
Механика		
Уравнение координаты (закон любого движения)	$x = x_o + S_x$ $y = y_o + S_y$	
\vec{S} – вектор перемещения, S_x – проекция перемещения на ось X		
Проекция перемещения (для любого движения)	$S_x = x - x_o$ $S_x = \Delta x$ $S_y = y - y_o$ $S_y = \Delta y$	

 $\underline{\textit{Также:}}\ S_x =$ площади фигуры, полученной $\textit{междy}\$ графиком $v_x\left(t\right)$ и осью Ot

Модуль перемещения	$S = x - x_0 \qquad S = \Delta x \qquad S = \sqrt{S_x^2 + S_y^2}$
Пройденный путь L – длина траектории	$m{Ec}$ ли тело никуда не поворачивает, то $L=S$

Относительность движения

 v_1 — скорость 1-го тела относительно земли v_2 — скорость 2-го тела относительно земли $v_{1/2}$ — скорость 1-го тела относительно 2-го

Относительная скорость сближения или удаления 2-х тел	Если v₁ и v₂ направлены противоположно друг другу, то:	Если v₁ и v₂ сонаправлены друг другу, то:			
	$v_{1/2}=v_1+v_2$	$v_{1/2}= v_1-v_2 $			
	Равномерное прямолинейное движение (равные ΔS за равные Δt ; $\vec{v}=const$; $\alpha=o$)				
Уравнение координаты (закон движения)	$x = x_0$	$v_x + v_x t$			
Перемещение (проекция, модуль)	$S_x = v_x t$ $S = vt$				
Скорость (проекция, модуль)	$v_x = \frac{S_x}{t} \qquad v = \frac{S}{t}$ $v_x = \frac{x - x_0}{t} \qquad v = \frac{ \Delta x }{t}$				
Равноускоренное прямолинейное движение (равные Δv за равные Δt ; $\vec{a} = const \neq \theta$)					
Уравнение координаты (закон движения)	$x = x_o + v$				
Перемещение (проекция)	$S_x = v_{ox}t$ $S_x = \frac{v_x^2}{v_x^2}$				

 $S_x = \frac{(v_{0x} + v_x)t}{2}$

Модуль перемещения, если $v_o = 0$	$S = \frac{at^2}{2} \qquad S = \frac{v^2}{2a} \qquad S = \frac{vt}{2}$	
Модуль перемещения, если $v = 0$	$S = \frac{at^2}{2}$ $S = \frac{v_0^2}{2a}$ $S = \frac{v_0 t}{2}$	
Ускорение (вектор, проекция, модуль)	$a_x = \frac{v_x - v_{0x}}{t} \qquad a = \frac{ \Delta v }{t}$	
Скорость (проекция)	$v_x = v_{ox} + a_x t$	
Модуль скорости	$v = at$, если $v_o = 0$ $v_o = at$, если $v_o = 0$	
$Ecnu\ v_o=0$, то перемещение S_1 за 1 -ю секунду перемещения за n -ю секунду	$S_1 = \frac{a}{2}$ $S_n = (2n - 1)S_1$	

Графики кинематических величин прямолинейного движения

	Покой	Равномер-	Равноускоренное	Равнозамедлен-
	$a_x = 0$	ное	движение	ное движение
	$v_{x}=0$	движение	$a_x = \text{const},$	$a_x = \text{const},$
	$s_x = 0$	$a_x = 0$	$\vec{a} \uparrow \uparrow \vec{v}_0, \vec{v}_0 \uparrow \uparrow OX$	$ \vec{a}\uparrow\downarrow\vec{v}_0,\vec{v}_0\uparrow\uparrow OX $
	$x = x_0$	$v_x = \text{const}$	$v_x = v_0 + at$	$v_x = v_0 - at$
		$s_x = v_x t$	$s_x = v_0 t + \frac{at^2}{2}$	$a = n t at^2$
		$x = x_0 + v_x t$	$s_x - v_0 t + \overline{2}$	$s_x = v_0 t - \frac{at^2}{2}$
		$\vec{v}_1 \uparrow \uparrow OX$	at^2	
		$\vec{v}_2 \uparrow \downarrow OX$	$x = x_0 + v_0 t + \frac{at^2}{2}$	$x = x_0 + v_0 t - \frac{at^2}{2}$
$a_x(t)$	a_x	a_x	a_x	a_x
	0 t	$\overline{0}$ t	0 t	
$v_x(t)$	v_x	v_x 1	v_x	v_x
	0	0 t		0 t
$s_x(t)$	s_x	s_x 1	s_x	s_x
	$\overline{0}$ \overline{t}	$\overline{0}$ $\overline{2}$ \overline{t}	0 t	0 t
l(t)	<i>1</i>	l^{\uparrow} $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	<i>ι</i>	1
	0 t	0	0 t	
x(t)	x 	$x \downarrow 1$	x 1	$x \uparrow$
	$0 \xrightarrow{t}$			
			$\overline{0}$ \overline{t}	0 t

