формирование умений применять научный метод познания при выполнении ими учебных исследований.

В основу курса физики для уровня среднего общего образования положен ряд идей, которые можно рассматривать как принципы его построения.

Идея целостности. В соответствии с ней курс является логически завершённым, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики.

Идея генерализации. В соответствии с ней материал курса физики объединён вокруг физических теорий. Ведущим в курсе является формирование представлений о структурных уровнях материи, веществе и поле. использование

Идея гуманитаризации. Её реализация предполагает гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, а также с мировоззренческими, нравственными и экологическими проблемами.

Идея прикладной направленности. Курс физики предполагает знакомство с широким кругом технических и технологических приложений изученных теорий и законов.

Идея экологизации реализуется посредством введения элементов содержания, посвящённых экологическим проблемам современности, которые связаны с развитием техники и технологий, а также обсуждения проблем рационального природопользования и экологической безопасности.

Стержневыми элементами курса физики на уровне среднего общего образования являются физические теории (формирование представлений о структуре построения физической теории, роли фундаментальных законов и принципов в современных представлениях о природе, границах применимости теорий, для описания естественно-научных явлений и процессов).

Системно-деятельностный подход в курсе физики реализуется прежде всего за счёт организации экспериментальной деятельности обучающихся. Для базового уровня курса физики — это использование системы фронтальных кратковременных экспериментов и лабораторных работ, которые в программе по физике объединены в общий список ученических практических работ. Выделение в указанном перечне лабораторных работ, проводимых для контроля и оценки, осуществляется участниками образовательного процесса исходя из особенностей планирования и оснащения кабинета физики. При этом обеспечивается овладение обучающимися умениями проводить косвенные измерения, исследования зависимостей физических величин и постановку опытов по проверке предложенных гипотез.

Большое внимание уделяется решению расчётных и качественных задач. При этом для расчётных задач приоритетом являются задачи с явно заданной

физической моделью, позволяющие применять изученные законы и закономерности как из одного раздела курса, так и интегрируя знания из разных разделов. Для качественных задач приоритетом являются задания на объяснение протекания физических явлений и процессов в окружающей жизни, требующие выбора физической модели для ситуации практико-ориентированного характера.

В соответствии с требованиями ФГОС СОО к материально-техническому обеспечению учебного процесса базовый уровень курса физики на уровне среднего общего образования должен изучаться в условиях предметного кабинета физики или в условиях интегрированного кабинета предметов естественно-научного цикла. В кабинете физики должно быть необходимое лабораторное оборудование для выполнения указанных в программе по физике ученических практических работ и демонстрационное оборудование.

Демонстрационное оборудование формируется в соответствии с принципом минимальной достаточности и обеспечивает постановку перечисленных в программе по физике ключевых демонстраций для исследования изучаемых явлений и процессов, эмпирических и фундаментальных законов, их технических применений.

Лабораторное оборудование для ученических практических работ формируется в виде тематических комплектов и обеспечивается в расчёте одного комплекта на двух обучающихся. Тематические комплекты лабораторного оборудования должны быть построены на комплексном использовании аналоговых и цифровых приборов, а также компьютерных измерительных систем в виде цифровых лабораторий.

Основными целями изучения физики в общем образовании являются:

формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;

развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;

формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

формирование умений объяснять явления с использованием физических знаний и научных доказательств;

формирование представлений о роли физики для развития других естественных наук, техники и технологий.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;

формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;

освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;

понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;

овладение методами самостоятельного планирования и проведения

физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;

создание условий для развития умений проектно-исследовательской, творческой деятельности.

На изучение физики (базовый уровень) на уровне среднего общего образования отводится 136 часов: в 10 классе – 68 часов (2 часа в неделю), в 11 классе – 68 часов (2 часа в неделю).

Предлагаемый в программе по физике перечень лабораторных и практических работ является рекомендованным, учитель делает выбор проведения лабораторных работ и опытов с учётом индивидуальных особенностей обучающихся.

Любая рабочая программа должна полностью включать в себя содержание данной программы по физике.

В отдельных случаях курс физики среднего общего образования может изучаться в объёме 204 часа за два года обучения (3 ч в неделю в 10 и 11 классах). В этом случае увеличивается не менее чем до 20 ч резервное время, которое используется учителем для изучения вопросов, тесно связанных с выбранным профилем обучения, и увеличивается учебная нагрузка, отводимая на изучение механики, молекулярной физики и электродинамики, за счёт расширения числа лабораторных работ исследовательского характера и уроков решения качественных и расчётных задач.

1	Основа рабочей	Рабочая программа соответствует федеральному	
	программы	государственному стандарту среднего общего	
		образования ,составлена на основе федеральной рабочей	
		программы по предмету «Физика» : является составной	
		частью основной образовательной программы среднего	
		общего образования МБОУ «Школа №109»	
2	10 класс	68 часов	
3	11 класс	68 часов	
Bcei	Всего 204 часа		

Содержание обучения

10 класс

Раздел 1. Физика и методы научного познания

Физика — наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике.

Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия.

Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Демонстрации

Аналоговые и цифровые измерительные приборы, компьютерные датчики.

Раздел 2. Механика

Тема 1. Кинематика

Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей.

Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени.

Свободное падение. Ускорение свободного падения.

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение.

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

Демонстрации

Модель системы отсчёта, иллюстрация кинематических характеристик движения.

Преобразование движений с использованием простых механизмов.

Падение тел в воздухе и в разреженном пространстве.

Наблюдение движения тела, брошенного под углом к горизонту и горизонтально.

Измерение ускорения свободного падения.

Направление скорости при движении по окружности.

Ученический эксперимент, лабораторные работы

Изучение неравномерного движения с целью определения мгновенной скорости.

Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.

Изучение движения шарика в вязкой жидкости.

Изучение движения тела, брошенного горизонтально.

Тема 2. Динамика

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта.

Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек.

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость.

Сила упругости. Закон Гука. Вес тела.

Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе.

Поступательное и вращательное движение абсолютно твёрдого тела.

Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела.

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

Демонстрации

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Невесомость. Вес тела при ускоренном подъёме и падении.

Сравнение сил трения покоя, качения и скольжения.

Условия равновесия твёрдого тела. Виды равновесия.

Ученический эксперимент, лабораторные работы

Изучение движения бруска по наклонной плоскости.

Исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации.

Исследование условий равновесия твёрдого тела, имеющего ось вращения.

Тема 3. Законы сохранения в механике

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение.

Работа силы. Мощность силы.

Кинетическая энергия материальной точки. Теорема об изменении

кинетической энергии.

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли.

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии.

Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

Демонстрации

Закон сохранения импульса.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Ученический эксперимент, лабораторные работы

Изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников.

Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута.

Раздел 3. Молекулярная физика и термодинамика

Тема 1. Основы молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса и размеры молекул. Количество вещества. Постоянная Авогадро.

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия.

Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева—Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара.

Технические устройства и практическое применение: термометр, барометр *Демонстрации*

Опыты, доказывающие дискретное строение вещества, фотографии молекул органических соединений.

Опыты по диффузии жидкостей и газов.

Модель броуновского движения.

Модель опыта Штерна.

Опыты, доказывающие существование межмолекулярного взаимодействия.

Модель, иллюстрирующая природу давления газа на стенки сосуда.

Опыты, иллюстрирующие уравнение состояния идеального газа, изопроцессы. Ученический эксперимент, лабораторные работы

Определение массы воздуха в классной комнате на основе измерений объёма комнаты, давления и температуры воздуха в ней.

Исследование зависимости между параметрами состояния разреженного газа.

Тема 2. Основы термодинамики

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче.

Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Второй закон термодинамики. Необратимость процессов в природе.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия тепловой машины. Цикл Карно и его коэффициент полезного действия. Экологические проблемы теплоэнергетики.

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

Демонстрации

Изменение внутренней энергии тела при совершении работы: вылет пробки из бутылки под действием сжатого воздуха, нагревание эфира в латунной трубке путём трения (видеодемонстрация).

Изменение внутренней энергии (температуры) тела при теплопередаче.

Опыт по адиабатному расширению воздуха (опыт с воздушным огнивом).

Модели паровой турбины, двигателя внутреннего сгорания, реактивного двигателя.

Ученический эксперимент, лабораторные работы

Измерение удельной теплоёмкости.

Тема 3. Агрегатные состояния вещества. Фазовые переходы

Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления.

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация.

Уравнение теплового баланса.

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе

наноматериалов, и нанотехнологии.

Демонстрации

Свойства насыщенных паров.

Кипение при пониженном давлении.

Способы измерения влажности.

Наблюдение нагревания и плавления кристаллического вещества.

Демонстрация кристаллов.

Ученический эксперимент, лабораторные работы

Измерение относительной влажности воздуха.

Раздел 4. Электродинамика

Тема 1. Электростатика

Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда.

Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля.

Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.

Электроёмкость. Конденсатор. Электроёмкость плоского конденсатора. Энергия заряженного конденсатора.

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер.

Демонстрации

Устройство и принцип действия электрометра.

Взаимодействие наэлектризованных тел.

Электрическое поле заряженных тел.

Проводники в электростатическом поле.

