Основные методы селекции и биотехнологии

Подготовила учитель биологии и химии МАОУ МО Динского района СОШ № 15 имени В.И. Гражданкина

Замковая Валерия Михайловна

Селекция. Методы селекции.

Селекция - это наука о выведении и улучшении сортов растений, пород животных и штаммов микроорганизмов; это эволюция, направленная волей человека.

Порода, сорт и штамм – это популяция организмов, искусственно созданная человеком, которая характеризуется специфическим генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем характером продуктивности.

Основные методы селекции	Для животных	Для растений	
 Подбор родительск пар 	ик По экстерьеру	1. По месту происхождения	
2. Гибридизация:			
Внутривидовая:			
а) Аутбридинг	а) Получаем гетерозис.	а) Получаем гетерозис.	
б) Инбридинг	б) Получаем чистые	б) Самоопыление.	
10 × 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	линии. Потомство	Получаем	
	"слабое".	чистые линии.	
Отдаленная	Потомство	Потомство бесплодно.	
A	бесплодно	Вегетативное размн.	
3. Отбор:		-	
а) Массовый	а) Не применяется	а) Для перекрестно- опыляющихся	
б) Индивидуальный	б) Применяется	6) Применяется	
ој падивидувлении	о) применяется	для самоопыляющихся	
4. Метод испытания	4. Используется для	4. Не применяется	
производителя по	подбора лучшего		
потомству	самца		
5. Получение	5. Не применяется	5. Применяется, для	
полиплоидов		получения более	
		продуктивных форм	

Основные методы селекции:

Искусственный мутагенез

Искусственный отбор по форме

А) Бессознательный отбор

Возникает на первых этапах одомашнивания человеком животных и растений

<u>Б) Методический отбор</u>

Отбор в определенных направлениях и по определенным признакам

Искусственный отбор по числу особей

А) Массовый отбор

Выделение целой группы особей, обладающий ценными признаками

Б) Индивидуальный

Потомство от каждого растения или животного отдельно контролируется и отбирается

Искусственный отбор по числу особей

Массовый отбор:

Производится на основе свойств, выявленных у группы организмов (растений или животных). Недостаток: потомство неоднородно уже в первом поколении и дает расщепление, поэтому необходимо все время отбирать особей, имеющих данный признак

Индивидуальный отбор:

Производится на основе

индивидуальной наследственной изменчивости особи Недостаток: происходит повышение гомозиготности и накопление рецессивных признаков, снижающих жизнеспособность в гомозиготном состоянии; При половом размножении могут существовать определенный период времени, потом происходит расщепление

пшеница – самоопыляющееся растение

При создании сортов пшеницы применяют индивидуальный отбор

рожь – перекрестно опыляющееся растение

При создании сортов ржи применяют массовый отбор

Гибридизация – искусственное скрещивание различных по признакам особей с целью выявления характера наследования признаков, получения новых сочетаний и закрепления признаков на уровне генотипа

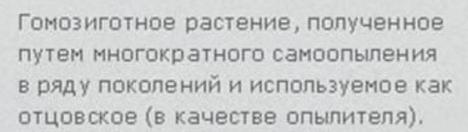
1.Инбридинг — близкородственная гибридизация - близкородственное скрещивание животных или принудительное самоопыление растений с целью сохранения и распространения особенно желательных признаков. Позволяет перевести рецессивные гены в гомозиготное состояние. Часто ведет к снижению жизнеспособности и продуктивности особи, появлению уродств — инбредной депрессии.

2. <u>Аутбридинг</u> — неродственное скрещивание (внутривидовое и межвидовое), отдаленная гибридизация.

Неродственное скрещивание организмов, относящихся к разным линиям внутри породы или сорта, разным сортам и породам, разным видам и родам, отличающихся контрастными признаками.

Переводит вредные мутации в гетерозиготное состояние, оказывая положительное влияние.

Потомки от скрещивания – гибриды



Гетерозис – мощное развитие признаков (ускорение роста, увеличение размеров, повышение жизнестойкости и плодовитости) по сравнению с родительскими формами у гибридов, полученных при скрещивании особей двух чистых линий, одна из которых несет доминантные, а другая - рецессивные признаки в гомозиготном состоянии.

