

Новая задача на векторы в профильном ЕГЭ по математике 2024 года (задание 2)

Виктор Михайлович Кривенко

Кандидат физико-математических наук, автор пособий издательства «Легион».

ΠΟΔ ΡΕΔΑΚЦИЕЙ Φ.Φ. ΛЫСЕНКО, С.Ю. ΚУΛΑБУХОВА **MATEMATUKA** ПРОФИЛЬНЫЙ УРОВЕНЬ ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ЕГЭ-2024 ВАРИАНТОВ ПО НОВОЙ ДЕМОВЕРСИИ 2024 ■ ПРИМЕРЫ ВЫПОЛНЕНИЯ 10 ВАРИАНТОВ ■ СБОРНИК ЗАДАЧ **■ ТЕОРЕТИЧЕСКИЙ СПРАВОЧНИК** ■ ОТВЕТЫ КО ВСЕМ ВАРИАНТАМ И ЗАДАНИЯМ $sin2x = 2sinx \cdot cosx$

ПОД РЕДАКЦИЕЙ Ф.Ф. ЛЫСЕНКО, С.О. ИВАНОВА **МАТЕМАТИКА** ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ЕГЭ-2024 **ТЕМАТИЧЕСКИЙ** ТРЕНИНГ 10-11 КЛАССЫ 1800 ЗАДАНИЙ БАЗОВОГО И ПРОФИЛЬНОГО УРОВНЕЙ ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ КРАТКАЯ ТЕОРИЯ ПО ВСЕМ ТЕМАМ ОТВЕТЫ КО ВСЕМ ЗАДАНИЯМ

План

Введение

- I. Векторы, равенство векторов. Операции над векторами и их свойства.
 - II. Координаты точки и координаты вектора:
 - 1. Задачи на параллельность векторов;
- 2. Скалярное произведение векторов. Задачи на перпендикулярность векторов;
- 3. Скалярное произведение векторов. Задачи на углы между векторами;
 - 4. Скалярное произведение векторов. Длина вектора.
 - III. Классические примеры применения векторов.

Введение

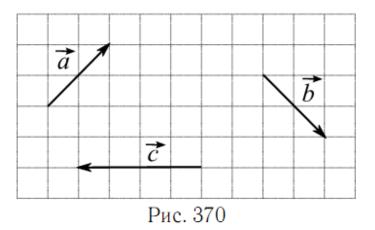
В соответствие со спецификацией и демоверсией в профильное ЕГЭ 2024 будет включено новое задание под номером 2 по геометрии на векторы.

Учитывая, что открытый банк заданий по этой теме будет формироваться в течение года, рассмотрим различные возможные типы этих заданий. При этом будем учитывать, что они входят в первую часть ЕГЭ и на их решение отводится примерно 5 минут.

Так как в спецификации речь идёт просто о векторах, разумно предполагать, что речь идёт о векторах и на плоскости, и в пространстве. Поэтому для каждого типа задач о векторах на плоскости мы будем рассматривать соответствующие задачи в пространстве.

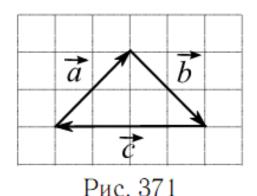
I. Векторы, равенство векторов. Операции над векторами и их свойства.

 \vec{a} , \vec{b} и \vec{c} (см. рис. 370). Постройте вектор, равный сумме векторов $\vec{a} + \vec{b} + \vec{c}$. В ответе укажите длину полученного вектора.



Решение. Сдвинем одновременно начало и конец вектора \overrightarrow{b} сначала на пять клеток влево, а затем на одну клетку вверх. Начало вектора \overrightarrow{b} совпадёт с концом вектора \overrightarrow{a} .

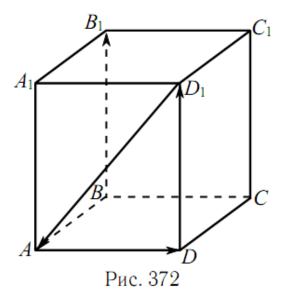
Затем начало и конец вектора \vec{c} одновременно сдвинем сначала на две клетки вверх и одну клетку влево. Конец вектора \vec{c} совпадёт с началом вектора \vec{a} и конец вектора \vec{b} совпадёт с началом вектора \vec{c} (см. рис. 371).



Получили, что начало и конец вектора $\vec{a} + \vec{b} + \vec{c}$ совпадают, поэтому $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Его длина равна 0.