Электростатическая защита.

Диэлектрики в электростатическом поле.

Зависимость электроёмкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемости.

Энергия заряженного конденсатора.

Ученический эксперимент, лабораторные работы

Измерение электроёмкости конденсатора.

Тема 2. Постоянный электрический ток. Токи в различных средах

Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток.

Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества. Последовательное, параллельное, смешанное соединение проводников.

Работа электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Электродвижущая сила и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание.

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость.

Электрический ток в вакууме. Свойства электронных пучков.

Полупроводники. Собственная и примесная проводимость полупроводников. Свойства p—n-перехода. Полупроводниковые приборы.

Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма.

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

Демонстрации

Измерение силы тока и напряжения.

Зависимость сопротивления цилиндрических проводников от длины, площади поперечного сечения и материала.

Смешанное соединение проводников.

Прямое измерение электродвижущей силы. Короткое замыкание гальванического элемента и оценка внутреннего сопротивления.

Зависимость сопротивления металлов от температуры.

Проводимость электролитов.

Искровой разряд и проводимость воздуха.

Односторонняя проводимость диода.

Ученический эксперимент, лабораторные работы

Изучение смешанного соединения резисторов.

Измерение электродвижущей силы источника тока и его внутреннего сопротивления.

Наблюдение электролиза.

Межпредметные связи

Изучение курса физики базового уровня в 10 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их

проекции на оси координат, сложение векторов.

Биология: механическое движение в живой природе, диффузия, осмос, теплообмен живых организмов (виды теплопередачи, тепловое равновесие), электрические явления в живой природе.

Химия: дискретное строение вещества, строение атомов и молекул, моль вещества, молярная масса, тепловые свойства твёрдых тел, жидкостей и газов, электрические свойства металлов, электролитическая диссоциация, гальваника.

География: влажность воздуха, ветры, барометр, термометр.

Технология: преобразование движений с использованием механизмов, учёт трения в технике, подшипники, использование закона сохранения импульса в технике (ракета, водомёт и другие), двигатель внутреннего сгорания, паровая турбина, бытовой холодильник, кондиционер, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии, электростатическая защита, заземление электроприборов, ксерокс, струйный принтер, электронагревательные приборы, электроосветительные приборы, гальваника.

11 класс

Раздел 4. Электродинамика

Тема 3. Магнитное поле. Электромагнитная индукция

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов.

Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током.

Сила Ампера, её модуль и направление.

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца.

Явление электромагнитной индукции. Поток вектора магнитной индукции. Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея.

Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле.

Правило Ленца.

Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции.

Энергия магнитного поля катушки с током.

Электромагнитное поле.

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

Демонстрации

Опыт Эрстеда.

Отклонение электронного пучка магнитным полем.

Линии индукции магнитного поля.

Взаимодействие двух проводников с током.

Сила Ампера.

Действие силы Лоренца на ионы электролита.

Явление электромагнитной индукции.

Правило Ленца.

Зависимость электродвижущей силы индукции от скорости изменения магнитного потока.

Явление самоиндукции.

Ученический эксперимент, лабораторные работы

Изучение магнитного поля катушки с током.

Исследование действия постоянного магнита на рамку с током.

Исследование явления электромагнитной индукции.

Раздел 5. Колебания и волны

Тема 1. Механические и электромагнитные колебания

Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических колебаний. Превращение энергии при гармонических колебаниях.

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания.

Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения.

Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

Исследование параметров колебательной системы (пружинный или математический маятник).

Наблюдение затухающих колебаний.

Исследование свойств вынужденных колебаний.

Наблюдение резонанса.

Свободные электромагнитные колебания.

Осциллограммы (зависимости силы тока и напряжения от времени) для электромагнитных колебаний.

Резонанс при последовательном соединении резистора, катушки индуктивности и конденсатора.

Модель линии электропередачи.

Ученический эксперимент, лабораторные работы

Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора.

Тема 2. Механические и электромагнитные волны

Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн.

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука.

Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов E, B, v в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн.

Шкала электромагнитных волн. Применение электромагнитных волн

в технике и быту.

Принципы радиосвязи и телевидения. Радиолокация.

Электромагнитное загрязнение окружающей среды.

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

Демонстрации

Образование и распространение поперечных и продольных волн.

Колеблющееся тело как источник звука.

Наблюдение отражения и преломления механических волн.

Наблюдение интерференции и дифракции механических волн.

Звуковой резонанс.

Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний.

Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция.

Тема 3. Оптика

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет.

Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой.

Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников.

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку.

Поляризация света. Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

Прямолинейное распространение, отражение и преломление света. Оптические приборы.

Полное внутреннее отражение. Модель световода.

Исследование свойств изображений в линзах.

Модели микроскопа, телескопа.

Наблюдение интерференции света.

Наблюдение дифракции света.

Наблюдение дисперсии света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Наблюдение поляризации света.

Ученический эксперимент, лабораторные работы

Измерение показателя преломления стекла.

Исследование свойств изображений в линзах.

Наблюдение дисперсии света.

Раздел 6. Основы специальной теории относительности

Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.

Раздел 7. Квантовая физика

Тема 1. Элементы квантовой оптики

Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А.Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта.

Давление света. Опыты П.Н. Лебедева.

Химическое действие света.

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

Демонстрации

Фотоэффект на установке с цинковой пластиной.

Исследование законов внешнего фотоэффекта.

Светодиод.

Солнечная батарея.

Тема 2. Строение атома

Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода.

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм.

Спонтанное и вынужденное излучение.

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

Демонстрации

Модель опыта Резерфорда.

Определение длины волны лазера.

Наблюдение линейчатых спектров излучения.

Лазер.

Ученический эксперимент, лабораторные работы

Наблюдение линейчатого спектра.

Тема 3. Атомное ядро

Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы.

Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга— Иваненко. Заряд ядра. Массовое число ядра. Изотопы.

Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада.

Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра.

Ядерные реакции. Деление и синтез ядер.

Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики.

Элементарные частицы. Открытие позитрона.

Методы наблюдения и регистрации элементарных частиц.

Фундаментальные взаимодействия. Единство физической картины мира.

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

Демонстрации

Счётчик ионизирующих частиц.

Ученический эксперимент, лабораторные работы

Исследование треков частиц (по готовым фотографиям).

Раздел 8. Элементы астрономии и астрофизики

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии.

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение. Солнечная система.

Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные характеристики. Диаграмма «спектральный класс — светимость». Звёзды главной последовательности. Зависимость «масса — светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд.

Млечный Путь – наша Галактика. Положение и движение Солнца в Галактике. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

Нерешённые проблемы астрономии.

Ученические наблюдения

Наблюдения невооружённым глазом с использованием компьютерных приложений для определения положения небесных объектов на конкретную дату: основные созвездия Северного полушария и яркие звёзды.

Наблюдения в телескоп Луны, планет, Млечного Пути.

Обобщающее повторение

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики и астрономии в современной научной картине мира, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе.

Межпредметные связи

Изучение курса физики базового уровня в 11 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов, производные элементарных функций, признаки подобия треугольников, определение площади плоских фигур и объёма тел.

Биология: электрические явления в живой природе, колебательные движения в живой природе, оптические явления в живой природе, действие радиации на живые организмы.

Химия: строение атомов и молекул, кристаллическая структура твёрдых тел,

механизмы образования кристаллической решётки, спектральный анализ.

География: магнитные полюса Земли, залежи магнитных руд, фотосъёмка земной поверхности, предсказание землетрясений.

Технология: линии электропередач, генератор переменного тока, электродвигатель, индукционная печь, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь, проекционный аппарат, волоконная оптика, солнечная батарея.

Планируемые результаты освоение программ по физике на уровне среднего общего образования

Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечить достижение следующих личностных, метапредметных и предметных образовательных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны способность обучающихся отражать И руководствоваться внутренней сформированной позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма; ценностное отношение к государственным символам, достижениям российских учёных в области физики и технике;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

Расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

Метапредметные результаты

Познавательные универсальные учебные действия Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения; выявлять закономерности и противоречия в рассматриваемых физических явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами

физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей; выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий когнитивных, решении коммуникативных И организационных В соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, информационной правовых и этических норм, норм безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во вне-урочной деятельности; распознавать предпосылки конфликтных ситуаций и смягчать конфликты; развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы; выбирать тематику и методы совместных действий с учётом общих интересов,

и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности; принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется предполагающий эмоциональный интеллект, сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей:

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

Предметные результаты

К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул,

количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, І, ІІ и ІІІ законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых, и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать

физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых, и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные

технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ФИЗИКА

10 КЛАСС

№ П/П	Наименование разделов и тем учебного предмета	Количество часов	Программное содержание	Основные виды деятельности обучающихся	Электронные ресурсы
Разд	ел 1. Физика и метод	ы научного п	103нания		
1.1	Физика и методы научного познания	2	Физика — наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия. Роль и место физики в формировании современной научной картины мира,	Изучение научных (эмпирических и теоретических) методов познания окружающего мира. Обсуждение границ применимости физических законов и теорий. Работа в группе по подготовке коротких сообщений о роли и месте физики в науке и в практической деятельности людей. Демонстрация аналоговых и цифровых измерительных приборов, компьютерных датчиков. Освоение основных приёмов работы с цифровой лабораторией по физике	u/subject/lesson/ 5894/conspect/9 0070/
			впрактической деятельности людей		