Для сохранения эффекта гетерозиса в следующих поколениях организмы надо размножать только бесполым путем

Гомозиготное растение, полученное путем многократного самоопыления в ряду поколений и используемое как материнское (в качестве продуцента гибридного посевного материала).

Гетерозисный гибрид, существенно превосходящий по урожайности и другим показателям каждую из родительских форм: используется как товарная продукция.

Мул – гибрид лошади и осла

Искусственный мутагенез

Получение мутаций, контролируемых человеком

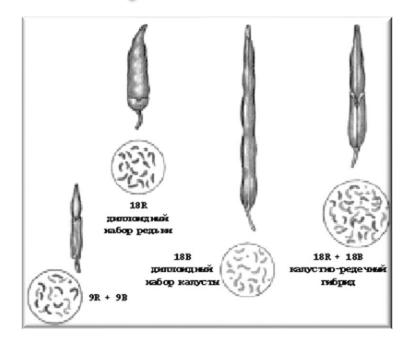
- 1927г. американский генетик Меллер открыл искусственный мутагенез.
- Воздействовал на растения рентгеновскими, УФ, химическими веществами.
- (основные объекты пшеница, ячмень, рис, овес, кукуруза, гречиха, соя, хлопчатник и т.д.)

Созданные сорта превосходят исходные:

- -урожайностью
- -содержанием белка
- -скороспелостью
- -устойчивостью к полеганию
- -устойчивостью к болезням

Полиплоидия - кратное увеличение количества хромосом

Автоплоидыимеют увеличенный по сравнению с диплоидным набор хромосом


Аллоплоиды — имеют в геноме суммированные наборы хромосом разных видов

Автоплоиды:

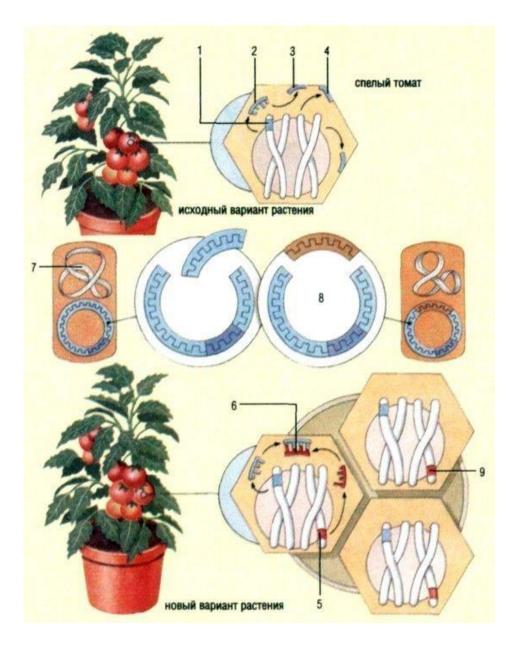
- <u>4n клевер</u>
- (+) большой урожай зеленой массы, устойчив к болезням
- (-) шмели не могут опылять 3n – арбузы
- (+) крупные плоды
- (-) нет семян, сложно размножать
- <u> 3n- свекла</u>
- (+)урожайность выше, содержание сахара выше, устойчивость к болезням

Аллоплоиды:

Капустно-редечный Ржано-пшеничный

диплоидные лилейники имеют 22 хромосомы (2n = 22)

тетраплоидные лилейники имеют 44 хромосомы (4n = 44)



В роде Осина (Populus) у всех видов 2n = 38, но в 20 веке выявлены и случаи полиплоидии и анеуплоидии. Первый триплопд осины обнаружен в Швеции в 1935 г., а позже — в нескольких местах; обнаружена также и гаплоидная осина. Триплоидные осины значительно превосходят диплоидные по росту в высоту и толщину, устойчивее к гнили.

Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой.

Генотип является не просто механической суммой генов, а сложной, сложившейся в процессе эволюции организмов системой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Сущность методов генной инженерии заключается В TOM, в генотип организма встраиваются или исключаются ИЗ него отдельные гены или группы генов.