Ответ. 0

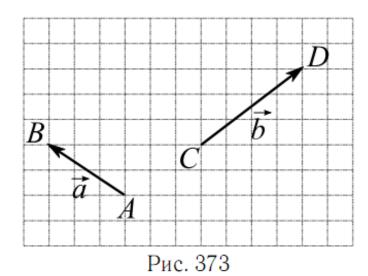
 $3a\partial a ua$ 2. На рисунке 372 изображён прямоугольный параллелепипед $\overrightarrow{ABCDA_1B_1C_1D_1}$. Найдите сумму векторов $\overrightarrow{D_1A} + \overrightarrow{BB_1} + \overrightarrow{AD}$ (см. рис. 372). В ответе укажите длину полученного вектора.



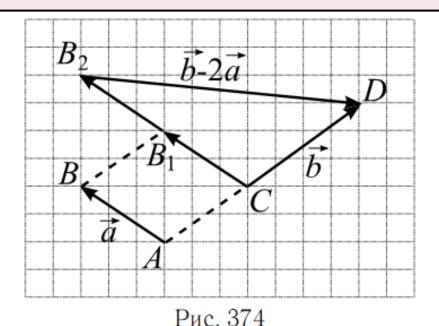
Решение. $\overrightarrow{D_1A}+\overrightarrow{BB_1}+\overrightarrow{AD}=\overrightarrow{D_1A}+\overrightarrow{AD}+\overrightarrow{BB_1}=$ $=\overrightarrow{D_1D}+\overrightarrow{BB_1}=\overrightarrow{D_1D}+\overrightarrow{DD_1}=\overrightarrow{D_1D_1}=\overrightarrow{0}$. Длина $\overrightarrow{0}$ равна 0.

Ответ. 0

 \vec{a} и \vec{b} (см. рис. 373). Постройте вектор $\vec{b} - 2\vec{a}$. В ответе укажите на сколько клеток начало этого вектора выше его конца.



Решение. Сдвинем одновременно точки A и B сначала на три клетки вправо, а затем на две клетки вверх. Получим соответственно точки C и B_1 (см. рис. 374).



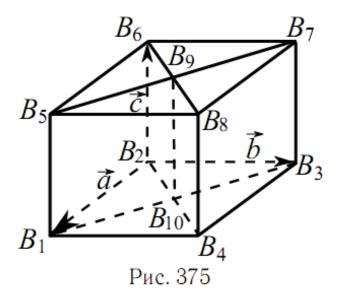
Векторы \vec{a} и $\overrightarrow{CB_1}$ равны. Далее увеличиваем вектор $\overrightarrow{CB_1}$ в два раза. Получим вектор $\overrightarrow{CB_2}$, равный $2\vec{a}$. Тогда вектор $\overrightarrow{B_2D}=\vec{b}-2\vec{a}$. По рисунку определяем, что начало этого вектора на одну клетку выше его конца.

Ответ. 1

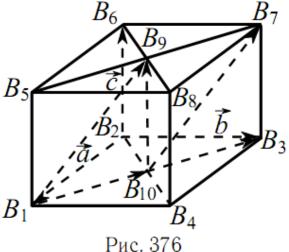
Задача 4. На рисунке 375 изображён параллелепипед

$$B_1B_2B_3B_4B_5B_6B_7B_8$$
. Постройте вектор $\frac{1}{2}\overrightarrow{b}-\frac{1}{2}\overrightarrow{a}+\overrightarrow{c}$.

Из точек, отмеченных на рисунке, найдите начало и конец полученного вектора. В ответе укажите отрицательную разность нижних индексов этих точек.



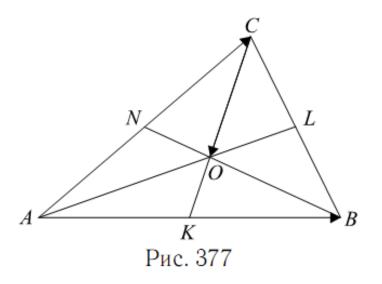
Решение. Отметим на рисунке 375 необходимые векторы (см. рис. 376).



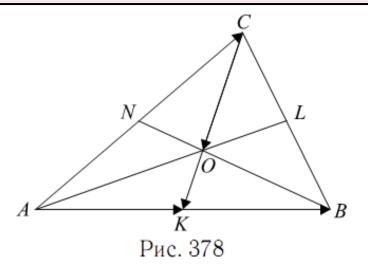
По определению операций над векторами и их свойствам получаем: $\overrightarrow{B_1B_3}=\overrightarrow{b}-\overrightarrow{a}$. Тогда $\overrightarrow{B_1B_{10}} = \frac{1}{2}(\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{2}\overrightarrow{b} - \frac{1}{2}\overrightarrow{a}$. Так как $\overrightarrow{c} = \overrightarrow{B_1B_5}$, то $\frac{1}{2}\vec{b}-\frac{1}{2}\vec{a}+\vec{c}=\overrightarrow{B_1B_{10}}+\overrightarrow{B_1B_5}=\overrightarrow{B_1B_9}$. Разность нижних индексов точек B_1 и B_9 равна 1-9=-8. Но $B_1B_9 = B_{10}B_7$. В таком случае разность нижних индексов равна 3, что ответом не является.