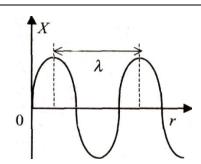
Свободное падение			
$(\vec{F}_{ ext{pabh.}} = \vec{F}_{ ext{ iny T}}, \ \overrightarrow{g} = const)$			
Свободное падение тела по вертикали			
Уравнение (закон) движения через проекции	$h = h_o + v_{oy}t + \frac{g_y t^2}{2}$		
Перемещение (проекция)	$S_y = v_{0y}t + \frac{g_y t^2}{2}$ $S_y = \frac{v_y^2 - v_{0y}^2}{2g_y}$ $S_y = \frac{(v_{0y} + v_y)t}{2}$		
Модуль перемещения, если va = 0	$S = \frac{gt^2}{2} \qquad \qquad S = \frac{v^2}{2g} \qquad \qquad S = \frac{vt}{2}$		
Модуль перемещения, если ι = 0	$S = \frac{gt^2}{2} \qquad S = \frac{v_0^2}{2g} \qquad S = \frac{v_0t}{2}$		
Проекция скорости	$v_y = v_{oy} + g_y t$		
Модуль скорости	$v = gt$, если $v_o = 0$ $v_o = gt$, если $v = 0$		
${m Ecnu}\ v_o=0$, то перемещение S_1 за 1-ю секунду перемещения за n -ю секунду	1		
Равномерное движение по окружности			
$(v = \text{const}; \text{но } a \neq 0, a = a_{\text{ц}}; \vec{a}_{\text{ц}} \perp \vec{v})$			

	L	$2\pi R$	_
Линейная скорость	$v = \frac{1}{t}$	$v = \frac{T}{T}$	$v = 2\pi vR$

Центростремительное ускорение	$a_{u}=\frac{v^{2}}{R}$	
Период вращения	$T = \frac{L}{v}$ $T = \frac{t}{N}$ $T = \frac{1}{v}$ $T = \frac{2\pi R}{v}$	
Частота вращения	$v = \frac{N}{t} \qquad v = \frac{1}{T} \qquad v = \frac{v}{2\pi R}$	

Механические колебания

График колебаний:



Т – период колебаний

Период колебаний	$T = \frac{t}{N}$ $T = \frac{1}{v}$ $T = 2\pi \sqrt{\frac{l}{g}}$ $T = 2\pi \sqrt{\frac{m}{k}}$
Частота колебаний	$v = \frac{N}{t}$ $v = \frac{1}{T}$ $v = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$ $v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
Полная энергия колебаний в отсутствие трения:	$W = const = W_{K} + W_{II} = \frac{mv^{2}}{2} + \frac{kx^{2}}{2}$ $W = W_{K \max} = \frac{mv_{m}^{2}}{2} \qquad W = W_{II \max} = \frac{kA^{2}}{2}$

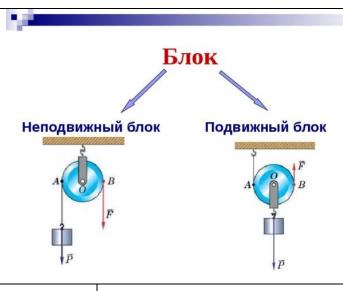
Механические волны

График волны: (λ – длина волны)

Скорость волны	$v = \lambda v$ $v = \frac{\lambda}{T}$	
Путь до объекта при эхолокации	$S = \frac{v_{3B}t}{2}$	

