$$\omega(C) = \frac{z \cdot A_{\Gamma}(C)}{H_{\Gamma}(N_{\Gamma}B_{\gamma}C_{2})} \Rightarrow z = \frac{\text{MATEMATUYECKAS}}{\text{BEPTUKANB}} \text{ If } CH_{3} - CH_{2} - OH$$

$$AB_{\beta}C_{1} = C \text{ MATEMATUYECKAS}$$

$$AB_{\beta}C_{2} = C \text{ MATEMATUYECKAS}$$

$$AB_{\beta}C_{2} = C \text{ MATEMATUYECKAS}$$

$$AB_{\beta}C_{3} = CH_{3} - CH_{2} - OH$$

$$AB_{\beta}C_{2} = C \text{ MATEMATUYECKAS}$$

$$AB_{\beta}C_{3} = CH_{3} - CH_{2} - OH$$

$$AB_{\beta}C_{2} = CH_{3} - CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - CH_{3} - OH$$

$$AB_{\beta}C_{1} = CH_{3} - OH$$

$$AB_{$$

1(L+B))

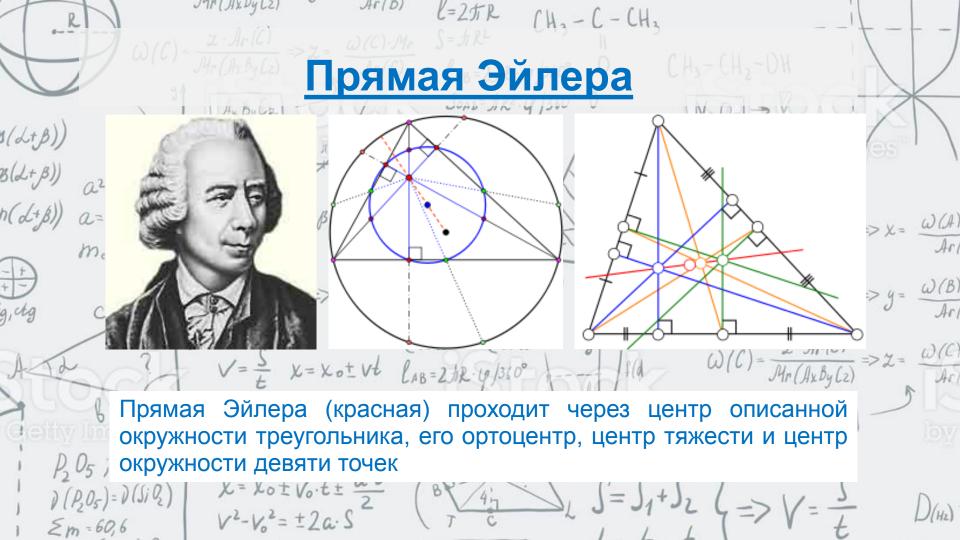
B(L+B))

n(d+b))



JAR (HXDYLZ) L=25TR CH3-C-CH3 Формула Брахмагупты 1(L+B) B(L+B)) n(2+B)) a= c8n2=ccosp=6 x-Ar(A) Mr (AxBy (Z) W(B) Ari Z. Ar(C) W(C) LAB=21/2-19/360 Mr (Ax By (Z) Asi вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке М, то прямая, проходящая через и перпендикулярная одной из его сторон, противоположную ей сторону пополам.)(H2) V2-V2= +2a.5 2m=60,6

E=2JTR CH3-C-CH3 Окружность девяти точек 1(L+B) B(L+B)) a2+ 62 4 1/23 n(d+B)) W(B) W(C) Jar (Ax Dy (z) трёх высот произвольного треугольника, Основания середины трёх его сторон и середины трёх отрезков, $p_3 0_5$ $p_4 0_5$ соединяющих его вершины с ортоцентром, лежат все на $\mathcal{N}(P_2O_5)=\mathcal{N}(S)$ одной окружности.)(H2) V2-V2= +2a.S Em=60,6



Серединный перпендикуляр

$$A(\mathcal{L} + \beta)$$
 $A(\mathcal{L} + \beta)$
 $A(\mathcal{L}$

l=25TR

JAN (HXDYLZ)

Em=60,6



l=25TR Теорема Менелая 1(L+B)) CH3+ C= EH, Immordes B(L+B)) n(d+B)) a=cond=ccosp=btgd $\omega(B) = \frac{g \cdot Ar(B)}{\Omega \cdot (0, B, C)} \Rightarrow g =$ W(B) A',B'C' BC,CA Если ТОЧКИ лежат соответственно на W(C) треугольника АВС или на их продолжениях, то они коллинеарны тогда и 🕱 Asi только тогда, когда (AB'/B'C)(CA'/A'B(BC'/C'A)=-1,где (АВ'/В'С), (СА'/А'В) и (ВС'/С'А) обозначают отношения направленных отрезков.