Ответ. -8.

 $3a\partial a ua$ 5 Найдите такие числа α и β , чтобы выполнялось равенство $\overrightarrow{CO} = \alpha \overrightarrow{AC} + \beta \overrightarrow{AB}$ (см. рис. 377), где N, L и K — середины отрезков AC, CB и AB соответственно. В ответе укажите число 3α .



Решение. Обозначим на рисунке 377 необходимые векторы (см. рис. 378).

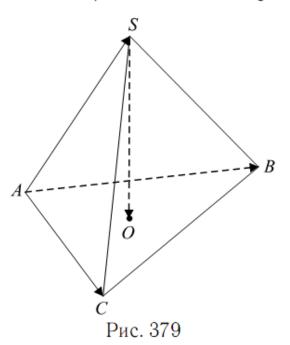


По свойствам медиан треугольника, определению операций над векторами и их свойствам, получаем:

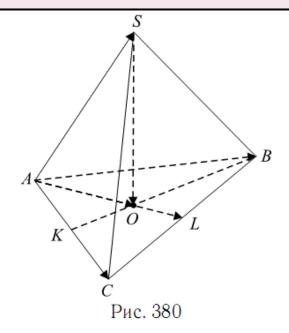
$$\overrightarrow{CO}=rac{2}{3}\overrightarrow{CK}=rac{2}{3}(\overrightarrow{AK}-\overrightarrow{AC})=rac{2}{3}\Big(rac{1}{2}\overrightarrow{AB}-\overrightarrow{AC}\Big)=$$
 $=rac{1}{3}\overrightarrow{AB}-rac{2}{3}\overrightarrow{AC}=-rac{2}{3}\overrightarrow{AC}+rac{1}{3}\overrightarrow{AB}.$ Поэтому $lpha=-rac{2}{3},$ $3lpha=-2$

Ответ. -2.

 $3a\partial a ua$ 6 На рисунке 379 изображена правильная треугольная пирамида SABC, SO — её высота. Найдите такие числа α , β и γ , чтобы выполнялось равенство $\overrightarrow{AS} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC} + \gamma \overrightarrow{SO}$. В ответе укажите число 3β .



Решение. Точка O является точкой пересечения медиан (серединных перпендикуляров к сторонам) треугольника ABC (укажем только две (два) из них — AL и BK (см. рис. 380).



По свойствам медиан треугольника, определению операций над векторами и их свойствам, получаем:

$$\overrightarrow{AS} = \overrightarrow{AO} - \overrightarrow{SO} = \frac{2}{3}\overrightarrow{AL} - \overrightarrow{SO} = \frac{2}{3}\Big(\Big(\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})\Big) - \overrightarrow{SO} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC}) - \overrightarrow{SO} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} - \overrightarrow{SO}. \beta = \frac{1}{3},$$
$$3\beta = 1$$

Ответ. 1.

- II. Координаты точки и координаты вектора.
- 1. Задачи на параллельность векторов.

 $3a\partial aua$ 7. В системе координат O_{xy} найдите ординату вектора $3\overrightarrow{b}-2\overrightarrow{a}$ (см. рис. 381).

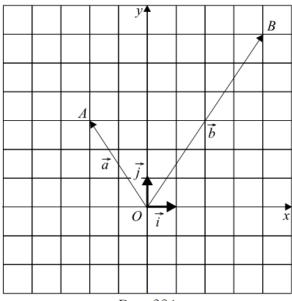


Рис. 381

 $\overrightarrow{a} = \overrightarrow{OA}(-2;3)$, а вектор $\overrightarrow{b} = \overrightarrow{OB}(4;6)$. Тогда ордината вектора $3\overrightarrow{b}$ равна числу $3 \cdot 6 = 18$, а ордината вектора $-2\overrightarrow{a}$ равна числу $(-2) \cdot 3 = -6$. Следовательно ордината вектора $3\overrightarrow{b} - 2\overrightarrow{a}$ равна числу 18 - 6 = 12.

Ответ. 12.

 $3a\partial aua$ 8. В пространстве с заданной системой координат O_{xyz} отмечены две точки: A(-1;2;-5) и B(0;3;-1). Найдите аппликату вектора $4\vec{a}-5\vec{b}$, где $\vec{a}=\overrightarrow{OA}$ и $\vec{b}=\overrightarrow{OB}$.