<u>Важно:</u> 1) при распространении волны **не** происходит переноса вещества, а только перенос *энергии и импульса* колебаний

- 2) при переходе волны из одной среды в другую изменяются ее скорость ${m v}$ и длина волны ${m \lambda}$, а период ${m T}$ и частота ${m v}$ не изменяются
 - 3) при переходе в более плотную среду *скорость звука увеличивается* 4) в вакууме звук **не** распространяется


Силы в механике

Равнодействующая всех сил (принцип <i>cynepnoзuции</i> сил)	$\overrightarrow{F_{\rm p}} = \overrightarrow{F_{\rm 1}} + \overrightarrow{F_{\rm 2}} + \overrightarrow{F_{\rm 3}} + \dots$	
Сила (закон) всемирного тяготения	$F_{\mathrm{T}} = \frac{Gm_1m_2}{R^2}$	
Сила тяжести	$F_{ ext{\tiny TR.K.}} = gm$	
Сила тяжести вблизи Земли	$F_{\text{\tiny TSK.}} = \frac{GM_3m}{R_3^2}$	
Сила тяжести на высоте <i>h</i> от поверхности Земли	$F_{\text{\tiny TM.M.}} = \frac{GM_3m}{(R_3 + h)^2}$	
Ускорение свободного падения	$g = \frac{F_{\text{\tiny TSM.}}}{m}$	
Ускорение свободного падения вблизи Земли	$g_3 = \frac{GM_3}{R_3^2} \approx 10 \frac{M}{c^2}$	
Ускорение свободного падения на высоте <i>h</i> от поверхности Земли	$g = \frac{GM_3}{(R_3 + h)^2}$	
Первая космическая скорость вблизи Земли	$v_I = \sqrt{\frac{GM_3}{R_3}} = \sqrt{g_3R_3} pprox 8rac{ ext{KM}}{ ext{c}}$	
Вес тела	$P = mg$, если по вертикали нет ускорения $P = m(g + a)$, если \overrightarrow{a} вертикально вверх	
	$P = m(g - a)$, если \overrightarrow{a} вертикально вниз	

(Важно: свободно падающее тело – всегда в невесомости)	$P = o$, если \overrightarrow{a} вертикально вниз и $a = g$ (невесомость)		
Сила упругости (х – величина деформации)	$F_{\text{ynp}} = kx$ $x = \Delta l = l - l_0 $		
Сила натяжения подвеса	$\overrightarrow{T} = -\overrightarrow{P}$ $T = P$		
Сила реакции опоры	$\overrightarrow{N} = -\overrightarrow{P}$	N = P	
Сила трения скольжения	$F_{ ext{ iny Tp}} = \mu N$	$F_{ ext{ iny TP}} = \mu P$	
Сила Архимеда ($ ho$ — плотность жидкости или газа $ ho$ — объем тела или его части, погруженной в жидкость или газ $ ho$ — вес тела в жидкости или газе $ ho$ — вес тела в воздухе $ ho$ — вес вытесненной жидкости) Сила давления $ ho$ — авал на поверхность площадью $ ho$	$F_{ m A} = ho g V_{ m погр}.$ $F_{ m A} = P - P_{ m 1}$ $F_{ m A} = P_{ m ж}$ $F_{ m A} = F_{ m TЯ ж}. = mg ($ если тело плавает $)$ $rac{V_{ m погр.}}{V_{ m Тела}} = rac{ ho_{ m тела}}{ ho_{ m жидкости}} ($ если тело плавает $)$ $F_{ m Давл} = pS$ Часто: $F_{ m Давл} = P = mg$		
	Давление	Г	
Давление	$p = \frac{F_{\text{давл}}}{S}$		
Давление в жидкости или газе	На дно сосуда $p = \rho g h$	На стенку сосуда $p = \frac{\rho g h}{2}$	
Закон сообщающихся сосудов, где h_1 и h_2 – высоты столбов над границей раздела двух жидкостей	$\frac{\rho_1}{\rho_2} = \frac{h_2}{h_1}$		

