Химический тренажёр.

Пособие для отработки навыков составления химических формул и уравнений.

Подготовила Бондарева Наталья Викторовна- учитель МОУ СОШ № 1 ст. Павловской муниципального образования Павловского района Краснодарского края.

Пояснительная записка.

Данное пособие рекомендовано для использования при изучении химии в 8-м классе. Основной целью является:

- изучение и закрепление учебного материала;
- отработка навыков и умений при изучении ключевых вопросов курса химии 8-го класса.

Так как пособие содержит большое количество однотипных упражнений, оно позволяет на достаточно высоком уровне отработать данную тему.

Структура тренажёра такова, что он может быть использован и для контроля знаний. Варьируя номерами заданий, можно составить несколько вариантов проверочной работы.

Составление формул сложных веществ.

Твои действия:

Запиши рядом химические знаки, справа над знаком поставь степени окисления (если значения кратные, их необходимо сократить). Полученные числа перенести крест-накрест на место индекса (справа внизу). Если одна из частиц сложная, то её необходимо взять в скобки, а значение индекса поставить за скобками.

Например: Оксид хлора (III)- $\text{Cl}_2^{+3}\text{O}_3^{-2}$; сульфат алюминия- $\text{Al}_2^{+3}(\text{SO}_4)_3^{-2}$.

	1	2	3	4	5	6
	Оксид (О ⁻²) ЭО	Хлорид (Cl ⁻) MeCl	Сульфид (S ²⁻) MeS	Нитрат (NO ₃) ⁻ MeNO ₃	Сульфат (SO ₄) ²⁻ MeSO ₄	Фосфат (PO ₄) ³⁻ МеРО ₄
A	Магния	Натрия	Меди(II)	Калия	Бериллия	Лития
	Фосфора(III)	Алюминия	Свинца(II)	Магния	Марганца(II)	Железа(III)
	Меди(I)	Бария	Алюминия	Меди(II)	Рубидия	Кальция
Б	Алюминия	Калия	Лития	Железа(III)	Хрома(III)	Бария
	Серы(IV)	Магния	Цинка	Кальция	Серебра(I)	Натрия
	Железа(III)	Меди(II)	Хрома(III)	Натрия	Стронция	Алюминия
В	Азота(IV)	Железа(II)	Натрия	Лития	Калия	Калия
	Серы(VI)	Хрома(III)	Серебра(I)	Алюминия	Магния	Никеля(II)
	Хлора(VII)	Бериллия	Марганца(II)	Бария	Меди(II)	Хрома(III)
Γ	Xрома(III)	Ртути(II)	Калия	Хрома(III)	Железа(III)	Серебра(I)
	Брома(V)	Золота(III)	Магния	Серебра(I)	Ртути(II)	Бериллия
	Марганца(IV)	Лития	Никеля(II)	Стронция	Натрия	Магния
Д	Фосфора(V) Бора Азота(II)	Стронция Рубидия Марганца(II)	Ртути(II) Кальция Бария	Рубидия Марганца (II) Цинка	Лития Свинца(II) Алюминия	Меди(II) Цинка Рубидия

Типы химических реакций.

Закончить уравнения химических реакций по схемам.

Твои действия:

В правой части запиши химические знаки согласно схеме. Справа над знаками поставь степени окисления. Расставь в уравнениях коэффициенты. Обрати внимание на то, что частицы с «+» чаще всего стоят на первом месте.

	1	2	3	4
	Р. Соединения А+В→АВ	Р. Разложения АВ—А+В	Р. Замещения А+ВС—В+АС	Р. Обмена АВ+СД→АД+СВ
Α	$AI + O_2 \rightarrow K + CI_2 \rightarrow H_2 + Br_2 \rightarrow$	$ \begin{array}{c} H_2O \rightarrow \\ AgBr \rightarrow \end{array} $	H_2 + CuO \rightarrow Zn + HCl \rightarrow Fe + CuSO ₄ \rightarrow	NaOH + HCl \rightarrow KCl + AgNO ₃ \rightarrow MgO + H ₂ SO ₄ \rightarrow
Б	$Cu + O_2 \rightarrow \\ Na + S \rightarrow \\ Mg + I_2 \rightarrow$	HgO→ HI→	$Cu + AgNO_3 \rightarrow Mg + H_2SO_4 \rightarrow H_2 + CoO \rightarrow$	Ba(OH) ₂ +HNO ₃ \rightarrow ZnO + HBr \rightarrow CaBr ₂ + H ₃ PO ₄ \rightarrow
В	$\begin{array}{c} B + O_2 {\longrightarrow} \\ AI + S {\longrightarrow} \\ Ca + Cl_2 {\longrightarrow} \end{array}$	$ \begin{array}{c} CH_4 \rightarrow \\ AgI \rightarrow \end{array} $	AI + HBr \rightarrow C + N ₂ O \rightarrow Ca + HCl \rightarrow	KOH + H ₃ PO ₄ → NaBr + AgNO ₃ → BaO + HCl→
Г	$P + O_2 \rightarrow$ $Ba + Br_2 \rightarrow$ $H_2 + S \rightarrow$	$ \begin{array}{c} NH_3 \rightarrow \\ H_2O_2 \rightarrow \end{array} $	Al + MnO ₂ \rightarrow Cu + AgNO ₃ \rightarrow H ₂ + Fe ₂ O ₃ \rightarrow	CuCl ₂ + NaOH \rightarrow Al ₂ O ₃ + HNO ₃ \rightarrow Mg(NO ₃) ₂ +H ₃ PO ₄ \rightarrow
Д	$\begin{array}{c} S + O_2 \rightarrow \\ P + Cl_2 \rightarrow \\ Ca + N_2 \rightarrow \end{array}$	AgCl→ HBr→	AI + $Cr_2O_3 \rightarrow$ $Zn + PbCI_2 \rightarrow$ $Ba + H_3PO_4 \rightarrow$	$ZnCl_2 + AgNO_3 \rightarrow$ $AlBr_3 + KOH \rightarrow$ $Fe_2O_3 + H_2SO_4 \rightarrow$