Ито	го по разделу	2					
Разд	Раздел 2. Механика						
2.1.	Кинематика	5	Механическое движение. Относительность механического движения. Система отсчёта. Траектория. Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей. Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени. Свободное падение. Ускорение свободного падения. Криволинейное движение. Движение материальной точки по окружности с постоянной	Проведение эксперимента: изучение неравномерного движения с целью определения мгновенной скорости; исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю; изучение движения шарика в вязкой жидкости; изучение движения тела, брошенного горизонтально. Объяснение основных принципов действия технических устройств, таких как: спидометр, цепные и ремённые передачи движения; и условий их безопасного использования в повседневной жизни. Решение расчётных задач с явно заданной физической моделью с использованием основных формул кинематики. Построение и анализ графиков зависимостей кинематических величин от времени	https://www.yak lass.ru/p/fizika/1 0- klass/kinematika -materialnoi- tochki-6585327		
			по модулю скоростью.	для равномерного и равноускоренного прямолинейного			

			Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение. Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи	движения. Распознавание физических явлений в учебных опытах и окружающей жизни: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности. Описание механического движения с использованием физических величин: координата, путь, перемещение, скорость, ускорение. Работа в группах при планировании, проведении и интерпретации результатов опытов и анализе дополнительных источников информации по теме	
2.2.	Динамика	7	Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта. Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек. Закон всемирного тяготения. Сила тяжести. Первая космическая скорость. Сила упругости. Закон Гука. Вес тела. Трение. Виды трения (покоя, скольжения,	Сравнение масс взаимодействующих тел. Изучение зависимости силы упругости от деформации; сравнение сил трения покоя, качения и скольжения. Объяснение невесомости. Проведение эксперимента: исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации; изучение движения бруска по наклонной плоскости; исследование условий равновесия твёрдого тела, имеющего ось вращения. Объяснение особенностей	https://resh.edu.r u/subject/lesson/ 4717/conspect/2 70737/

			качения).	равномерного и равноускоренного	
			Сила трения. Сухое трение.	прямолинейного движения,	
			Сила трения скольжения и	свободного падения тел, движения	
			сила трения покоя.	по окружности на основе законов	
			Коэффициент трения. Сила	Ньютона, закона всемирного	
			сопротивления при	тяготения.	
			движении тела в жидкости	Объяснение основных принципов	
			или газе.	действия подшипников и их	
			Поступательное и	практического применения.	
			вращательное движение	Объяснение движения	
			абсолютно твёрдого тела.	искусственных спутников.	
			Момент силы относительно	Решение расчётных задач с явно	
			оси вращения. Плечо силы.	заданной физической моделью	
			Условия равновесия	с использованием основных	
			твёрдого тела. Технические	законов и формул динамики.	
			устройства и практическое	Распознавание физических явлений	
			применение: подшипники,	в учебных опытах и окружающей	
			движение искусственных	жизни: инерция, взаимодействие	
			спутников	тел. Анализ физических процессов	
				и явлений с использованием	
				законов и принципов: закон	
				всемирного тяготения, I, II и III	
				законы Ньютона, принцип	
				суперпозиции сил, принцип	
				равноправности инерциальных	
				систем отсчёта	
2.3.	Законы сохранения в	6	Импульс материальной	Проведение эксперимента:	https://resh.edu.r
	механике		точки (тела), системы	изучение абсолютно неупругого	u/subject/lesson/
			материальных точек.	удара	6290/conspect/1
			Импульс силы и изменение	с помощью двух одинаковых	97452/
			импульса тела. Закон	нитяных маятников; исследование	
			сохранения импульса.	связи работы силы с изменением	
			Реактивное движение.	механической энергии тела	

Работа силы. Мошность на примере растяжения резинового силы. Кинетическая жгута. Опенка абсолютных и энергия материальной точки. Теорема относительных погрешностей об изменении измерений физических величин. кинетической энергии. Решение расчётных задач с явно Потенциальная энергия. заданной физической моделью Потенциальная энергия с использованием основных упруго деформированной законов и формул динамики и пружины. Потенциальная законов сохранения. энергия тела вблизи Решение качественных задач поверхности Земли. с опорой на изученные в разделе Потенциальные и «Механика» законы, закономерности и физические непотенциальные силы. Связь работы явления. Описание механического непотенциальных сил с изменением механической движения с использованием энергии системы тел. Закон физических величин: импульс сохранения механической тела, кинетическая энергия, энергии. потенциальная энергия, Упругие и неупругие механическая работа, столкновения. Технические механическая мощность. Анализ устройства и практическое физических процессов и явлений с применение: использованием закона сохранения водомёт, копёр, механической энергии, закона пружинный пистолет, сохранения импульса. Объяснение движение ракет основных принципов действия и практического применения технических устройств, таких как: водомёт, копёр, пружинный пистолет.

				Объяснение движения ракет с опорой на изученные физические величины и законы механики. Использование при подготовке сообщений о применении законов механики современных информационных технологий для поиска, структурирования, интерпретации и представления информации, критический анализ получаемой информации Проведение косвенных измерений, исследований зависимостей физических величин, проверка	
II		18		предложенных гипотез	
	о по разделу ел 3. Молекулярная физ		шиамика		
3.1.	Основы	<u> 9</u>	Основные положения	Проведение эксперимента:	https://resh.edu.r
3.1.	молекулярно-	,	молекулярно-кинетической		u/subject/lesson/
	кинетической теории		теории и их опытное	в классной комнате на основе	4722/conspect/4
	кинети псекои теории		обоснование. Броуновское	измерений объёма комнаты,	7799/
			движение. Диффузия.	давления и температуры воздуха в	<u> </u>
			Характер движения и	ней; исследование зависимости	
			взаимодействия частиц	между параметрами состояния	
			вещества. Модели строения	1	
			газов, жидкостей и твёрдых		
			тел и объяснение свойств	относительных погрешностей	
			вещества	измерений физических величин.	
			на основе этих моделей.	Объяснение основных принципов	
			Масса и размеры молекул.	действий термометра и барометра и	
			Количество вещества.	условий их безопасного	
			Постоянная Авогадро.	использования в повседневной	

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия. Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частии газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изохора, изобара. Технические устройства и				T		
в учебных опытах и окружающей жизни: диффузия, броуновское движение. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева-Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и				-		
температур Цельсия. Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и				1 71	<u> </u>	
Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изохора, изобара. Технические устройства и					1 *	
Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и					жизни: диффузия, броуновское	
молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количетвом вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и использованием физических величин: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул. Анализ физических процессов и явлений с использованием МКТ, газовых законов, связи средней кинетической энергии теплового движения молекул с абсолютной температурой. Решение расчётных задач с явно заданной физической моделью с использованием основных положений МКТ, законов и формул молекулярной физики. Работа в группах при планировании, проведении и				Модель идеального газа.	движение.	
теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и				Основное уравнение	Описание тепловых явлений с	
Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и температура, средняя кинетическая энергия хаотическог одвижения молекул, среднеквадратичная скорость молекул. Анализ физических процессов и явлений с использованием МКТ, газовых законов, связи средней кинетической энергии теплового движения молекул. Анализ физической и и и и увлений с использованием молекул с абсолютной температурой. Решение расчётных задач с явно заданной физической моделью с использованием основных положений МКТ, законов и формул молекулярной физики. Работа в группах при планировании, проведении и				молекулярно-кинетической	использованием физических	
как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и				теории идеального газа.	величин: давление газа,	
кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и				Абсолютная температура	температура, средняя кинетическая	
теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и скорость молекул. Анализ физических процессов и явлений с использованием МКТ, газовых законов, связи средней кинетической энергии теплового движения молекул с абсолютной температурой. Решение расчётных задач с явно заданной физической моделью с использованием основных положений МКТ, законов и формул молекулярной физики. Работа в группах при планировании, проведении и				как мера средней	энергия хаотического движения	
Газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и				кинетической энергии	молекул, среднеквадратичная	
Кельвина. Газовые законы. Уравнение Менделеева— Клапейрона. Закон Дальтона. Изопроцессы в идеальном количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и планировании, проведении и				теплового движения частиц	скорость молекул.	
Уравнение Менделеева— Клапейрона. Закон Дальтона. Движения молекул с абсолютной изопроцессы в идеальном количеством вещества. Графическое представление изохора, изобара. Технические устройства и газовых законов, связи средней кинетической энергии теплового движения молекул с абсолютной температурой. Решение расчётных задач с явно заданной физической моделью с использованием основных положений МКТ, законов и формул молекулярной физики. Работа в группах при планировании, проведении и				газа. Шкала температур	Анализ физических процессов и	
Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и кинетической энергии теплового движения молекул с абсолютной температурой. Решение расчётных задач с явно заданной физической моделью с использованием основных положений МКТ, законов и формул молекулярной физики. Работа в группах при планировании, проведении и				Кельвина. Газовые законы.	явлений с использованием МКТ,	
Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое с использованием основных представление положений МКТ, законов и формул изопроцессов: изотерма, изохора, изобара. Технические устройства и планировании, проведении и				Уравнение Менделеева-	газовых законов, связи средней	
Изопроцессы в идеальном газе с постоянным Решение расчётных задач с явно количеством вещества. Графическое с использованием основных представление положений МКТ, законов и формул изопроцессов: изотерма, изохора, изобара. Работа в группах при Технические устройства и планировании, проведении и				Клапейрона.	кинетической энергии теплового	
Газе с постоянным Решение расчётных задач с явно количеством вещества. Графическое с использованием основных представление положений МКТ, законов и формул изопроцессов: изотерма, изохора, изобара. Технические устройства и планировании, проведении и				Закон Дальтона.	движения молекул с абсолютной	
количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. Технические устройства и панировании физической моделью с использованием основных положений МКТ, законов и формул молекулярной физики. Работа в группах при планировании, проведении и				Изопроцессы в идеальном	температурой.	
Графическое с использованием основных представление положений МКТ, законов и формул изопроцессов: изотерма, изохора, изобара. Работа в группах при Технические устройства и планировании, проведении и				газе с постоянным	Решение расчётных задач с явно	
представление положений МКТ, законов и формул изопроцессов: изотерма, изохора, изобара. Работа в группах при планировании, проведении и				количеством вещества.	заданной физической моделью	
изопроцессов: изотерма, изохора, изобара. Работа в группах при планировании, проведении и				Графическое	с использованием основных	
изохора, изобара. Работа в группах при Технические устройства и планировании, проведении и				представление	положений МКТ, законов и формул	
Технические устройства и планировании, проведении и				изопроцессов: изотерма,	молекулярной физики.	
Технические устройства и планировании, проведении и				изохора, изобара.	Работа в группах при	
THE CAMPANY OF THE CA				Технические устройства и	планировании, проведении и	
практическое применение: интерпретации результатов опытов				практическое применение:	интерпретации результатов опытов	
термометр, барометр и анализе дополнительных				термометр, барометр	и анализе дополнительных	
источников информации по теме					источников информации по теме	
3.2. Основы 10 Термодинамическая Проведение эксперимента: https://resh.edu.r	3.2.	Основы	10	Термодинамическая	= =	https://resh.edu.r
термодинамики система. Внутренняя измерение удельной теплоёмкости u/subject/lesson/		термодинамики		система. Внутренняя	измерение удельной теплоёмкости	u/subject/lesson/
энергия вещества. Оценка абсолютных и 4723/conspect/1		_		J 2		
термодинамической относительных погрешностей 5577/				-	относительных погрешностей	_
системы и способы её измерений физических величин.				_	_	

изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вешества. Количество теплоты при теплопередаче. Понятия об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа. Второй закон термодинамики. Необратимость процессов в природе. Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия тепловой машины. Цикл Карно и его коэффициент полезного действия. Экологические

Изучение моделей паровой турбины, двигателя внутреннего сгорания, реактивного двигателя. Объяснение принципов действия и условий безопасного использования в повседневной жизни двигателя внутреннего сгорания, бытового холодильника, кондиционера. Описание свойств тел и тепловых явлений с использованием физических величин: давление газа, температура, количество теплоты, внутренняя энергия, работа газа. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул молекулярной физики и термодинамики. Решение качественных задач с опорой на изученные в разделе «Молекулярная физика и термодинамика» законы, закономерности и физические явления. Работа в группах при анализе дополнительных источников информации по теме

			проблемы теплоэнергетики. Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер		
3.3	Агрегатные состояния вещества. Фазовые переходы	5	Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления. Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация. Уравнение теплового баланса. Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных	Проведение эксперимента: измерение относительной влажности воздуха. Оценка абсолютных и относительных погрешностей измерений физических величин. Изучение свойств насыщенных паров, способов измерения влажности Наблюдение кипения при пониженном давлении, нагревания и плавления кристаллического вещества. Объяснение принципов действия и условий безопасного использования в повседневной жизни гигрометра, психрометра, калориметра. Изучение технологий получения современных материалов, в том числе наноматериалов. Решение расчётных задач с явно заданной физической моделью с использованием уравнения теплового баланса.	https://resh.edu.r u/subject/lesson/ 3731/conspect/4 7857/
			материалов, в том числе наноматериалов,	Решение качественных задач с опорой на изученные законы,	

			и нанотехнологии	закономерности и физические явления по теме. Распознавание физических явлений в учебных опытах и окружающей жизни: деформация твёрдых тел, нагревание и охлаждение тел, изменение агрегатных состояний вещества и объяснение их на основе законов и формул молекулярной физики. Использование информационных технологий для поиска, структурирования, интерпретации и представления информации при подготовке сообщений о применении законов молекулярной физики и термодинамики в технике	
Итого	по разделу	24		и технологиях	
	но разделу — <u>— — — — — — — — — — — — — — — — — —</u>	24		<u> </u>	
	Электростатика	10	Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда. Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд. Электрическое поле.	Проведение эксперимента: измерение электроёмкости конденсатора. Оценка абсолютных и относительных погрешностей измерений физических величин. Изучение принципов действия электроскопа, электрометра, конденсатора. Изучение принципов действия и условий безопасного применения в практической жизни, копировального аппарата,	https://resh.edu.r u/subject/lesson/ 5899/conspect/4 8722/

Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля. Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость. Электроёмкость. Конденсатор. Электроёмкость плоского конденсатора. Энергия заряженного конденсатора. Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер

струйного принтера. Рассмотрение физических оснований электростатической зашиты и заземления электроприборов. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул электростатики. Решение качественных задач с опорой на изученные законы, закономерности и физические явления электростатики. Распознавание физических явлений в учебных опытах и окружающей жизни: электризация тел, взаимодействие зарядов и объяснение их на основе законов и формул электростатики. Описание изученных свойств вещества и электрических явлений с использованием физических величин: электрический заряд, напряжённость электрического поля, потенциал, разность потенциалов, электроёмкость. Анализ физических процессов и явлений с использованием физических законов: закона сохранения электрического заряда, закона Кулона. Работа в группах при анализе дополнительных источников

	<u> </u>				I
				информации и подготовке	
				сообщений о проявлении законов	
				электростатики в окружающей	
				жизни и применении их в технике	
4.2	Постоянный	12	Электрический ток.	Проведение эксперимента:	https://resh.edu.r
	электрический ток.		Условия существования	изучение смешанного соединения	u/subject/lesson/
	Токи в различных		электрического тока.	резисторов; измерение ЭДС	5901/conspect/4
	средах		Источники тока. Сила тока.	источника тока и его внутреннего	8863/
			Постоянный ток.	сопротивления; наблюдение	
			Напряжение.	электролиза.	
			Закон Ома для участка	Оценка абсолютных и	
			цепи. Электрическое	относительных погрешностей	
			сопротивление. Удельное	измерений физических величин.	
			сопротивление вещества.	Объяснение принципов действия и	
			Последовательное,	условий безопасного применения	
			параллельное, смешанное	амперметра, вольтметра, реостата,	
			соединение проводников.	источников тока,	
			Работа электрического	электронагревательных и	
			тока.	электроосветительных приборов,	
			Закон Джоуля–Ленца.	термометра сопротивления,	
			Мощность электрического	вакуумного диода, термисторов и	
			тока. Электродвижущая	фоторезисторов,	
			сила и внутреннее	полупроводниковых диодов,	
			сопротивление источника	гальваники.	
			тока. Закон Ома для полной	Решение расчётных задач с явно	
			(замкнутой) электрической	заданной физической моделью	
			цепи. Короткое замыкание.	с использованием основных	
			Электронная проводимость	законов и формул темы	
			твёрдых металлов.	«Постоянный электрический ток».	
			Зависимость	Распознавание физических явлений	
			сопротивления металлов	в учебных опытах и окружающей	
			от температуры.	жизни: электрическая	
			Сверхпроводимость.	проводимость, тепловое, световое,	
	l .		1 1 /1	1 1 /1 /	l .

	n v	v
	Электрический ток в	химическое, магнитное действия
	вакууме. Свойства	тока.
	электронных пучков.	Анализ электрических явлений и
	Полупроводники.	процессов в цепях постоянного
	Собственная и примесная	тока с использованием законов:
	проводимость	закон Ома, закономерности
	полупроводников.	последовательного и параллельного
	Свойства	соединения проводников, закон
	р–n-перехода.	Джоуля-Ленца.
	Полупроводниковые	Описание изученных свойств
	приборы. Электрический	веществ и электрических явлений с
	ток в растворах и расплавах	использованием физических
	электролитов.	величин: электрический заряд, сила
	Электролитическая	тока, электрическое напряжение,
	диссоциация. Электролиз.	электрическое сопротивление,
	Электрический ток в газах.	разность потенциалов, ЭДС, работа
	Самостоятельный и	тока, мощность тока.
	несамостоятельный разряд.	Использование информационных
	Молния. Плазма.	технологий для поиска,
	Технические устройства и	структурирования, интерпретации и
	практическое применение:	представления информации при
	амперметр, вольтметр,	подготовке сообщений о
	реостат, источники тока,	применении законов постоянного
	электронагревательные	тока в технике и технологиях
	приборы,	
	электроосветительные	
	приборы, термометр	
	сопротивления, вакуумный	
	диод, термисторы и	
	фоторезисторы,	
	полупроводниковый диод,	
	гальваника	
Итого по разделу 22		