В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала

Хромосомная инженерия – позволяет заменить отдельные хромосомы или добавить новые.

Клеточная инженерия – выращивание клеток вне организма на специальных питательных средах (культивирование), где они растут и размножаются, образуя ткани.

https://us04web.zoom.us/j/35267 64600?pwd=dTNHa01qUnBsMWR HUnJXbHFrbXNiQT09

Идентификатор конференции: 352 676 4600 Код доступа: 3r0D8G

Примеры пород животных и сортов растений

Триплоидные арбузы

Цветы картофеля- естественного автотетраплоида

Зеброид: Зебра + лошадь и зебра + осел

Американский кучерявый башкир

Кролики породы Бабочка были выведены в Англии в конце 80-х годов XIX века. Окраска кроликов белая с черными пятнами, симметрично разбросанными по спинке, бокам. У некоторых кроликов эти пятна более светлые - голубых, серых, шоколадных оттенков.

Манчкины –по размеру манчкины достаточно небольшие, средний вес представителя этой породы — 2–2,5 кг

Недостатки: прогнутая спина, вислый круп, выдающаяся грудная кость (киль), кривые конечности.

Популяция манчкинов очень малочисленна, поэтому допустимы скрещивания с некрупными кошками, не принадлежащими к той или иной породе. Аутбридинг способствует расширению генофонда.

<u>Бестеры</u> – гибриды белуги и стерляди

Хонорик: Гибрид хорька с норкой

Лигр - э<u>то помесь льва и</u> тигрицы.

Лигры являются самыми крупными из семейства кошачьих в мире. Самки лигров (лигрицы) могут давать потомство, что необычно для гибридов. Внешним видом и размером схож с вымершим в плейстоцене пещерным львом. Необыкновенный гигантизм лигра объясняется тем, что в ДНК льва и тигрицы имеется ген, отвечающий за рост.

<u>Тигон:</u> Родители львица и тигр

Тип 20 № 31639 🞬 🥚

Установите последовательность действий селекционера для получения гетерозисных организмов. Запишите в таблицу соответствующую последовательность цифр.

- 1) получение гомозиготных линий
- 2) многократное самоопыление родительских растений
- 3) подбор исходных растений с определёнными признаками
- 4) получение высокопродуктивных гибридов
- 5) скрещивание организмов двух разных чистых линий

Тип 7 № 46181 🞬 🬑

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие из перечисленных ниже результатов могут быть следствием методов гибридизации?

- 1) выведение гетерозисной кукурузы
- 2) получение чистых линий гороха
- 3) обработка растений колхицином
- 4) выведение пшеницы Новосибирская 67 после облучения рентгеновским лучами семян исходного сорта
- 5) выведение пшенично-ржаного гибрида Тритикале
- 6) получение мутантных грибов-дрожжей при воздействии на исходную культуру радием

136 Тип 7 № <u>46180</u> 📸 🥚

Все приведённые ниже методы, кроме трёх, используют для описания методов селекции. Определите три термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

- 1) получение полиплоидов
- 2) метод культуры клеток и тканей
- 3) использование дрожжей для производства белков и витаминов
- 4) метод рекомбинантных плазмид
- 5) испытание по потомству
- 6) гетерозис

145 Тип 8 № <u>46528</u> 🖀 🬑

Установите последовательность действий селекционера для получения гетерозисных организмов. Запишите в таблицу соответствующую последовательность цифр.

- 1) получение гомозиготных линий
- 2) многократное самоопыление родительских растений
- 3) подбор исходных растений с определёнными признаками
- 4) получение высокопродуктивных гибридов
- 5) скрещивание организмов двух разных чистых линий

129 Тип 6 № 45823 💣 🥚

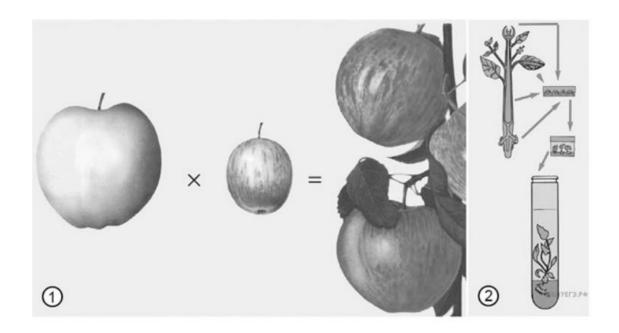
Установите соответствие между характеристиками и методами селекции и биотехнологии, обозначенными цифрами на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