Решение. Аппликата вектора $4\vec{a}$ равна числу числу $4\cdot (-5)=-20$, аппликата вектора $-5\vec{b}$ равна числу $(-5)\cdot (-1)=5$. Следовательно аппликата вектора $4\vec{a}-5\vec{b}$ равна числу -20+5=-15.

Ответ. -15.

 $3a\partial aua$ 9. Найдите ординату вектора с началом в точке A(-3;2) и концом в точке K, лежащей на оси O_y , сонаправленного с вектором, начало которого в точке B(2;-2), а конец в точке C(6;4) (см. рис. 382).

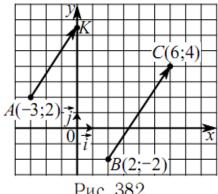


Рис. 382

Решение. Так как точка K лежит на оси O_y , то Kимеет координаты (0;t), где t — некоторое число. Тогда $\overrightarrow{AK}(0\ -\ (-3);t\ -\ 2),\ \overrightarrow{BC}(6\ -\ 2;4\ -\ (-2)),$ $\overrightarrow{AK}(3;t-2),$ $\overrightarrow{BC}(4;6).$ $\overrightarrow{AK}||\overrightarrow{BC},$ поэтому $\frac{3}{4}=\frac{t-2}{6},$

$$t - 2 = \frac{18}{4} = 4,5.$$

Ответ. 4,5.

 $3a\partial aua$ 10. Найдите абсциссу вектора с началом в точке A(2;2;2) и концом в точке K, лежащей на плоскости O_{xy} , сонаправленного с вектором, начало которого в точке B(1;3;4) и конец в точке C(4;5;6).

Решение. Так как точка K лежит на плоскости O_{xy} , то K имеет координаты (u;v;0), где u и v — некоторые числа. Тогда $\overrightarrow{AK}(u-2;v-2;-2)$, $\overrightarrow{BC}(4-1;5-3;6-4)$, $\overrightarrow{BC}(3;2;2)$, $\overrightarrow{AK}||\overrightarrow{BC}$, поэтому $\frac{3}{u-2}=\frac{2}{v-2}=\frac{2}{-2}=-1, u-2=-3$.

Ответ. -3.

Замечание. Вопросы в условии задач 9 и 10 можно немного изменить и получить новые прототипы задач на векторы. А именно, в задаче 9 находить не ординату вектора с заданным началом и указанным концом K, а ординату точки K (соответственно в задаче 8 абсциссу точки K). Заметим, что тогда ответ в задаче 9 будет 6,5 (соответственно в задаче 10 ответ будет -1).

 $3a\partial a 4a$ 11. На координатной плоскости отмечены точ-ки A(2;3), B(5;1) и $C(-1;\underline{2})$. Найдите сумму координат такой точки M, что вектор $\overrightarrow{AB} = \overrightarrow{CM}$.

Решение. Пусть M(x;y), тогда $\overrightarrow{AB}(5-2;1-3)$, $\overrightarrow{AB}(3;-2)$, $\overrightarrow{CM}(x-(-1);y-2)$, $\overrightarrow{CM}(x+1;y-2)$. Так как $\overrightarrow{AB}=\overrightarrow{CM}$, то x+1=3, x=2 и y-2=-2, y=0, x+y=2.

Ответ. 2.

 $3a\partial a 4a$ 12. В пространстве с заданной системой координат O_{xyz} отмечены точки $M(4;1;-1),\,N(5;2;7)$ и P(1;2;-1). Найдите произведение координат такой точки Q, что вектор $\overrightarrow{MN}=\overrightarrow{PQ}.$

Решение. Пусть Q(x;y;z) — искомая точка, тогда $\overrightarrow{MN}(5-4;2-1;7-(-1)), \ \overrightarrow{MN}(1;1;8), \ \overrightarrow{PQ}(x-1;y-2;z-(-1)), \ \overrightarrow{PQ}(x-1;y-2;z+1).$ Так как $\overrightarrow{MN}=\overrightarrow{PQ}$, то x-1=1,y-2=1,z+1=8, $x=2,y=3,z=7,x\cdot y\cdot z=42.$

Ответ. 42.

 $3a\partial a ua$ 13. Найдите, при каком значении t точки A(7;-1), B(8;5) и C(4;t) лежат на одной прямой. Решение. Указанные точки будут лежать на одной прямой, если векторы \overrightarrow{AB} и \overrightarrow{AC} параллельны. $\overrightarrow{AB}(1;6)$ и $\overrightarrow{AC}(-3;t+1)$. Тогда $\frac{-3}{1}=\frac{t+1}{6},-18=t+1,t=-19$. Ответ. -19.

 $3a\partial a ua$ 14. Найдите, при каком значении m точки $A(2;0;1),\ B(0;2;-1)$ и C(-2;m;-3) лежат на одной прямой.