Резервное время	2		
Общее количество часов	68		
по программе			

11 КЛАСС

No	Наименование	Количество	Программное содержание	Основные виды деятельности	Электронные
П/П	разделов и тем	часов		обучающихся	ресурсы
	учебного				
	предмета				
Разде .	л 1. Физика и метод	ы научного п	ознания		
1.1	Магнитное поле.	11	Постоянные магниты.	Проведение эксперимента:	https://resh.edu.ru
	Электромагнитная		Взаимодействие	изучение магнитного поля	/subject/lesson/49
	индукция		постоянных магнитов.	катушки с током; исследование	08/conspect/9637
			Магнитное поле. Вектор	действия постоянного магнита на	<u>4/</u>
			магнитной индукции.	рамку с током; исследование	
			Принцип суперпозиции	явления электромагнитной	
			магнитных полей. Линии	индукции.	
			магнитной индукции.	Оценка абсолютных и	
			Картина линий магнитной	относительных погрешностей	
			индукции поля постоянных	измерений физических величин.	
			магнитов. Магнитное поле	Объяснение принципов действия и	
			проводника	условий безопасного применения	
			с током. Картина линий	постоянных магнитов,	
			индукции магнитного поля	электромагнитов,	
			длинного прямого	электродвигателя, ускорителей	
			проводника и замкнутого	элементарных частиц,	
			кольцевого проводника,	индукционной печи.	
			катушки с током. Опыт	Решение расчётных задач	
			Эрстеда. Взаимодействие	на применение формул темы	
			проводников	«Магнитное поле.	
			с током.	Электромагнитная индукция».	
			Сила Ампера, её модуль и	Решение качественных задач	
			направление.	с опорой на изученные законы,	

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца. Явление электромагнитной индукции. Поток вектора магнитной индукции. Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле. Правило Ленца. Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции. Энергия магнитного поля катушки с током. Электромагнитное поле. Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных

закономерности и физические явления темы «Магнитное поле. Электромагнитная индукция». Определение направления вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца. Распознавание физических явлений в учебных опытах и окружающей жизни: взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд. Анализ электромагнитных явлений с использованием закона электромагнитной индукции. Описание изученных свойств веществ и электромагнитных явлений с использованием физических величин: индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и

магнитного полей

			частиц, индукционная печь		
Итого	по разделу	11			
Раздел	 Колебания и волни 	Ы			
2.1	Механические и	9	Колебательная система.	Исследование параметров	https://resh.edu.ru
	электромагнитные		Свободные механические	колебательной системы – периода,	/subject/lesson/59
	колебания		колебания. Гармонические	частоты, амплитуды и фазы	03/conspect/4694
			колебания. Период,	колебаний (пружинный и/или	<u>4/</u>
			частота, амплитуда и фаза	математический маятник).	
			колебаний. Пружинный	Наблюдение затухающих	
			маятник. Математический	колебаний. Исследование свойств	
			маятник. Уравнение	вынужденных колебаний.	
			гармонических колебаний.	Наблюдение резонанса.	
			Превращение энергии при	Проведение эксперимента:	
			гармонических колебаниях.	исследование зависимости	
			Колебательный контур.	периода малых колебаний груза на	
			Свободные	нити	
			электромагнитные	от длины нити и массы груза;	
			колебания в идеальном	исследование переменного тока в	
			колебательном контуре.	цепи из последовательно	
			Аналогия между	соединённых конденсатора,	
			механическими и	катушки и резистора.	
			электромагнитными	Оценка абсолютных и	
			колебаниями. Формула	относительных погрешностей	
			Томсона. Закон сохранения	измерений физических величин.	
			энергии в идеальном	Объяснение принципов действия и	
			колебательном контуре.	условий безопасного применения	
			Представление о	электрического звонка, генератора	
			затухающих колебаниях.	переменного тока, линий	
			Вынужденные	электропередач.	
			механические колебания.	Решение расчётных задач с явно	

			Резонанс. Вынужденные	заданной физической моделью	
			электромагнитные	с использованием основных	
			колебания. Переменный	законов и формул, описывающих	
			ток. Синусоидальный	механические и электромагнитные	
			переменный ток. Мощность	колебания.	
			переменного тока.	Описание механических и	
			Амплитудное и	электромагнитных колебаний с	
			действующее значение	использованием физических	
			силы тока и напряжения.	величин: период и частота	
			Трансформатор.	колебаний, амплитуда и фаза	
			Производство, передача и	колебаний, заряд и сила тока	
			потребление электрической	в гармонических	
			энергии. Экологические	электромагнитных колебаниях.	
			риски	Решение качественных задач	
			при производстве	с опорой на изученные законы,	
			электроэнергии. Культура	закономерности, описывающие	
			использования	-	
				механические и электромагнитные колебания.	
			электроэнергии в повседневной жизни.		
				Работа в группах при	
			Технические устройства и	планировании, проведении и	
			практическое применение:	интерпретации результатов	
			электрический звонок,	опытов, и анализе	
			генератор переменного	дополнительных источников	
2.2	2.6		тока, линии электропередач	информации по теме	1 // 1 1
2.2	Механические и	5	Механические волны,	Изучение образования и	https://resh.edu.ru
	электромагнитные		условия распространения.	распространения поперечных и	/subject/lesson/49
	волны		Период. Скорость	продольных волн.	13/conspect/4738
			распространения и длина	Наблюдение отражения и	<u>2/</u>
			волны. Поперечные и	преломления, интерференции и	
			продольные волны.	дифракции механических волн.	
			Интерференция и	Наблюдение связи громкости	
			дифракция механических	звука и высоты тона с амплитудой	
			волн. Звук. Скорость звука.	и частотой колебаний, звукового	

Громкость звука. Высота тона. Тембр звука. Электромагнитные волны Условия излучения электромагнитных волн. Взаимная ориентация векторов Е, В, υ в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн. Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту. Принципы радиосвязи и телевидения. Радиолокация. Электромагнитное загрязнение окружающей среды. Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, и преломления,

интерференции и

резонанса. Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Изучение условий излучения электромагнитных волн, взаимной ориентации векторов Е, В, υ в электромагнитной волне. Изучение применения электромагнитных волн в технике и быту. Объяснение принципов действия и условий безопасного применения музыкальных инструментов, ультразвуковой диагностики в технике и медицине, радара, радиоприёмника, телевизора, антенны, телефона, СВЧ-печи. Решение расчётных и качественных задач с опорой на изученные законы и закономерности, описывающие распространение механических и электромагнитных волн. Использование информационных технологий для поиска, структурирования, интерпретации и представления информации при подготовке сообщений об использовании

электромагнитных волн в технике.

дифракции механических волн. Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний, звукового резонанса. Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Изучение условий излучения электромагнитных волн, взаимной ориентации векторов Е, В, υ в электромагнитной волне. Изучение применения электромагнитных волн в технике и быту. Объяснение принципов действия и условий безопасного применения музыкальных инструментов, ультразвуковой диагностики в технике и медицине, радара, радиоприёмника, телевизора, антенны, телефона, СВЧ-печи. Решение расчётных и качественных задач с

Участие в дискуссии об электромагнитном загрязнении окружающей среды. Работа в группах при планировании, проведении и интерпретации результатов опытов и анализе дополнительных источников информации по теме

			опорой на изученные законы и закономерности, описывающие радиоприёмник, телевизор, антенна, телефон, СВЧ-печь .		
2.3	Оптика	10	Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света. Отражение света. Законы отражения света. Построение изображений в плоском зеркале. Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения. Дисперсия света. Сложный состав белого света. Цвет. Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и	Изучение явления полного внутреннего отражения, его применения в световоде. Изучение моделей микроскопа, телескопа. Получение спектра с помощью призмы и дифракционной решётки. Измерение показателя преломления стекла. Исследование свойств изображений в линзах. Объяснение принципов действия и условий безопасного применения очков, лупы, фотоаппарата, проекционного аппарата, микроскопа, телескопа, волоконной оптики, дифракционной решётки, поляроида. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул геометрической оптики. Построение и описание изображения, создаваемого плоским зеркалом, тонкой линзой.	https://resh.edu.ru /subject/lesson/49 14/conspect/4758 9/
			рассеивающих линзах.	Рассмотрение пределов	