Закон гидравлического пресса	$\frac{F_1}{F_2} = \frac{S_1}{S_2}$		
Законы Ньютона			
Применимы только в инерциальных системах отсчета (<i>И.С.О.</i>) В наших задачах <i>И.С.О.</i> – это <i>земля</i> или любая другая система отсчета, у которой <i>относительно земли нет ускорения</i>)			
<u>В ИСО:</u>			
	если $\vec{F}_{ m p}=$ о, то $\vec{a}=0$		
I закон Ньютона (закон инерции)	или:		
	если $\vec{F}_{\rm p}=0$, то тело либо покоится ($v=0$), либо движется равномерно и прямолинейно ($\vec{v}={ m const}$)		
	$ec{F}_{ m p}=mec{a}$		
II закон Ньютона	или: $m\vec{a} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + \dots$		
III закон Ньютона	$\overrightarrow{F_{12}} = -\overrightarrow{F_{21}}$ или $F_{12} = F_{21}$		
Статика			
Момент силы (вращательный момент)	M = F l		
l – плечо силы – это перпендикуляр, проведенный из точки опоры на линию действия силы			
Правило моментов для рычага, к которому приложены всего <i>две силы</i>	$M_1=M_2$ или $F_1\ l_1=F_2\ l_2$ или $rac{F_1}{F_2}=rac{l_2}{l_2}$		

 $\frac{F_1}{F_2} = \frac{l_2}{l_1}$

Неподвижный блок **не дает выигрыша** ни в силе, ни в расстоянии

$$F=P$$
 $S=h$

Подвижный блок дает выигрыш в силе в 2 раза и проигрыш в расстоянии в 2 раза

$$F = \frac{P}{2} \qquad S = 2h$$

h – путь груза весом P S – путь веревки, к которой приложена сила F

Работа и мощность в механике

Механическая работа (работа силы),

где S — модуль перемещения, α — угол между \vec{F} и \vec{S}

 $A = FS \cos \alpha$ $\alpha - \text{угол между } \vec{F} \text{ и } \vec{S}$

A = FS, если $\alpha = 0$

Важно:

A= площади фигуры, заключенной между графиком F(S) и осью OS A=0, если: F=0 (тело движется по инерции); S=0 (тело покоится); $\alpha=90^\circ$

Работа силы тяжести

$$A_{\mathrm{T}} = mg \left(h_{1} - h_{2} \right)$$

<u>Важно:</u> $A_{\rm T}$ не зависит от формы траектории движения тела $A_{\rm T}=0$, если траектория замкнутая

Работа по подъему тела на высоту <i>h</i>	A = P h	
Работа по <i>равномерному</i> подъему	A = mgh	
Работа силы трения	$A_{ ext{ iny Tp}} = - F_{ ext{ iny Tp}} S$ $A_{ ext{ iny Tp}} = \Delta E$ $ A_{ ext{ iny Tp}} = Q$	
Мощность	$N=rac{A}{t}$ Если $v={ m const},$ то: $N=Fv$	
	1	

Импульс, закон сохранения импульса

3.С.И. применим:

- 1) только для системы тел;
 - 2) в отсутствие трения;
- 3) при любых взаимодействиях

Импульс тела	$\vec{p} = m\vec{v}$ $p_x = mv_x$ $p = mv$	
Изменение импульса тела	$\overrightarrow{\Delta p} = m \overrightarrow{\Delta v}$ $\Delta p = m \Delta v$	
Импульс силы	$\vec{F}t = \overrightarrow{\Delta p}$ $Ft = \Delta p$	
Закон сохранения импульса замкнутой системы из 2-х тел	$\overrightarrow{p_{01}} + \overrightarrow{p_{02}} = \overrightarrow{p_1} + \overrightarrow{p_2}$ $m_1 \overrightarrow{v_{01}} + m_2 \overrightarrow{v_{02}} = m_1 \overrightarrow{v_1} + m_2 \overrightarrow{v_2}$	

Энергия, закон сохранения энергии в механике

3.С.Э. применим:

- 1) как для одного тела, так и для системы тел; 2) в отсутствие трения;
 - 3) в отсутствие неупругих взаимодействий