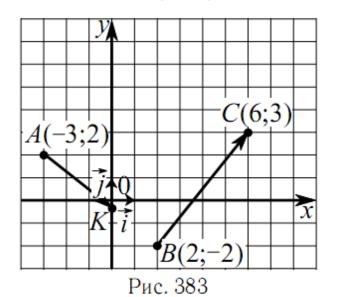
 \overrightarrow{P} ешение. \overrightarrow{Y} казанные точки будут лежать на одной прямой, если векторы \overrightarrow{AB} и \overrightarrow{AC} параллельны. $\overrightarrow{AB}(-2;2;-2)$ и $\overrightarrow{AC}(-4;m;-4)$. Тогда

$$\frac{-4}{-2} = \frac{m}{2} = \frac{-4}{-2}, m = 4.$$

Ответ. 4.

2. Скалярное произведение векторов. Задачи на пер-пендикулярность векторов.

 $3a\partial a ua$ 15. Найдите ординату вектора с началом в точке A(-3;2) и концом в точке K, лежащей на оси O_y , перпендикулярного вектору, начало которого в точке B(2;-2, а конец в точке C(6;3) (см. рис. 383).



Peшение. Так как точка K лежит на оси O_y , то K имеет координаты (0;t), где t — некоторое число.

Тогда
$$\overrightarrow{AK}(0-(-3);t-2), \overrightarrow{AK}(3;t-2),$$
 $\overrightarrow{BC}(6-2;3-(-2)), \overrightarrow{BC}(4;5).$ Так как $\overrightarrow{AK}\bot\overrightarrow{BC},$ то скалярное произведение $\overrightarrow{AK}\cdot\overrightarrow{BC}=0.3\cdot 4+5\cdot (t-2)=0, t-2=-\frac{12}{5}=-2,4$ Ответ. $-2,4$.

 $3a\partial aua$ 16. Найдите ординату вектора с началом в точке A(2;2;2) и концом в точке K, лежащей на оси O_y , перпендикулярного вектору, начало которого в точке B(1;3;4) и конец в точке C(4;5;6).

Peшeниe. Так как точка K лежит на оси O_y , то K имеет координаты (0;v;0), где v — некоторое число. Тогда $\overrightarrow{AK}(-2;v-2;-2)$, $\overrightarrow{BC}(3;2;2)$, $\overrightarrow{AK}\bot\overrightarrow{BC}$, поэтому скалярное произведение $\overrightarrow{AK}\cdot\overrightarrow{BC}=0$. Отсюда $(-2)\cdot 3+(v-2)\cdot 2+(-2)\cdot 2=0, v-2=5$.

Ответ. 5.

Замечание. Аналогично предыдущим задачам 9 и 10, можно немного изменить вопросы в задачах 15 и 16 и получить новые прототипы задач на векторы. А именно, в задаче 15 находить не ординату вектора с заданным началом и указанным концом K, а ординату точки K (соответственно в задаче 16 тоже ординату точки K). Заметим, что тогда ответ в задаче 9 будет -0,4 (соответственно в задаче 10 ответ будет 7).

 $3a\partial a ua$ 17. Найдите абсциссу конца такого вектора с началом в точке B и концом в точке T, принадлежащей прямой $y=\frac{1}{2}x$, чтобы он был перпендикулярен вектору \overrightarrow{OA} (см. рис. 384).

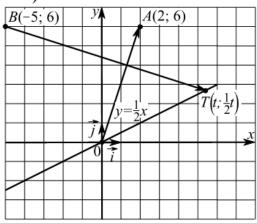


Рис. 384

Peшение. Так как точка T принадлежит прямой $y=rac{1}{2}x$, то $T\Big(t;rac{1}{2}t\Big)$, где t — некоторое число.

Отсюда
$$\overrightarrow{BT}\Big(t+5;\frac{1}{2}t-6\Big)$$
. Так как $\overrightarrow{BT}\bot\overrightarrow{OA}$, то $\overrightarrow{BT}\cdot\overrightarrow{OA}=0,\ 2\cdot(t+5)+6\cdot\Big(\frac{1}{2}t-6\Big)=0,$ $2t+10+3t-36=0,\ t=\frac{26}{5}=5,2,\ t+5=10,2.$

Ответ. 10,2.

 $3a\partial a ua$ 18. Найдите аппликату конца такого вектора с началом в точке B(1;2;2) и концом в точке T, принадлежащей прямой $x=y=\frac{1}{2}z$, чтобы он был перпендикулярен вектору $\overrightarrow{c}(2;-1;-1)$.