	Формула тонкой линзы. Увеличение, даваемое	применимости геометрической оптики.	
	линзой.	Распознавание физических	
	Пределы применимости	явлений в опытах и окружающей	
	геометрической оптики.	жизни: прямолинейное	
	Волновая оптика.	распространение света,	
	Интерференция света.	отражение, преломление,	
	Когерентные источники.	интерференция, дифракция и	
	Условия наблюдения	поляризация света, дисперсия	
	максимумов и минимумов	света. Изучение условий	
	в интерференционной	наблюдения максимумов и	
	картине от двух синфазных	минимумов	
	когерентных источников.	в интерференционной картинеот	
	Дифракция света.	двух синфазных когерентных	
	Дифракционная решётка.	источников.	
	Условие наблюдения	Условие наблюдения главных	
	главных максимумов при	максимумов при падении	
	падении	монохроматического света	
	монохроматического света	на дифракционную решётку.	
	на дифракционную	Анализ оптических явлений	
	решётку. Поляризация	с использованием законов: закон	
	света. Технические	прямолинейного распространения	
	устройства и практическое	света, законы отражения света,	
	применение: очки, лупа,	законы преломления света.	
	фотоаппарат,	Описание оптических явлений	
	проекционный аппарат,	с использованием физических	
	микроскоп, телескоп,	величин: фокусное расстояние и	
	волоконная оптика,	оптическая сила линзы	
	дифракционная решётка,		
	поляроид		
Итого по разделу 24			

Разде.	Раздел 3. Основы специальной теории относительности (далее – СТО)					
3.1	Основы специальной специальной теории относительности	4	Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна. Относительность одновременность. Замедление времени и сокращение длины. Энергия и импульс релятивистской частицы. Связь массы с энергией и импульсом релятивистской	Решение качественных задач с опорой на изученные постулаты СТО. Использование информационных технологий для поиска, структурирования, интерпретации и представления информации при подготовке сообщений о границах применимости классической механики и основах СТО	https://resh.edu.ru/subject/lesson/59 07/conspect/4823 0/	
Итого	по разделу	4	частицы. Энергия покоя			
Разде: 4.1	7 4. Квантовая физика Элементы квантовой оптики	6	Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона. Открытие и исследование фотоэффекта. Опыты А.Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная	Наблюдение фотоэффекта на установке с цинковой пластиной. Исследование законов внешнего фотоэффекта. Объяснение основных принципов действия технических устройств, таких как: фотоэлемент, фотодатчик, солнечная батарея, светодиод; и условий их безопасного применения в	https://resh.edu.ru/subject/lesson/38 78/conspect/4831 7/	

			граница» фотоэффекта.	практической жизни.	
			Давление света. Опыты	Решение расчётных задач с явно	
			П.Н. Лебедева.	заданной физической моделью	
			Химическое действие	с использованием основных	
			света. Технические	законов и формул квантовой	
			устройства и практическое	оптики. Решение качественных	
			применение: фотоэлемент,	задач	
			фотодатчик, солнечная	с опорой на изученные законы,	
			батарея, светодиод	закономерности квантовой	
				оптики. Распознавание	
				физических явлений в учебных	
				опытах: фотоэлектрический	
				эффект, световое давление.	
				Описание изученных квантовых	
				явлений и процессов	
				с использованием физических	
				величин: скорость	
				электромагнитных волн, длина	
				волны и частота света, энергия и	
				импульс фотона	
4.2	Строение атома	4	Модель атома Томсона.	Изучение модели опыта	https://resh.edu.ru
			Опыты Резерфорда по	Резерфорда. Проведение	/subject/lesson/39
			рассеянию	эксперимента	<u>10/conspect/4834</u>
			α-частиц. Планетарная	по наблюдению линейчатого	<u>6/</u>
			модель атома. Постулаты	спектра. Оценка абсолютных и	
			Бора. Излучение и	относительных погрешностей	
			поглощение фотонов при	измерений физических величин.	
			переходе атома с одного	Изучение модели атома: Томсона,	
			уровня энергии на другой.	планетарной модели атома,	
			Виды спектров. Спектр	модели атома Бора.	
			уровней энергии атома	Изучение спектра уровней энергии	
			водорода.	атома водорода. Объяснение	
			Волновые свойства частиц.	принципов действия и условий	

	Т	Волны де Бройля. Корпускулярно-волновой дуализм. Спонтанное и вынужденное излучение. Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер	безопасного применения спектроскопа, лазера, квантового компьютера. Решение качественных задач с опорой на изученные законы, закономерности и физические явления по теме «Строение атома». Распознавание физических явлений в учебных опытах: возникновение линейчатого спектра излучения. Анализ квантовых процессов и явлений с использованием постулатов Бора	
4.3 Атомное ядро	5	Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы. Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга-Иваненко. Заряд ядра. Массовое число ядра. Изотопы. Альфа-распад. Электронный и позитронный бета-распад.	Изучение экспериментов, доказывающих сложность строения атомного ядра. Исследование треков частиц (по готовым фотографиям). Изучение ядерных сил, ядерных реакций синтеза и распада, термоядерного синтеза. Изучение нуклонной модели ядра Гейзенберга-Иваненко. Объяснение устройства и применения дозиметра, камеры Вильсона, ядерного реактора, атомной бомбы. Решение задач с опорой на полученные знания, в т.ч. о заряде и массовом числе ядра. Распознавание физических явлений в учебных опытах и в	https://resh.edu.ru /subject/lesson/58 45/conspect/1516 34/

			T	T	_
			Гамма-излучение. Закон	окружающей жизни: естественная	
			радиоактивного распада.	и искусственная радиоактивность.	
			Энергия связи нуклонов в	Описание квантовых явлений и	
			ядре. Ядерные силы.	процессов с использованием	
			Дефект массы ядра.	физических величин: период	
			Ядерные реакции. Деление	полураспада, энергия связи	
			и синтез ядер.	атомных ядер, дефект массы ядра.	
			Ядерный реактор.	Анализ процессов и явлений с	
			Термоядерный синтез.	использованием законов и	
			Проблемы и перспективы	постулатов: закон сохранения	
			ядерной энергетики.	электрического заряда, закон	
			Экологические аспекты	сохранения массового числа,	
			ядерной энергетики.	постулаты Бора, закон	
			Элементарные частицы.	радиоактивного распада.	
			Открытие позитрона.	Участие в работе круглого стола	
			Методы наблюдения и	«Фундаментальные	
			регистрации элементарных	взаимодействия. Единство	
			частиц.	физической картины мира».	
			Фундаментальные	Использование информационных	
			взаимодействия. Единство	технологий для поиска,	
			физической картины мира.	структурирования, интерпретации	
			Технические устройства и	и представления информации при	
			практическое применение:	подготовке сообщений о	
			дозиметр, камера	применении законов квантовой	
			Вильсона, ядерный	физики в технике и технологиях,	
			реактор, атомная бомба	экологических аспектах ядерной	
				энергетики	
Итого	по разделу	15		1	
	I				
Разде.	п 5. Элементы астроно	омии и астрос	ризики		
5.1	Элементы	7	Этапы развития	Подготовка сообщений об этапах	https://spadilo.ru/
	астрономии и	,	астрономии. Прикладное и	развития астрономии, о	elementy-
	1 I Politoliilii II			Passailini at Policinini, o	

астрофизики	мировоззренческое	прикладном и мировоззренческом	astrofiziki/
	значение астрономии.	значении астрономии, о методах	
	Вид звёздного неба.	получения научных	
	Созвездия, яркие звёзды,	астрономических знаний,	
	планеты, их видимое	открытиях в современной	
	движение.	астрономии.	
	Солнечная система.	Изучение современных	
	Солнце. Солнечная	представлений о происхождении и	
	активность. Источник	эволюции Солнца и звёзд.	
	энергии Солнца и звёзд.	Изучение типов галактик,	
	Звёзды, их основные	радиогалактик и квазаров.	
	характеристики. Диаграмма	Изучение движения небесных тел,	
	«спектральный класс –	эволюции звёзд и Вселенной,	
	светимость». Звёзды	процессов, происходящих в	
	главной	звёздах, в звёздных системах,	
	последовательности.	в межгалактической среде,	
	Зависимость «масса –	масштабной структуры	
	светимость» для звёзд	Вселенной. Объяснение	
	главной	расширения Вселенной на основе	
	последовательности.	закона Хаббла. Подготовка к	
	Внутреннее строение звёзд.	обсуждению нерешенных проблем	
	Современные	астрономии. Проведение	
	представления	наблюдений невооружённым	
	о происхождении и	глазом	
	эволюции Солнца и звёзд.	с использованием	
	Этапы жизни звёзд.	компьютерных приложений	
	Млечный Путь – наша	для определения положения	
	Галактика. Положение и	небесных объектов на	
	движение Солнца	конкретную дату: основные	
	в Галактике. Типы	созвездия Северного	
	галактик. Радиогалактики и	полушария и яркие звёзды.	
	квазары. Чёрные дыры в	Проведение наблюдений в	
	ядрах галактик. Вселенная.	проведение наолюдении в	

			Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение. Масштабная структура Вселенной. Метагалактика. Нерешённые проблемы астрономии	телескоп Луны, планет, Млечного Пути. Участие в дискуссии о нерешенных проблемах астрономии	
Итого	по разделу	7			
Раздел	6. Обобщающее повт	горение			
6.1	Обобщающее повторение	4	Обобщение и систематизация содержания разделов курса «Механика», «Молекулярная физика и термодинамика», «Электродинамика», «Колебания и волны», «Основы специальной теории относительности», «Квантовая физика», «Элементы астрономии и астрофизики». Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека, роль и место	Участие в дискуссии о роли физики и астрономии в различных сферах деятельности человека. Подготовка сообщений о месте физической картины мира в ряду современных представлений о природе. Выполнение учебных заданий, демонстрирующих освоение основных понятий, физических величин и законов курса физики 10—11 классов	https://videouroki. net/razrabotki/pov toritiel-no- obobshchaiushchi i-urok-po-fizikie- v-11-klassie-po- ghlavie- kvantov.html

	4	физики и астрономии в современной научной картине систематизирующей, объяснительной и прогностической функций физической теории, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе
Итого по разделу	4	
Резервное время	3	
Общее количество часов по программе	68	

ПЕРЕЧЕНЬ (КОДИФИКАТОР) РАСПРЕДЕЛЕННЫХ ПО КЛАССАМ ПРОВЕРЯЕМЫХ ТРЕБОВАНИЙ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ И ЭЛЕМЕНТОВ СОДЕРЖАНИЯ ПО ФИЗИКЕ

В федеральных и региональных процедурах оценки качества образования используется перечень (кодификатор) распределенных по классам проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания по физике.