Полная механическая энергия	$E=E_{ ext{\tiny K}}+E_{ ext{\tiny II}}$	
Кинетическая энергия	$E_{ ext{ iny K}} = rac{mv^2}{2}$ или $E_{ ext{ iny K}} = rac{ ext{ iny p}^2}{2m}$	
Потенциальная энергия тела в поле тяготения	$E_{\scriptscriptstyle \Pi}=mgh$	
Потенциальная энергия упруго деформированного тела	$E_{\Pi} = \frac{kx^2}{2}$	
Закон сохранения полной механической энергии в замкнутой системе тел	$E={ m const}$ $\Delta E=o$ $E_{ m C}=E$ $E_{ m KO}+E_{ m HO}=E_{ m K}+E_{ m H}$	

Если система незамкнутая

(т.е. в системе есть трение или неупругие взаимодействия), то полная механическая **энергия не сохраняется**, а изменяется (убывает): $\Delta E \neq 0$

Изменение полной механической энергии в не замкнутой системе	$\Delta E = E_{ ext{\tiny K}} + E_{ ext{\tiny II}} - E_{ ext{\tiny KO}} - E_{ ext{\tiny IIO}}$ $\Delta E = A_{ ext{\tiny TP}}$ $ \Delta E = Q$
---	---

Молекулярная физика

Основные положения:

- 1) Вещество состоит из мельчайших частиц *молекул*, разделенных *промежутками*
- 2) Молекулы непрерывно и хаотично движутся (тепловое движение)
 - 3) Молекулы *взаимодействуют* друг с другом (притягиваются и отталкиваются)

Строение твердых, жидких и газообразных веществ

Химический состав молекул не зависит от агрегатного состояния.

	Твердое тело	Жидкость	Газ
Строение			
Расстояния между молекулами	Сравнимо с размером молекул	Чуть больше, чем в твердом теле	Многократно превышает размеры молекул
Характер движения	Колебательное	Скачкообразное	Хаотическое
Скорости молекул	Малы	Скорее малы	Огромны
Взаимодействие между молекулами	Наибольшее	Меньше, чем у твердых тел	Наименьшее

Свойства твердых, жидких и газообразных веществ

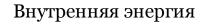
	Сохраняет объем	Сохраняет форму	Особые свойства
Твердое тело	+	+	
Жидкость	+	_	текучесть
Газ	_		летучесть

Magaa payyaampa (maya
Масса вещества (тела

Влажность воздуха

Абсолютная влажность
(плотность водяного пара,
содержащегося в воздухе)

$$\rho_{\text{napa}} = \frac{p_{\text{napa}}}{V}$$


Относительная влажность

$$\varphi = \frac{p_{\pi apa}}{p_{H.\Pi.}} \cdot 100\%$$

р_{н п} давление насыщенного пара

Важно:

 $Tемпература кипения – это температура, при которой <math>p_{\text{н.п.}} = p_{\text{внешн.}}$ При испарении жидкости ее температура понижается При кипении жидкости ее температура постоянна

$$U = \sum E_{\text{к. молекул}} + \sum E_{\text{п. молекул}}$$

Виды тепло передачи:

теплопроводность конвекция

Объяснение явления на опыте:

> Как осуществ ляется:

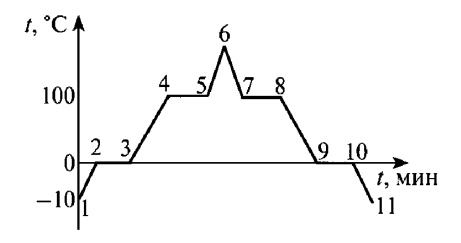
Где может происходить: молекулы

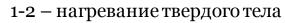
вещества не перемешиваются в любом веществе в любом агрегатном

состоянии

переме шиваются холодные

и горячие струи вещества только


в газах и жидкостях


без **участия** веществ

даже в вакууме

<i>КПД</i> теплового двигателя	$\eta = rac{ ext{A}}{Q_{ ext{H}}}$ $\eta = rac{Q_{ ext{H}} - Q_{ ext{X}} }{Q_{ ext{H}}}$		
Количество теплоты при нагревании или охлаждении	$Q=cm~\Delta t$ $\Delta t=t_{\kappa o h e ext{\tiny 4} h}t_{ m ha ext{\tiny 4} a ext{\tiny 7} b ext{\tiny 4} h}.$		
	$\Delta \iota = \iota_{\kappa o h e \nu h}$. — $\iota_{h a \nu a \Lambda b h}$.		
Количество теплоты при плавлении, кристаллизации	$Q = \lambda m$ $Q = -\lambda m$		
Количество теплоты при парообразовании, конденсации	Q = Lm $Q = -Lm$		
Количество теплоты при сгорании топлива	Q = qm		
Уравнение теплового балансо (в теплоизолированной системе)	Q полученное. $= Q_{om\partial ahhoe} $		