Химические свойства основных оксидов.

Основные оксиды- это оксиды металлов со степенью окисления +1, +2, кроме ZnO, BeO, SnO, PbO.

Твои действия:

При написании уравнений реакций с кислотными и амфотерными оксидами (в данном случае они выполняют роль кислотных) необходимо превратить оксид в соответствующую кислоту, чтобы определить кислотный остаток.

Например: SO_3 → H_2SO_4

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	3	4
	Взаимодействуют с водой, если образуется растворимое основание (только оксиды 1 A, 2 A группы, кроме MgO, BeO)	Взаимодействуют с кислотными оксидами с образованием соли	Взаимодействуют с амфотерными оксидами(проявляют ся кислотные свойства)с образованием соли.	Взаимодействуют с кислотами с образованием соли и воды.
	MeO+H ₂ O→MeOH	МеО+Кисл.ок.→Соль	МеО+Ам.ок.→Соль	MeO+HR→MeR+H ₂ O
A	$Na_2O + H_2O \rightarrow$ $CaO + H_2O \rightarrow$	$K_2O + SO_3 \rightarrow MgO + N_2O_5 \rightarrow$	Li2O + BeO → SrO + Cr2O3 →	$CaO + HNO_3 \rightarrow$ $FeO + HCl \rightarrow$ $Na_2O + H_3PO_4 \rightarrow$
Б	$Li_2O + H_2O \rightarrow BaO + H_2O \rightarrow$	$Na_2O + P_2O_5 \rightarrow CaO + SO_2 \rightarrow$	$K_2O + Al_2O_3 \rightarrow BaO + ZnO \rightarrow$	$CuO + HNO_3 \rightarrow K_2O + H_2SO_4 \rightarrow MgO + HBr \rightarrow$
В	$K_2O + H_2O \rightarrow$ $SrO + H_2O \rightarrow$	$BaO + CO_2 \rightarrow Rb_2O + SO_3 \rightarrow$	$MgO + BeO \rightarrow Na_2O + SnO \rightarrow$	$BaO + HNO_{3} \rightarrow$ $Li_{2}O + H_{2}S \rightarrow$ $NiO + H_{3}PO_{4} \rightarrow$
Γ	$Rb_2O + H_2O \rightarrow$ $Cs_2O + H_2O \rightarrow$	$Li_2O + N_2O_5 \rightarrow SrO + SiO_2 \rightarrow$	$CaO + Al_2O_3 \rightarrow$ $FeO + ZnO \rightarrow$	$CuO + H_2SO_4 \rightarrow$ $Na_2O + H_2CO_3 \rightarrow$ $CaO + HJ \rightarrow$

Химические свойства кислотных оксидов.

Кислотные оксиды - это оксиды неметаллов, кроме CO, N_2O , NO, SiO, а также оксиды металлов со степенью окисления +5, +6, +7.

Твои действия:

При написании уравнений реакций с кислотными оксидами их необходимо превратить в соответствующие кислоты. Это поможет определить кислотный остаток образующихся солей.

