1 часть

1.

Установите соответствие между физическими величинами и приборами, с помощью которых их измеряют.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- А) плотность жидкости
- Б) относительная влажность
- В) давление внутри жидкости

ПРИБОРЫ

- 1) термометр
- 2) гигрометр
- 3) мензурка
- 4) манометр
- 5) ареометр

Ответ:	A	Б	В

2.

Чем объяснить результат опыта, при котором одинаковые гвоздики, прикреплённые с помощью парафина к медному и стальному стержню, быстрее отрываются медного otстержня (рисунок)?

- 1) Медь разную И сталь имеют удельную теплоёмкость.
- 2) Медь и сталь получают разное количество теплоты в единицу времени.

5 10 15 20 t, c

- 3) Медь и сталь характеризуются разной теплопроводностью.
- 4) Интенсивность излучения тепловой энергии у нагретых меди и стали разная.

3.

Стальной кубик имеет ребро длиной 1 см. Определите архимелову силу, действующую

	го полном погружении в во	-	ову силу, деиствующую
Ответ:	Н.		
	іловой машины за цикл полу и совершает работу 80 Дж		
Ответ:	<u></u> %.		
5.			
На рисунке пре	дставлен график зависимост	ги силы тока I	<i>I</i> , мA ≬
в проводнике	от времени $t.$ Какой	заряд прошёл	30
по проводнику а	ва первые 5 с?		20
			10
Ответ:	Кл.		0 5 10 15 20 +

	-		
7	r	7	

Одинаковые маленькие металлические шарики, расположенные -2q +q в точках A и B, несут на себе заряды -2q и +q соответственно (см. рисунок).

Из приведённого ниже списка выберите ∂sa правильных утверждения относительно этой ситуации.

- 1) Если шарики соединить медной проволокой, они будут отталкиваться друг от друга.
- 2) На шарик B со стороны шарика A действует сила, направленная горизонтально вправо.
- 3) При соприкосновении шариков их суммарный электрический заряд увеличится.
- 4) Если шарики соединить незаряженной эбонитовой палочкой, их заряды не изменятся.
- 5) Сила, действующая на шарик A со стороны шарика B, больше силы, действующей на шарик B со стороны шарика A.

Ответ:			
--------	--	--	--

2 часть

7.*

Твёрдое вещество медленно нагревалось в калориметре при постоянном притоке тепла. В таблице приведены результаты измерений его температуры с течением времени.

Время, мин	0	2	4	6	8	10	12	14
Температура, °С	72	77	80	80	80	81	88	95

В каком(-их) состоянии(-ях) находилось вещество в калориметре через 7 мин после начала измерений? Ответ поясните.

8.*

В таблице приведена зависимость заряда q, протёкшего через резистор сопротивлением 3 Ом, от времени t. Какое количество теплоты выделится в резисторе за первые 5 секунд, если сила протекающего тока постоянна?

t, c	0	1	2	3	4	5
<i>q</i> , Кл	0	0,6	1,2	1,8	2,4	3,0

9.*

Полезная мощность двигателя автомобиля составляет 46 кВт. Каков КПД двигателя, если при средней скорости 80 км/ч он потребляет 20 кг бензина на 160 км пути?

10.**

Имеются два одинаковых электрических нагревателя мощностью 600 Вт каждый. Какой объём воды можно нагреть на 30 °C за 14 мин, если нагреватели будут включены параллельно в электросеть с напряжением, на которое рассчитан каждый из них? Потерями энергии пренебречь.

Ответы и решения

1 часть

№	1	2	3	4	5	6
Ответы	524	3	0,01	40	0,075	14/41

2 часть

7*. Решение.

Вещество находится частично в твердом, частично в жидком состоянии. Так как в данный момент времени температура остаётся постоянной, следовательно уже начался, но еще не закончился процесс плавления. При плавлении температура не меняется, так как вся подводимая к твердому телу энергия идет на разрушение кристаллической решетки.

8*. Решение.

$$Q = I^2 Rt$$
; $I = \frac{q}{t}$; $Q = \frac{q^2}{t}R = \frac{3^2}{5}3 = 5,4$ Дж.

9*.

Решение.

Время движения автомобиля равно

$$t = \frac{s}{v} = \frac{140}{70} = 2 \text{ } \text{y} = 7200 \text{ c}.$$

Полезная работа, совершенная двигателем, равна $A_{\text{пол}} = Nt$.

Количество теплоты, выделившееся при сгорании топлива Q = qm.

Тогда КПД двигателя автомобиля равен

$$\eta = \frac{A}{O} \cdot 100\% = \frac{Nt}{qm} \cdot 100\% = \frac{46 \cdot 10^3 \cdot 7200}{20 \cdot 46 \cdot 10^6} \cdot 100\% = 36\%.$$

Ответ: 36%.

10**.

Решение.

 $P_1 = rac{U^2}{R_1},$ то сопротивление Найдем сопротивление каждого нагревателя. Так как мощность равна

наидем сопротивление каждого нагревателя. Так как мощность равна
$$R_1 = \frac{U^2}{P_1}$$
. одного нагревателя равно При параллельном соединении двух одинаковых нагревателей $R = \frac{R_1}{2}$.

общее сопротивление рассчитывается по формуле

Таким образом, мощность, выделяющаяся в цепи при подсоединении двух нагревателей, соединенных параллельно, будет определяться формулой $P=2P_1$.

Количество теплоты, которое выделится нагревателями, равняется $Q = P \tau = 2 P_1 \tau$.

Количество теплоты, необходимое для нагревания воды, $Q = mc\Delta t$.

которую можно нагреть:

Количество теплоты, необходимое для нагревания воды,
$$Q = mc\Delta t$$
.
 C учетом отсутствия потерь, находим массу воды, коли $m = \frac{2P_1\tau}{c\Delta t} = \frac{2\cdot 600\cdot 14\cdot 60}{4200\cdot 30} = 8$ кг. $V = \frac{m}{\rho} = \frac{8}{1000} = 0,008$ м $^3 = 8$ л

Ответ: 8л.