Графики тепловых процессов:

2-3 – плавление

3-4 – нагревание жидкости

4-5 – кипение

5-6 – нагревание пара

6-7 – охлаждение пара

7-8 – конденсация

8-9 – охлаждение жидкости

9-10 – отвердевание

10-11 – охлаждение твердого тела

_				
Электрическое поле				
1) создается электрическими зарядами 2) действует с некоторой силой на электрические заряды				
Электрический заряд		$N_e \cdot e$		
r in r	1			
e -	- элементарный заряд			
N_e — количество ned	N_e – количество недостающих или избыточных электронов			
2				
Закон	$q_1 + q_2 + \dots = const$			
сохранения заряда	$q_1 + q_2 =$	$=q_{1}^{'}+q_{2}^{'}$		
Закон сохранения заряла				
Закон сохранения заряда для двух одинаковых	_	$a_1 + a_2$		
по размеру тел	$q_1 + q_2 = 2q' =$	$=> q' = \frac{q_1 + q_2}{2}$		
1 17		_		
Напряжение А				
между двумя точками поля	$U = \frac{A}{a}$			
	4			
Работа электрического поля	A = qU			
по перемещению заряда q		1		
	<u> </u>			
	Постоянный ток			
Сила тока	Сила тока $I = \frac{q}{t}$			
Заряд q , прошедший через				
сечение проводника за время	q =	= I t		
<u>Также:</u> $q =$ площади фигу	ры, полученной <i>между</i> г <u>т</u>	рафиком $I(t)$ и осью Ot		
Закон Ома	$I - \overline{U}$	$IR \qquad R = \frac{U}{I}$		
для участка цепи	R = R	$IK \qquad K = I$		
	ρl			
Сопротивление проводника	$R = \frac{\rho t}{S}$			
	$I=I_1=I_2=\dots$	Для <i>п</i>		
Последовательное	$R = R_1 + R_2 + \dots$	<u>одинаковых</u>		
соединение проводников		сопротивлений:		
	$U=U_1+U_2+$			
	$\frac{U_1}{U_2} = \frac{R_1}{R_2}$	$R = nR_o$		
	$U_2 \stackrel{-}{-} R_2$			
		$U = nU_o$		

Параллельное соединение проводников	$U = U_1 = U_2 =$ $I = I_1 + I_2 +$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} +$ $\frac{I_1}{I_2} = \frac{R_2}{R_1}$ Для 2-х: $R = \frac{R_1 R_2}{R_1 + R_2}$	Для n	
Работа тока	$A = qU$ $A = M$ $A = UIt \qquad A = M$	$A = Q$ $I^{2}Rt A = \frac{U^{2}t}{R}$	
Закон Джоуля-Ленца	$Q = I^2Rt$		
Мощность тока	$P = \frac{A}{t}$ $P = UI \qquad P = \frac{A}{t}$	$P = \frac{Q}{t}$ $I^{2}R \qquad P = \frac{U^{2}}{R}$	

Магнитное поле

1) магнитное поле создается: движущимися зарядами, => током в проводнике, => магнитами (т. к. в магнитах циркулируют согласованные молекулярные токи)

2) магнитное поле действует с некоторой силой: на движущиеся заряды, на проводники с током, на магниты

Важно:

1) Направление вектора $\overrightarrow{\mathrm{B}}$

- совпадает с направлением северного (N) полюса магнитной стрелки (рис. 1)

- связано **правилом правой руки** с направлением тока *I* в проводнике: если 4 загнутых пальца – по I, то большой палец – по $\overrightarrow{\mathrm{B}}$ (puc. 2) u наоборот: если 4 загнутых пальца – по \overrightarrow{B} , то большой палец – по I (puc. 3)
 - совпадает *с касательной* к линии магнитной индукции (рис. 3, вверху)

2) Линии магнитной индукции всегда выходят из N (северного полюса) и входят в S (южный полюс) (рис. 4)

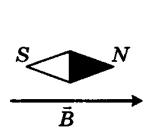


Рисунок 1.