Pешение. Так как точка T принадлежит прямой $x=y=rac{1}{2}z$, то T(t;t;2t), где t — некоторое число. Отсюда $\overrightarrow{BT}(t-1;t-2;2t-2)$. Так как $\overrightarrow{BT}\bot\overrightarrow{c}$, то $\overrightarrow{BT}\cdot\overrightarrow{c}=0$,

$$\begin{array}{l} 2\cdot (t-1) + (-1)\cdot (t-2) + (-1)\cdot (2t-2)) \, = \, 0, \\ -t+2 = 0, 2t-2 = 2. \end{array}$$

Ответ. 2.

3. Скалярное произведение векторов. Задачи на углы между векторами.

 $\exists a \partial a u a$ 19. Найдите угол между векторами \overrightarrow{OA} и \overrightarrow{OB} . Ответ дайте в градусах (см. рис. 385).

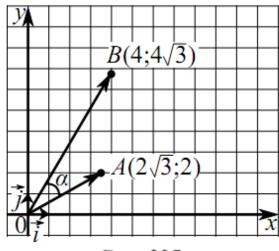


Рис. 385

$$Peшение$$
. Из формулы скалярного произведения векторов \overrightarrow{OA} и \overrightarrow{OB} получаем: $\cos \alpha = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| \cdot |\overrightarrow{OB}|}$

$$\frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| \cdot |\overrightarrow{OB}|} = \frac{4 \cdot 2\sqrt{3} + 4\sqrt{3} \cdot 2}{\sqrt{(2\sqrt{3})^2 + 2^2} \cdot \sqrt{4^2 + (4\sqrt{3})^2}} = \frac{16\sqrt{3}}{8 \cdot 4} = \frac{\sqrt{3}}{2}, \cos \alpha = \frac{\sqrt{3}}{2}, \alpha = 30^\circ.$$
 Ответ. 30.

 $\overrightarrow{a}(1;1;\sqrt{2})$ и $\overrightarrow{b}(1;-1;\sqrt{2})$. Ответ дайте в градусах. Решение. Из формулы скалярного произведения век-

торов \overrightarrow{a} и \overrightarrow{b} получаем: $\cos \psi = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$

$$\begin{aligned} \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} &= \frac{1 \cdot 1 + 1 \cdot (-1) + \sqrt{2} \cdot \sqrt{2}}{\sqrt{1^2 + 1^2 + (\sqrt{2})^2} \cdot \sqrt{1^2 + (-1)^2 + (\sqrt{2})^2}} \\ &= \frac{2}{2 \cdot 2} = \frac{1}{2}, \cos \psi = \frac{1}{2}, \psi = 60^{\circ}. \end{aligned}$$

Ответ. 60.

 $3a\partial a ua$ 21. Найдите, при каком отрицательном значении α вектор $\vec{u}(2;\alpha)$ образует угол 45° с вектором $\vec{b}(5;0)$.

Первое решение. Пусть φ — угол между векторами \overrightarrow{u} и \overrightarrow{b} тогда: $\cos \varphi = \cos 45^\circ = \frac{\sqrt{2}}{2}$.

$$egin{aligned} rac{\sqrt{2}}{2} &= rac{ec{u} \cdot ec{b}}{|ec{u}| \cdot |ec{b}|} = rac{2 \cdot 5 + lpha \cdot 0}{\sqrt{2^2 + lpha^2} \cdot \sqrt{5^2 + 0^2}} = rac{10}{\sqrt{4 + lpha^2} \cdot 5} = \ &= rac{2}{\sqrt{4 + lpha^2}}, 4 = \sqrt{2} \cdot \sqrt{4 + lpha^2}, lpha^2 = 4, lpha = \pm 2. \end{aligned}$$

Ответ. -2.

Второе решение. Вектор \vec{b} имеет направление оси O_x . Значит, при отрицательном значении α вектор $\vec{u}(2;\alpha)$ образует угол 45° с вектором $\vec{b}(5;0)$ только в том случае, когда конец вектора \vec{u} лежит на биссектрисе y=-x. Тогда $\alpha=-2$ (см. рис. 386).

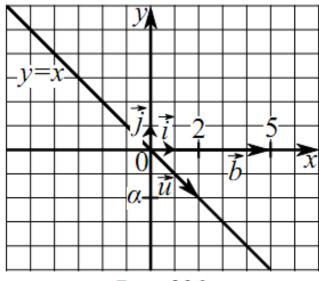


Рис. 386

 $3a\partial a ua$ 22. Найдите, при каком значении α вектор $\vec{a}(2;2;0)$ образует угол 45° с вектором $\vec{b}(1;1;\alpha)$. В ответе укажите α^2 .