Проверяемые требования к результатам освоения основной образовательной программы 10 (класс)

Var	Пророждом на продукату на разучи тели сересу и сересу и
Код проверяемог о результата	Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования
10.1	Демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей
10.2	Учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчета, абсолютно твердое тело, идеальный газ; модели строения газов, жидкостей и твердых тел, точечный электрический заряд - при решении физических задач
10.3	Распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел; диффузия, броуновское движение, строение жидкостей и твердых тел, изменение объема тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах; электризация тел, взаимодействие зарядов
10.4	Описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую

	величину с другими величинами
10.5	Описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам
10.6	Описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряженность поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами
10.7	анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчета; молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики; закон сохранения электрического заряда, закон Кулона; при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости
10.8	Объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни
10.9	Выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений; при этом формулировать проблему (задачу) и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы
10.10	Осуществлять прямые и косвенные измерения физических величин; при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений
10.11	Исследовать зависимости между физическими величинами с использованием прямых измерений; при этом конструировать

	установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования
10.12	Соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования
10.13	Решать расчетные задачи с явно заданной физической моделью, используя физические законы и принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины
10.14	Решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления
10.15	Использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников; критически анализировать получаемую информацию
10.16	Приводить примеры вклада российских и зарубежных ученых-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий
10.17	Использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде
10.18	Работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы

Проверяемые элементы содержания (10 класс)

Код	Код	Проверяемые элементы содержания
раздела	проверяемого	
	элемента	

1		ФИЗИКА И МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ
	1.1	Физика - наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике
	1.2	Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей
2		МЕХАНИКА
2.1		КИНЕМАТИКА
	2.1.1	Механическое движение. Относительность механического движения. Система отсчета. Траектория
	2.1.2	Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей
	2.1.3	Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени
	2.1.4	Свободное падение. Ускорение свободного падения
	2.1.5	Криволинейное движение. Равномерное движение материальной точки по окружности. Угловая скорость, линейная скорость. Период и частота. Центростремительное ускорение
	2.1.6	Технические устройства: спидометр, движение снарядов, цепные и ременные передачи
	2.1.7	Практические работы. Измерение мгновенной скорости. Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю. Изучение движения шарика в вязкой жидкости. Изучение движения тела, брошенного горизонтально
2.2		ДИНАМИКА
	2.2.1	Принцип относительности Галилея. Первый закон Ньютона.

		Инерциальные системы отсчета
	2.2.2	Масса тела. Сила. Принцип суперпозиции сил
	2.2.3	Второй закон Ньютона для материальной точки в инерциальной системе отсчета (ИСО). Третий закон Ньютона для материальных точек
	2.2.4	Закон всемирного тяготения. Сила тяжести. Первая космическая скорость. Вес тела
	2.2.5	Сила упругости. Закон Гука
	2.2.6	Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе
	2.2.7	Поступательное и вращательное движение абсолютно твердого тела
	2.2.8	Момент силы относительно оси вращения. Плечо силы. Условия равновесия твердого тела в ИСО
	2.2.9	Технические устройства: подшипники, движение искусственных спутников
	2.2.10	Практические работы. Изучение движения бруска по наклонной плоскости под действием нескольких сил. Исследование зависимости сил упругости, возникающих в деформируемой пружине и резиновом образце, от величины их деформации. Исследование условий равновесия твердого тела, имеющего ось вращения
2.3		ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ
	2.3.1	Импульс материальной точки, системы материальных точек. Импульс силы и изменение импульса тела
	2.3.2	Закон сохранения импульса в ИСО. Реактивное движение
	2.3.3	Работа силы
	2.3.4	Мощность силы
	2.3.5	Кинетическая энергия материальной точки. Теорема о кинетической энергии
	2.3.6	Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела

		вблизи поверхности Земли
	2.3.7	Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии
	2.3.8	Упругие и неупругие столкновения
	2.3.9	Технические устройства: движение ракет, водомет, копер, пружинный пистолет
	2.3.10	Практические работы. Изучение связи скоростей тел при неупругом ударе. Исследование связи работы силы с изменением механической энергии тела
3	MC	ОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА
3.1	OCH	ОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ
	3.1.1	Основные положения молекулярно-кинетической теории. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества
	3.1.2	Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей
	3.1.3	Масса молекул. Количество вещества. Постоянная Авогадро
	3.1.4	Тепловое равновесие. Температура и ее измерение. Шкала температур Цельсия
	3.1.5	Модель идеального газа. Основное уравнение молекулярнокинетической теории идеального газа
	3.1.6	Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина
	3.1.7	Уравнение Клапейрона - Менделеева. Закон Дальтона
	3.1.8	Газовые законы. Изопроцессы в идеальном газе с постоянным количеством вещества: изотерма, изохора, изобара
	3.1.9	Технические устройства: термометр, барометр
	3.1.10	Практические работы. Измерение массы воздуха в классной комнате. Исследование зависимости между параметрами состояния разреженного газа

3.2		ОСНОВЫ ТЕРМОДИНАМИКИ
	3.2.1	Термодинамическая система. Внутренняя энергия термодинамической системы и способы ее изменения
	3.2.2	Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа
	3.2.3	Виды теплопередачи: теплопроводность, конвекция, излучение. Теплоемкость тела. Удельная теплоемкость вещества. Расчет количества теплоты при теплопередаче
	3.2.4	Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа
	3.2.5	Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия (далее - КПД) тепловой машины. Цикл Карно и его КПД
	3.2.6	Второй закон термодинамики. Необратимость процессов в природе. Тепловые двигатели. Экологические проблемы теплоэнергетики
	3.2.7	Технические устройства: двигатель внутреннего сгорания, бытовой холодильник, кондиционер
	3.2.8	Практические работы. Измерение удельной теплоемкости
3.3	АГРЕГАТІ	ные состояния вещества. Фазовые переходы
	3.3.1	Парообразование и конденсация. Испарение и кипение. Удельная теплота парообразования. Зависимость температуры кипения от давления
	3.3.2	Абсолютная и относительная влажность воздуха. Насыщенный пар
	3.3.3	Твердое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы
	3.3.4	Плавление и кристаллизация. Удельная теплота плавления. Сублимация
	3.3.5	Уравнение теплового баланса
	3.3.6	Технические устройства: гигрометр и психрометр,

		калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии
	3.3.7	Практические работы. Измерение влажности воздуха
4		ЭЛЕКТРОДИНАМИКА
4.1		ЭЛЕКТРОСТАТИКА
	4.1.1	Электризация тел. Электрический заряд. Два вида электрических зарядов
	4.1.2	Проводники, диэлектрики и полупроводники
	4.1.3	Закон сохранения электрического заряда
	4.1.4	Взаимодействие зарядов. Закон Кулона
	4.1.5	Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. Линии напряженности электрического поля
	4.1.6	Работа сил электростатического поля. Потенциал. Разность потенциалов
	4.1.7	Проводники и диэлектрики в постоянном электрическом поле. Диэлектрическая проницаемость
	4.1.8	Электроемкость. Конденсатор. Электроемкость плоского конденсатора. Энергия заряженного конденсатора
	4.1.9	Технические устройства: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, ксерокс, струйный принтер
	4.1.10	Практические работы. Измерение электроемкости конденсатора
4.2	ПОСТОЯ	ННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. ТОКИ В РАЗЛИЧНЫХ СРЕДАХ
	4.2.1	Условия существования постоянного электрического тока. Источники тока. Сила тока. Постоянный ток
	4.2.2	Напряжение. Закон Ома для участка цепи
	4.2.3	Электрическое сопротивление. Удельное сопротивление вещества
	4.2.4	Последовательное, параллельное, смешанное соединение

		проводников
	4.2.5	Работа электрического тока. Закон Джоуля - Ленца
	4.2.6	Мощность электрического тока
	4.2.7	электродвижущая сила (далее - ЭДС) и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание
	4.2.8	Электронная проводимость твердых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость
	4.2.9	Электрический ток в вакууме. Свойства электронных пучков
	4.2.10	Полупроводники. Собственная и примесная проводимость полупроводников. Свойства р-п перехода. Полупроводниковые приборы
	4.2.11	Электрический ток в электролитах. Электролитическая диссоциация. Электролиз
	4.2.12	Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Различные типы самостоятельного разряда. Молния. Плазма
	4.2.13	Технические устройства: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника
	4.2.14	Практические работы. Изучение смешанного соединения резисторов. Измерение ЭДС источника тока и его внутреннего сопротивления. Наблюдение электролиза