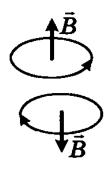


Рисунок 2.

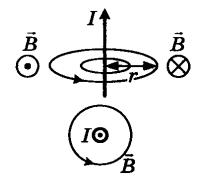


Рисунок 3.

Рисунок 4.

Сила действия магнитного поля на проводник с током (сила Ампера)	$F_A=IBl$ (ecau $lpha=90^o$)
Модуль магнитной индукции (индукции магнитного поля)	$B = \frac{F_A}{Il}$
Сила действия магнитного поля на движущийся заряд (сила Лоренца)	$m{Ec}_{m{A}}m{u} \ lpha = 90^o$, то: $F_{m{J}} = qvB$ и при этом частица движется по окружности: $mv = qBR$
Правило левой руки для F_A	E сли 4 вытянутых пальца— по I и $\overrightarrow{\mathrm{B}}$ входит в ладонь, то отогнутый большой палец— по \overrightarrow{F}_A

Правило левой руки $\partial \mathcal{N} \mathcal{S} F_{\mathcal{I}}$

Ecлu 4 вытянутых пальца — по \vec{v}_+ и \vec{B} exodum в ладонь, то отогнутый большой палец — по $\vec{F}_{\mathcal{I}}$

Важно:

Железо, сталь (и другие ферромагнетики), попадая в магнитное поле, тоже становятся магнитами

Явление электромагнитной индукции (ЭМИ)

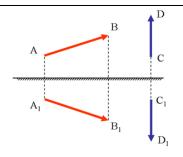
ЭМИ – это возникновение индукционного тока при изменении магнитного поля (потока) Модуль индукционного тока зависит только от скорости изменения магнитного поля (потока)

Направление индукционного тока зависит:
- от характера изменения магнитного поля (от того, нарастает оно или убывает);
- от направления магнитных линий этого поля

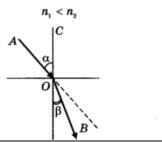
Электромагнитные волны. Оптика.

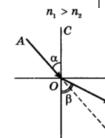
Источник электромагнитной волны – заряд, движущийся c ускорением

Скорость электромагнитной волны (скорость света)	$c = \lambda v$ $c = \frac{\lambda}{T}$
Расстояние до объекта при радиолокации	$R = \frac{cT}{2}$


Важно:

1) в однородной среде свет распространяется прямолинейно 2) при переходе в более плотную среду скорость *света* уменьшается (и наоборот)


	$lpha=\gamma$
Закон отражения света	α – угол падения
	(угол между падающим лучом и \vec{n})
$(\vec{n}$ — нормаль к отражающей поверхности)	γ – угол отражения
	(угол между отраженным лучом и \vec{n})


Характеристика изображения предмета в **плоском зеркале**:

мнимое, прямое, равное предмету, симметричное предмету

Закон преломления света

$$\frac{\sin\alpha}{\sin\beta}=\mathrm{const}=n_{2/1}$$

(**если**
$$\alpha = 0$$
, то и $\beta = 0$)

$$n_{2/1} = \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

Абсолютные показатели преломления сред (относительно вакуума)

$$n_1 = \frac{c}{v_1}$$

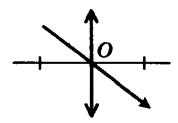
$$n_2 = \frac{c}{v_2}$$

Линзы

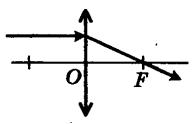
Оптическая сила линзы

$$\pm D = \pm \frac{1}{F}$$

Важно:

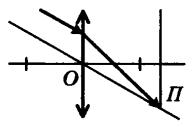

Если F>0, D>0, то линза собирающая Если F<0, D<0, то линза рассеивающая

Характеристики изображений, даваемых линзами

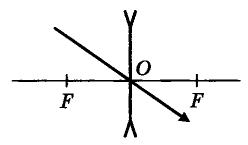

Вид	Расстояние d	Характеристика	Где
линзы	ОТ	изображения	применяется
	предмета	•	
	до линзы		
Рассеивающая	<i>d</i> - любое	Мнимое, прямое,	Дверной
		уменьшенное	глазок
	d < F	Мнимое, прямое,	Лупа
		увеличенное	
	d = F	нет изображения	-
Собирающая	F < d < 2F	Действительное, перевернутое,	Проекционный
		увеличенное	аппарат
			Микроскоп
	d = 2F	Действительное, перевернутое,	
		равное	
	d > 2F	Действительное, перевернутое,	Фотоаппарат
		уменьшенное	Глаз