МЕТОДЫ

- А) Выращивание из культур клеток
- 1)1

Б) Скрещивание организмов


2) 2

- В) Бесполое размножение
- Г) Получение гетерозиса
- Д) Метод культуры клеток и тканей
- Е) Работа с каллусной тканью

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

5	Α	Б	В	Г	Д	Е
					ege.s	damgia.ru

Рассмотрите рисунок и выполните задания 5 и 6.

142 Тип 8 № <u>46255</u> 📸 🬑

Установите последовательность этапов одомашнивания лисы. Запишите в таблицу соответствующую последовательность цифр.

- 1) гибридизация родителей
- 2) получение потомства
- 3) подбор исходных родителей
- 4) получение гибридов лисиц с закрученными хвостами и свисающими ушами
- 5) искусственный отбор среди потомства особей наиболее дружелюбных к человеку

9 Задания Д8 № <u>8201</u> 🕍 🥚

В селекции животных близкородственное скрещивание проводят для

- 1) акклиматизации 2) улучшения признаков 3) увеличения гетерозиготности
- 4) закрепления желательных признаков

Раздел кодификатора ФИПИ: 3.8 Методы селекции и их генетические основы

Пояснение · <u>Поделиться</u> · Сообщить об ошибке · <u>Помощь</u>

16 Задания Д8 № <u>8210</u> 🖀 🬑

Близкородственное скрещивание организмов используют в селекции для повышения

- 1) жизнестойкости 2) гомозиготности 3) гетерозиготности 4) доминантности
- Раздел кодификатора ФИПИ: 3.8 Методы селекции и их генетические основы

Пояснение · Поделиться · Сообщить об ошибке · Помощь

24 Задания Д8 № 8221 🕍 🦱

Изучение закономерностей изменчивости при выведении новых пород животных — задача науки

4) цитологии

- 1) селекции 2) физиологии 3) ботаники
- Раздел кодификатора ФИПИ: 3.8 Методы селекции и их генетические основы

Пояснение · Поделиться · Сообщить об ошибке · Помощь

126 Задания Д1 № 41097 💣 🬑

Рассмотрите предложенную схему классификации методов селекции. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

50

Задания Д22 С2 № 10983 🕍

С какой целью в селекции растений применяют скрещивание особей разных сортов?

Раздел: Основы селекции и биотехнологии

Раздел кодификатора ФИПИ: 3.8 Методы селекции и их генетические основы

Пояснение · <u>Поделиться</u> · Сообщить об ошибке · <u>Помощь</u>

51

Задания Д22 С2 № <u>10984</u> 🕍

Как можно сохранить у растений сочетания полезных признаков, полученные от скрещивания двух сортов?

Раздел: Основы селекции и биотехнологии

Раздел кодификатора ФИПИ: <u>3.8 Методы селекции и их генетические основы</u>

Пояснение · <u>Поделиться</u> · 2 комментария · Сообщить об ошибке · <u>Помощь</u>

52

Задания Д22 C2 № <u>10985</u> 🕍

С какой целью проводят в селекции близкородственное скрещивание. Какие отрицательные последствия оно имеет?

Раздел: Основы селекции и биотехнологии

Раздел кодификатора ФИПИ: 3.8 Методы селекции и их генетические основы

Пояснение · Поделиться · 2 комментария · Сообщить об ошибке · Помощь

53

Задания Д22 С2 № 10986

Для чего проводят межлинейную гибридизацию в селекции растений?

Раздел: Основы селекции и биотехнологии

Раздел кодификатора ФИПИ: 3.8 Методы селекции и их генетические основы

Пояснение · Поделиться · 2 комментария · Сообщить об ошибке · <u>Помощь</u>

Спасибо за внимание!