Pешение. Пусть arphi — угол между векторами $ec{a}$ и $ec{b}$ то-

гда:
$$\cos \varphi = \cos 45^\circ = \frac{\sqrt{2}}{2}$$
.

$$\frac{\sqrt{2}}{2} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{2 \cdot 1 + 2 \cdot 1 + 0 \cdot \alpha}{\sqrt{2^2 + 2^2 + 0^2} \cdot \sqrt{1^2 + 1^2 + \alpha^2}} =$$

$$=\frac{4}{\sqrt{8}\cdot\sqrt{2+lpha^2}}, 4=2\sqrt{2+lpha^2}, \sqrt{2+lpha^2}=2, lpha^2=2.$$

Ответ. 2.

4. Скалярное произведение векторов. Длина вектора.

 $3a\partial a$ чa 23. На стороне AB квадрата ABCD со стороной, равной 1, взята точка M так, что $AM=rac{1}{3}$. Точка N

лежит на стороне CD и $MN^2=rac{5}{4}$ (см. рис. 387). Найдите DN. В ответе укажите 6DN.

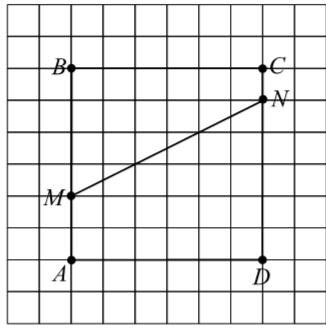


Рис. 387

Решение. Пусть DN = p. Рассмотрим систему координат A_{xy} (см. рис. 388).



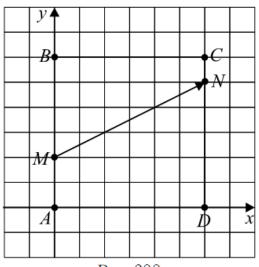
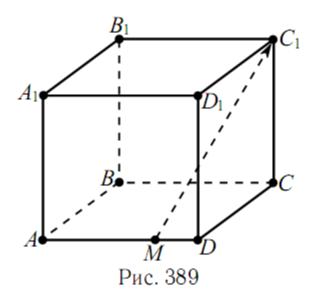


Рис. 388

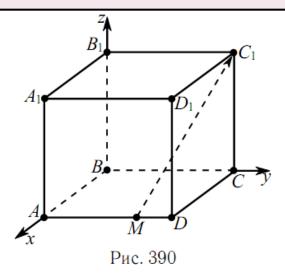
Находим координаты вектора \overrightarrow{MN} . Согласно условию $M\left(0;\frac{1}{3}\right)$, N(1;p), где p — некоторое число $(0 . Тогда <math>\overrightarrow{MN}\left(1 - 0; p - \frac{1}{3}\right)$, $\overrightarrow{MN}\left(1; p - \frac{1}{3}\right)$. $MN^2 = |\overrightarrow{MN}|^2 = \overrightarrow{MN} \cdot \overrightarrow{MN} = 1 \cdot 1 + \left(p - \frac{1}{3}\right)^2 = \frac{5}{4}$. Отсюда $\left(p - \frac{1}{3}\right)^2 = \frac{1}{4}$, $p - \frac{1}{3} = \pm \frac{1}{2}$. Если $p - \frac{1}{3} = \frac{1}{2}$, то $p = \frac{5}{6}$, 6p = 5. Если $p - \frac{1}{3} = -\frac{1}{2}$, то $p = -\frac{1}{6}$, что невозможно.

Ответ. 5.

 $3a\partial a$ иa 24. В кубе $ABCDA_1B_1C_1D_1$ с ребром, равным 1, точка M расположена на ребре AD. Найдите AM, зная, что $C_1M^2=\frac{33}{16}$ рис. 389).



Решение. Пусть AM = t. Рассмотрим систему координат B_{xyz} (см. рис. 390).



Находим координаты вектора $\overrightarrow{MC_1}$. Согласно условию M(1;t;0), где 0< t< 1, $C_1(0;1;1)$. Тогда $\overrightarrow{C_1M}(1-0;t-1;0-1)$, $\overrightarrow{C_1M}(1;t-1;-1)$. $C_1M^2=|\overrightarrow{C_1M}|^2=\overrightarrow{C_1M}\cdot\overrightarrow{C_1M}-1$, $C_1M=1$ 0 $C_1M=1$ 1, $C_1M=1$ 2, $C_1M=1$ 3, Отсюда $C_1M=1$ 4. Если $C_1M=1$ 5, $C_1M=1$ 5

Ответ. 0,75.

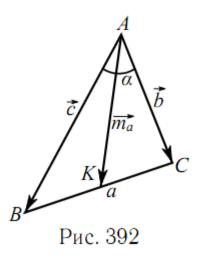
III. Классические примеры применения векторов.

