Кинематика + Динамика	ЗСЭ или ЗИЭ	ЗСИ системы тел	Статика	
1. Систему отсчета, связанную с Землей, считаем инерциальной (ИСО)				
2. Тело (брусок, шарик) бу так как <i>тело движется поступательно</i> из	2. Описываем стержень (палочку, рычаг и др.)			
3.	3.	3.	моделью	
Система движется с ускорением:	Закон сохранения механической	Закон сохранения	твёрдого тела	
по 2 закону Ньютона $\sum ec{m{F}} = m{m} ec{m{a}}$	энергии выполняется в замкнутой	импульса системы тел	(форма и размеры тела	
	системе, то есть если	(применяем	неизменны, расстояние	
Система находится в равновесии (покой или	работа всех не потенциальных сил	для описания	между любыми	
равномерное прямолинейное движение):	равна нулю:	взаимодействия тел:	двумя точками тела	
векторная сумма всех сил равна нулю $\sum \overrightarrow{F} = 0$		разрыва, удара,	остаётся неизменным)	
векторния сумми всех сил равна нулю 🔼 Г – 0	- поверхность гладкая,	столкновения и др.),		
По 3 закону Ньютона для взаимодействующих тел:	поэтому $F_{rp} = 0$, $A_{rp.} = 0$		3.	
$\vec{F}_{1/2} = -\vec{F}_{2/1}$ или $F_{1/2} = F_{2/1}$ (Часто: $P = N$, $P = T$)	или	так как <i>суммарный</i>	Условие равновесия тела	
$\mathbf{r}_{1/2} = -\mathbf{r}_{2/1} \text{ MJM } \mathbf{r}_{1/2} = \mathbf{r}_{2/1} \text{ (Aacto. } 1 = 1 \text{v, } 1 = 1 \text{)}$	- при движении тел сила натяжения	импульс внешних сил,	относительно	
Town angress s warm set were selected as	нити или сила реакции опоры в любой точке <i>перпендикулярна</i>	приложенных к телам	поступательного движения:	
Тела связаны нитью: так как нить невесома, а блок идеален (то есть блок невесомый, а нить	cкорости, поэтому их $A = 0$	системы, <i>равен нулю</i> (из-за сравнительно	векторная сумма внешних сил,	
скользит по нему без трения), то $T = const$	или	малой силы	действующих на тело,	
(модуль силы натяжения во всех ее точках одинаков)	- время разрыва мало, то есть можно	или		
(модуль силы патижении во всех се точках одинаков)	пренебречь изменением	из-за равенства нулю	равна нулю $\sum ec{F} = 0$	
Неподвижный блок: так как нить нерастяжима,	потенциальной энергии тел	проекций внешних сил	\$7	
а грузы движутся прямолинейно, то $a = const$	в результате их взаимодействия	или	Условие равновесия тела	
(ускорения грузов одинаковые)		мало время	относительно вращательного движения:	
	Закон изменения механической	взаимодействия)	алгебраическая сумма	
Подвижный блок: так как нить нерастяжима,	энергии применяется, если	,	моментов внешних сил	
а нить и блок движутся прямолинейно,	работа всех не потенциальных сил		равна нулю относительно	
то перемещение нити, перекинутой через блок,	не равна нулю,		оси вращения	
в 2 больше перемещения самого блока;	(незамкнутая система)		или	
а так как эти перемещения совершаются				
из состояния покоя за одинаковое время,			\sum M _{по ч.с.} = \sum M _{против ч.с.}	
то и ускорение нити, перекинутой через блок,			— — то ч.с. — тапротив ч.с.	
в 2 больше ускорения блока				

Алгоритмы решения задачи 26

Кинематика	Динамика	Законы сохранения	Статика
		3СИ	
1. По	1. Изобразить	1. На двух рисунках (до и после взаимодействия)	1. Изобразить на рисунке
результатам	на рисунке	изобразить векторы скоростей, обозначить массы	все векторы сил,
смыслового	все векторы сил,		действующих на тела
чтения	действующих	2. Записать ЗСИ	
определить	на тела,	(сумму векторов импульсов с первого рисунка	2. Выбрать ось вращения
вид движения	и ускорений этих тел	приравнять к сумме векторов импульсов	(лучше принимать
		со второго рисунка)	за ось вращения ту точку,
2. Записать	2. Записать 2-й закон		через которую проходят
кинематические	Ньютона (сложить	3. Выбрать оси координат,	линии действия сил,
уравнения	все векторы сил	спроецировать ЗСИ на выбранные оси	значения которых
для этого	и приравнять	(Если ЗСИ выполняется только в проекции	не даны, и их значение
вида движения	к $m\overrightarrow{a}$ (или к θ)	на какую-то ось, то в векторной форме	определять не требуется)
		его записывать не надо, а сразу –	
3. Если	3. Выбрать оси	в проекциях именно на эту ось)	3. Изобразить плечи сил
необходимо,	координат		
спроецировать	$(OX$ – лучше по \vec{a})	3СЭ (ЗИЭ)	4. Записать условия
уравнения		1. На двух рисунках положений тел обозначить	равновесия тел
на выбранные	4. Спроецировать	начальные и конечные v , h , x	относительно
оси	закон Ньютона	2. Проверить наличие работы непотенциальных сил	поступательного и (или)
	на эти оси	3. Записать ЗСЭ или ЗИЭ	вращательного движений