Проверяемые требования к результатам освоения основной образовательной программы (11 класс)

Код проверяемого результата	Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования
11.1	Демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности

	людей, целостность и единство физической картины мира
11.2	Учитывать границы применения изученных физических моделей: точечный электрический заряд, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач
11.3	Распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность
11.4	Описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, ЭДС, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами
11.5	Описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины
11.6	Анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников,

	закон Джоуля - Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада; при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости
11.7	Определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца
11.8	Строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой
11.9	Выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений; при этом формулировать проблему (задачу) и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы
11.10	Осуществлять прямые и косвенные измерения физических величин; при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений
11.11	Исследовать зависимости физических величин с использованием прямых измерений; при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования
11.12	Соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования
11.13	Решать расчетные задачи с явно заданной физической моделью, используя физические законы и принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины
11.14	Решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления

11.15	Использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников; критически анализировать получаемую информацию
11.16	объяснять принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни
11.17	Приводить примеры вклада российских и зарубежных ученыхфизиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий
11.18	Использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде
11.19	Работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы

Проверяемые элементы содержания (11 класс)

Код раздела	Код проверяемого элемента	Проверяемые элементы содержания
4		ЭЛЕКТРОДИНАМИКА
4.3	МАГНИ	ТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
	4.3.1	Постоянные магниты. Взаимодействие постоянных магнитов
	4.3.2	Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов
	4.3.3	Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого

		проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током
	4.3.4	Сила Ампера, ее модуль и направление
	4.3.5	Сила Лоренца, ее модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца
	4.3.6	Явление электромагнитной индукции
	4.3.7	Поток вектора магнитной индукции
	4.3.8	ЭДС индукции. Закон электромагнитной индукции Фарадея
	4.3.9	Вихревое электрическое поле. ЭДС индукции в проводнике, движущемся поступательно в однородном магнитном поле
	4.3.10	Правило Ленца
	4.3.11	Индуктивность. Явление самоиндукции. ЭДС самоиндукции
	4.3.12	Энергия магнитного поля катушки с током
	4.3.13	Электромагнитное поле
	4.3.14	Технические устройства: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь
	4.3.15	Практические работы. Изучение магнитного поля катушки с током. Исследование действия постоянного магнита на рамку с током. Исследование явления электромагнитной индукции
5		КОЛЕБАНИЯ И ВОЛНЫ
5.1	MEXAI	НИЧЕСКИЕ И ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ
	5.1.1	Колебательная система. Свободные колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний
	5.1.2	Пружинный маятник. Математический маятник
	5.1.3	Уравнение гармонических колебаний. Кинематическое и динамическое описание колебательного движения

	5.1.4	Превращение энергии при гармонических колебаниях. Связь амплитуды колебаний исходной величины с амплитудами колебаний ее скорости и ускорения
	5.1.5	Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона
	5.1.6	Закон сохранения энергии в идеальном колебательном контуре
	5.1.7	Вынужденные механические колебания. Резонанс. Резонансная кривая. Вынужденные электромагнитные колебания.
	5.1.8	Переменный ток. Синусоидальный переменный ток.
	5.1.9	Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения
	5.1.10	Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электрической энергии. Культура использования электроэнергии в повседневной жизни
	5.1.11	Технические устройства: сейсмограф, электрический звонок, линии электропередач
	5.1.12	Практические работы. Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза. Исследование переменного тока в цепи из последовательно соединенных конденсатора, катушки и резистора
5.2	MEX	АНИЧЕСКИЕ И ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ
	5.2.1	Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны
	5.2.2	Интерференция и дифракция механических волн
	5.2.3	Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука
	5.2.4	Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов Е,

		В и о в электромагнитной волне в вакууме
	5.2.5	Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн
	5.2.6	Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту
	5.2.7	Принципы радиосвязи и телевидения. Радиолокация. Электромагнитное загрязнение окружающей среды
	5.2.8	Технические устройства: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприемник, телевизор, антенна, телефон, СВЧ-печь
5.3		ОПТИКА
	5.3.1	Прямолинейное распространение света в однородной среде. Луч света
	5.3.2	Отражение света. Законы отражения света. Построение изображений в плоском зеркале
	5.3.3	Преломление света. Законы преломления света. Абсолютный показатель преломления
	5.3.4	Полное внутреннее отражение. Предельный угол полного внутреннего отражения
	5.3.5	Дисперсия света. Сложный состав белого света. Цвет
	5.3.6	Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой
	5.3.7	Пределы применимости геометрической оптики
	5.3.8	Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников
	5.3.9	Дифракция света. Дифракционная решетка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решетку

	5.3.10	Поляризация света
	5.3.11	Технические устройства: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решетка, поляроид
	5.3.12	Практические работы. Измерение показателя преломления. Исследование свойств изображений в линзах. Наблюдение дисперсии света
6	ЭЛЕМЕІ	НТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
	6.1	Границы применимости классической механики. Постулаты теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна
	6.2	Относительность одновременности. Замедление времени и сокращение длины
	6.3	Энергия и импульс свободной частицы
	6.4	Связь массы с энергией и импульсом свободной частицы. Энергия покоя свободной частицы
7		КВАНТОВАЯ ФИЗИКА
7.1		ЭЛЕМЕНТЫ КВАНТОВОЙ ОПТИКИ
	7.1.1	Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона
	7.1.2	Открытие и исследование фотоэффекта. Опыты А.Г. Столетова. Законы фотоэффекта
	7.1.3	Уравнение Эйнштейна для фотоэффекта. "Красная граница" фотоэффекта
	7.1.4	Давление света. Опыты П.Н. Лебедева
	7.1.5	Химическое действие света
	7.1.6	Технические устройства: фотоэлемент, фотодатчик, солнечная батарея, светодиод
7.2		СТРОЕНИЕ АТОМА
	7.2.1	Модель атома Томсона. Опыты Резерфорда по исследованию строения атома. Планетарная модель атома

	7.2.2	Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода	
	7.2.3	Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм. Дифракция электронов на кристаллах	
	7.2.4	Спонтанное и вынужденное излучение. Устройство и принцип работы лазера	
	7.2.5	Технические устройства: спектральный анализ (спектроскоп), лазер, квантовый компьютер	
	7.2.6	Практические работы. Наблюдение линейчатого спектра	
7.3	АТОМНОЕ ЯДРО		
	7.3.1	Методы наблюдения и регистрации элементарных частиц	
	7.3.2	Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы	
	7.3.3	Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга - Иваненко. Заряд ядра. Массовое число ядра. Изотопы	
	7.3.4	Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада	
	7.3.5	Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра	
	7.3.6	Ядерные реакции. Деление и синтез ядер	
	7.3.7	Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики	
	7.3.8	Элементарные частицы. Открытие позитрона. Фундаментальные взаимодействия	
	7.3.9	Технические устройства: дозиметр, камера Вильсона, ядерный реактор, атомная бомба	
	7.3.10	Практические работы. Исследование треков частиц (по готовым фотографиям)	

8	ЭЛЕМЕНТЫ АСТРОФИЗИКИ	
	8.1	Вид звездного неба. Созвездия, яркие звезды, планеты, их видимое движение
	8.2	Солнечная система. Планеты земной группы. Планетыгиганты и их спутники, карликовые планеты. Малые тела Солнечной системы
	8.3	Солнце, фотосфера и атмосфера. Солнечная активность
	8.4	Источник энергии Солнца и звезд
	8.5	Звезды, их основные характеристики: масса, светимость, радиус, температура, их взаимосвязь. Диаграмма "спектральный класс - светимость". Звезды главной последовательности. Зависимость "масса - светимость" для звезд главной последовательности
	8.6	Внутреннее строение звезд. Современные представления о происхождении и эволюции Солнца и звезд. Этапы жизни звезд
	8.7	Млечный Путь - наша Галактика. Спиральная структура Галактики, распределение звезд, газа и пыли. Положение и движение Солнца в Галактике. Плоская и сферическая подсистемы Галактики
	8.8	Типы галактик. Радиогалактики и квазары. Черные дыры в ядрах галактик
	8.9	Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Возраст и радиус Вселенной, теория Большого взрыва. Модель "горячей Вселенной". Реликтовое излучение
	8.10	Масштабная структура Вселенной. Метагалактика. Нерешенные проблемы астрономии

При разработке рабочей программы в тематическом планировании учтены возможности использования электронных (цифровых) образовательных ресурсов, являющихся учебно-методическими материалами (мультимедийные программы, электронные учебники и задачники, электронные библиотеки, виртуальные лаборатории, игровые программы, коллекции цифровых образовательных ресурсов), используемыми

для обучения и воспитания различных групп пользователей, представленными в электронном (цифровом) виде и реализующими дидактические возможности ИКТ, содержание которых соответствует законодательству об образовании