Teopema 1. Если a, b и c — стороны треугольника ABC, то медиана m_a , проведённая к стороне a, находится по формуле $m_a=\frac{\sqrt{2b^2+2c^2-a^2}}{2}$ (см.рис. 391).



 $\overrightarrow{AC}=\overrightarrow{b};\overrightarrow{BC}=\overrightarrow{a};\overrightarrow{AK}=\overrightarrow{m_a}.$

По условию $|\vec{c}|=c,$ $|\vec{b}|=b,$ $|\vec{a}|=a,$ $|\overrightarrow{m_a}|=m_a$ и пусть $\angle BAC=\alpha$ (см.рис. 392).



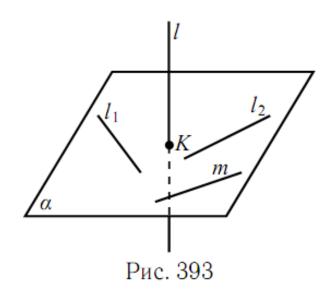
Заметим, что
$$\overrightarrow{m_a} = \frac{1}{2}(\overrightarrow{c} + \overrightarrow{b})$$
. Тогда $m_a = |\overrightarrow{m_a}| = \sqrt{\overrightarrow{m_a} \cdot \overrightarrow{m_a}} = \sqrt{\frac{1}{4}(\overrightarrow{c} + \overrightarrow{b}) \cdot (\overrightarrow{c} + \overrightarrow{b})} = \frac{\sqrt{\overrightarrow{c} \cdot \overrightarrow{c} + 2\overrightarrow{c} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{b}}}{2} = \frac{\sqrt{|\overrightarrow{c}|^2 + 2|\overrightarrow{c}| \cdot |\overrightarrow{b}| \cdot \cos \alpha + |\overrightarrow{b}|^2}}{2}.$

Но, по теореме косинусов

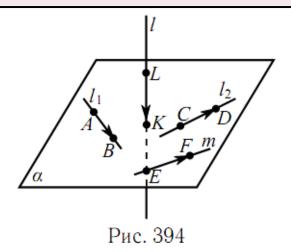
$$\cos lpha = rac{c^2 + b^2 - a^2}{2cb} = rac{|ec{c}|^2 + |ec{b}|^2 - |ec{a}|^2}{2|ec{c}| \cdot |ec{b}|}.$$

Поэтому $m_a = \frac{\sqrt{2b^2 + 2c^2 - a^2}}{2}$. Что и требовалось доказать.

Teopema 2. Если прямая l перпендикулярна двум пересекающимся прямым, лежащим в плоскости α , то прямая l перпендикулярна плоскости α (см.рис. 393).



Доказательство. Необходимо доказать, что прямая l перпендикулярна произвольной прямой m, принадлежащей плоскости α . На каждой прямой построим векторы, как указано на рисунке 394.



Так как прямые l_1 и l_2 пересекаются, то векторы \overrightarrow{AB} и \overrightarrow{CD} не коллинеарны. Значит, вектор \overrightarrow{EF} выражается через векторы \overrightarrow{AB} и \overrightarrow{CD} в виде $\overrightarrow{EF} = a\overrightarrow{AB} + b\overrightarrow{CD}$, где a и b — некоторые числа. Отсюда скалярное произведение $\overrightarrow{LK} \cdot \overrightarrow{EF} = \overrightarrow{LK} \cdot (a\overrightarrow{AB} + b\overrightarrow{CD}) = a(\overrightarrow{LK} \cdot \overrightarrow{AB}) + b(\overrightarrow{LK} \cdot \overrightarrow{CD})$ Так как $\overrightarrow{LK} \perp \overrightarrow{AB}$ и $\overrightarrow{LK} \perp \overrightarrow{CD}$, то $\overrightarrow{LK} \cdot \overrightarrow{AB} = 0 = \overrightarrow{LK} \cdot \overrightarrow{CD}$. Поэтому $\overrightarrow{LK} \cdot \overrightarrow{EF} = 0$. Следовательно $\overrightarrow{LK} \perp \overrightarrow{EF}$ и l перпендикулярна m. Что и требовалось доказать.

СКИДКА 30%

НА ВСЕ ПОСОБИЯ ПО МАТЕМАТИКЕ И ИНФОРМАТИКЕ

Скидка действует до 15 октября

При заказе в нашем интернетмагазине www.legionr.ru ввести код:

ВЕКТОРЫЗАДАЧА2

Где купить?

Официальный интернет-магазин издательства «Легион» www.legionr.ru

Оплата наличными, банковским переводом, при получении.

Доставка «Почтой России» или курьерской службой.

Скидки.

Бесплатная доставка при заказе от 3 000 руб.

Интернет-магазины www.ozon.ru, www.labirint.ru

Книжные магазины города