Пусть
$$AD \cap BK = O$$
, тогда по теореме Менелая получим:

$$\frac{CD}{DB} \cdot \frac{BO}{OK} \cdot \frac{KC}{CA} = 1 \text{ II } \frac{CK}{KA} \cdot \frac{AO}{OD} \cdot \frac{DB}{BC} = 1.$$

Имеем: $\frac{CK}{KA} = \frac{3}{2}$. Так как $\frac{BD}{DC} = \frac{2}{5}$ $\frac{AC}{DC} \cdot \frac{AO}{C} \cdot \frac{2}{DC} \cdot \frac{DC}{C} = 1$ (где

B(L+B

n(d+b

Имеем:
$$\frac{CK}{KA} = \frac{2}{3}$$
. Так как $\frac{BD}{DC} = \frac{2}{5} \Rightarrow BD = \frac{2}{5}DC$, $BD + DC = BC$, то есть $BC = \frac{7}{5}DC \Rightarrow DC = \frac{5}{7}BC$, получим, что $\frac{2}{3} \cdot \frac{AO}{OD} \cdot \frac{2}{5} \cdot \frac{DC}{BC} = 1$ (где $DC = \frac{5}{7}BC$). Имеем: $\frac{2}{3} \cdot \frac{AO}{OD} \cdot \frac{2}{7} = 1 \Rightarrow \frac{AO}{OD} = \frac{21}{4}$.

W(B)

Asi

Теорема Менелая

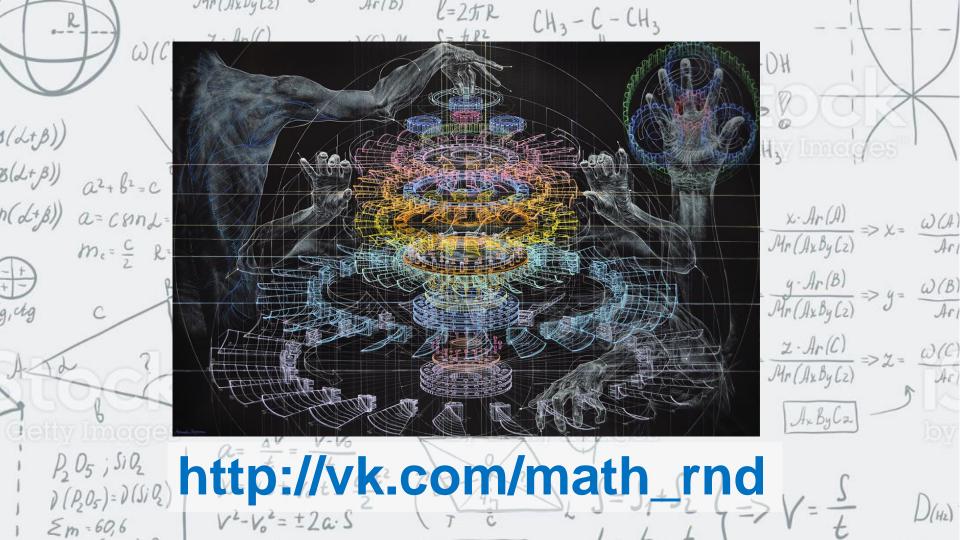
Вадача №2 Меднана
$$AD$$
 и высота CE равнобедренного треугольника $\triangle ABC$ ($AB = BC$) пересекаются в точке ABC (A

$$\frac{BD}{DC} \cdot \frac{CP}{PE} \cdot \frac{EA}{AB} = 1 \text{ и } \frac{BE}{EA} \cdot \frac{AP}{PD} \cdot \frac{DC}{CB} = 1.$$

Получим систему уравнений:
$$\begin{cases} \frac{BE}{EA} \cdot \frac{AP}{PD} \cdot \frac{DC}{CB} = 1 \\ \frac{BD}{DC} \cdot \frac{CP}{PE} \cdot \frac{EA}{AB} = 1 \\ AB = BC, BD = DC \\ CP = 5, PE = 2 \end{cases}$$

Имеем: $\frac{BD}{DC} = 1$ и $\frac{CP}{PE} = \frac{5}{2}$, откуда $\frac{EA}{AB} = \frac{2}{5}$, то есть $EA = \frac{2}{5}AB$. $EB = AB - \frac{2}{5}AB = \frac{3}{5}AB$.

В $\triangle BEC$ ($EC \perp EB$) и EC = 7 по теореме Пифагора: $49 = -\frac{9}{25}AB^2 + AB^2$ (так как BC = AB) $\Rightarrow AB = \frac{35}{4}$. Получаем: $P(P_2 O_5)$ $S_{\triangle ABC} = \frac{1}{2}AB \cdot CE = \frac{245}{8}$. Em=60,6



$$\omega(C) = \frac{z \cdot A_r(C)}{M_r(N_t N_t S_t C)} \Rightarrow z = \frac{\omega(C) \cdot M_r}{A_r(C)} \int_{A_B} \frac{1}{2} \frac{R^2}{R^2} C_{H_3} - C - C_{H_3}$$

$$\int_{A_B} \frac{1}{2} \int_{A_B} \frac{1}{2} \int_{$$