Ход лучей в собирающей линзе:

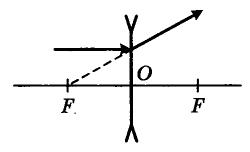

1) Лучи, проходящие через оптический центр линзы, не преломляются.


2) Лучи, параллельные главной оптической оси, после преломления в собирающей линзе проходят через фокус.

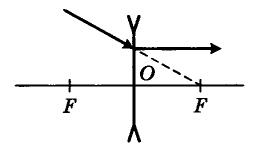
3) Лучи, проходящие через фокус, после преломления в собирающей линзе пойдут параллельно главной оптической оси.

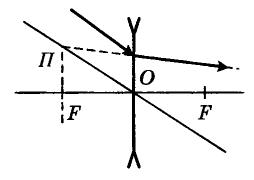


4) Лучи, параллельные побочной оптической оси, пересекаются в побочном фокусе.

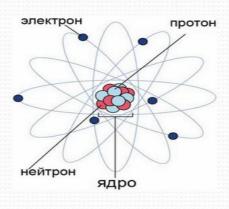


Ход лучей в рассеивающей линзе:


1) Лучи, проходящие через оптический центр линзы, не преломляются.


2) Лучи, параллельные главной оптической оси, после преломления в рассеивающей линзе выходят из фокуса.

3) Лучи, идущие в фокус, после преломления в рассеивающей линзе пойдут параллельно главной оптической оси.


4) Лучи, параллельные побочной оптической оси, выходят из побочного фокуса.

Атомная и ядерная физика

Строение атома

Строение атома таково:В центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра движутся электроны. Вся масса атома сосредоточена в ядре. Атом в целом не имеет заряда, он нейтрален, потому что положительный заряд ядра равен отрицательному заряду всех его электронов.

Обозначение ядра атома: ${}_{Z}^{A}X$

A – массовое число – оно означает:

1) массу атома 2) ≈ массу ядра атома

3) количество нуклонов (общее количество протонов и нейтронов) в ядре

$$4) A = Z + N$$

Z – *зарядовое число* – оно означает:

- 1) заряд ядра атома 2) количество протонов в ядре атома
- 3) количество электронов на оболочке нейтрального атома
 - 4) порядковый номер элемента в таблице Менделеева

 $oldsymbol{N}$ – количество нейтронов в ядре атома

$$N = A - Z$$

Состав радиоактивного излучения

 α -частица – ${}_{2}^{4}$ Не (ядро гелия)

 β -частица – $_{-1}^{0}e$ (электрон)

у-частица $-\frac{0}{0}$ **у** (электромагнитные волна, фотон, гамма-квант)

Другие элементарные частицы

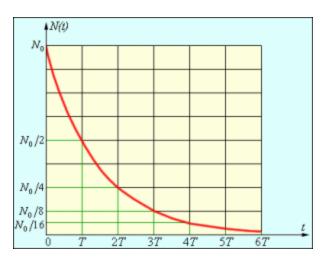
 ${}_{0}^{1}n$ – нейтрон

 $_{1}^{1}$ **р**, $_{1}^{1}$ Н — протон (ядро атома водорода)

²Н – дейтерий (изотоп водорода)

 $^{3}_{1}$ Н- тритий (изотоп водорода)

 $_{1}^{0}e^{-}$ – позитрон (антиэлектрон)


Закон радиоактивного распада

$$N = N_o 2^{-\frac{t}{T}}$$

 N_o – количество радиоактивных атомов в начальный момент времени (t_0 =0)

 $oldsymbol{N}$ – количество радиоактивных атомов в момент времени $oldsymbol{t}$

T – период полураспада

Важно:

энергетически выгодными являются

- реакции слияния легких ядер (термоядерный синтез)
- реакции деления тяжелых ядер (например, деление ядра урана)