Например: P_2O_5 → H_3PO_4

	1	2	3	4
	Взаимодействуют с водой, в результате чего образуется кислота.	Взаимодействуют с основанием. В результате реакции образуются соль и вода.	Взаимодействуют с основными оксидами. В результате реакции образуется соль.	Взаимодействуют с амфотерными оксидами, которые выполняют роль основных в данных реакциях. В результате образуется соль.
A	$CO_2+H_2O \rightarrow Mn_2O_7+H_2O \rightarrow$	$P_2O_5+NaOH \rightarrow$ $CO_2+KOH \rightarrow$	$Cl_2O_7+MgO \rightarrow SiO_2+CaO \rightarrow$	$ \begin{array}{c} N_2O_3 + ZnO \longrightarrow \\ P_2O_5 + Al_2O_3 \longrightarrow \end{array} $
Б	$SO_3+H_2O \rightarrow CrO_3+H_2O \rightarrow$	$SO_2+Ba(OH)_2 \rightarrow$ $N_2O_5+Sr(OH)_2 \rightarrow$	$As_2O_5+Na_2O \rightarrow CO_2+BaO \rightarrow$	SiO ₂ +BeO→ Cl ₂ O ₇ +PbO→
В	$ \begin{array}{c} N_2O_5 + H_2O \longrightarrow \\ SO_2 + H_2O \longrightarrow \end{array} $	$Mn_2O_7+LiOH \rightarrow P_2O_5+RbOH \rightarrow$	$Cl_2O_3+K_2O \rightarrow SO_2+CuO \rightarrow$	$CO_2+Cr_2O_3 \rightarrow N_2O_5+Al_2O_3 \rightarrow$
Γ	$ \begin{array}{c} N_2O_3 + H_2O \longrightarrow \\ P_2O_5 + H_2O \longrightarrow \end{array} $	$SO_3+Ba(OH)_2 \rightarrow$ $CrO_3+KOH \rightarrow$	N ₂ O ₅ +FeO→ SO ₃ +NiO→	$Mn_2O_7+ZnO \longrightarrow CrO_3+SnO \longrightarrow$

Химические свойства кислот.

Кислоты- сложные вещества, молекулы которых состоят из ионов водорода и кислотных остатков.

Общая формула кислоты: HR, где R- кислотный остаток.

	1	2	3	4	5
	Взаимодействую т с основными оксидами с образованием соли и воды.	Взаимодействую т с амфотерными оксидами с образованием соли и воды.	Взаимодействуют с основаниями с образованием соли и воды.	Взаимодействуют с солями, если образуется газ или осадок.	Взаимодейству ют с металлами, которые в ряду активности стоят до водорода, с образованием соли и H_2 .
	АВ+СД→АД+СВ	АВ+СД→АД+СВ	АВ+СД→АД+СВ	АВ+СД→АД+СВ	AB+C→AC+B
A	$Na_{2}O + HCl \rightarrow$ $CaO + H_{2}SO_{4} \rightarrow$ $K_{2}O + H_{3}PO_{4} \rightarrow$	$ZnO + HNO_3 \rightarrow$ $Al_2O_3 + HCl \rightarrow$ $Fe_2O_3 + H_2SO_4$	$\begin{array}{c} \text{LiOH} + \text{H}_2\text{S} \rightarrow \\ \text{Fe(OH)}_2 + \text{HCl} \rightarrow \\ \text{Cu(OH)}_2 + \text{H}_2\text{SO}_4 \rightarrow \end{array}$	$BaCl2 + H2SO4 \rightarrow Na2CO3 + HNO3 \rightarrow AgNO3 + HJ \rightarrow$	$\begin{array}{c} \text{Li} + \text{HCl} \rightarrow \\ \text{Ca} + \text{HBr} \rightarrow \\ \text{Zn} + \text{H}_2 \text{SO}_4 \rightarrow \end{array}$
Б	$MgO + HBr \rightarrow K_2O + HNO_3 \rightarrow CuO + HCl \rightarrow$	$BeO + HBr \rightarrow$ $Cr_2O_3 + HNO_3 \rightarrow$ $Fe_2O_3 + H_2SO_4 \rightarrow$	$NaOH + H_3PO_4 \rightarrow Mg(OH)_2 + HNO_3 \rightarrow Al(OH)_3 + HCl \rightarrow$	$CaCO_3 + HCl \rightarrow K_2SiO_3 + HNO_3 \rightarrow BaS + HBr \rightarrow$	$Na + H_3PO_4 \rightarrow$ $Ni + H_2SO_4 \rightarrow$ $Fe + HCl \rightarrow$
В	$BaO + HNO_3 \rightarrow$ $Li_2O + H_2CO_3 \rightarrow$ $HgO + HCl \rightarrow$	$Al_2O_3 + H_2SO_4 \rightarrow$ $ZnO + H_3PO_4 \rightarrow$ $PbO + HCl \rightarrow$	$KOH + H2S \rightarrow$ $Cr(OH)3 + HNO3 \rightarrow$ $Ca(OH)2+H3PO4 \rightarrow$	$Pb(NO_3)_2 + HBr \rightarrow$ $ZnCl_2 + H_3PO_4 \rightarrow$ $K_2S + H_2SO_4 \rightarrow$	$Mg + HJ \rightarrow$ $Al + H_2SO_4 \rightarrow$ $Sn + HCl \rightarrow$
Γ	$FeO + H_2SO_4 \rightarrow NiO + HNO_3 \rightarrow Na_2O + H_3PO_4 \rightarrow$	$ZnO + H_2SO_4 \rightarrow$ $BeO + H_3PO_4 \rightarrow$ $Fe_2O_3 + HCl \rightarrow$	Fe(OH) ₃ + HBr \rightarrow LiOH + H ₂ CO ₃ \rightarrow Zn(OH) ₂ +HNO ₃ \rightarrow	$Li_2SO_3 + H_2SO_4 \rightarrow Hg(NO_3)_2 + HJ \rightarrow Cr_2(SO_4)_3 + H_3PO \rightarrow$	$K + H_3PO_4 \rightarrow$ $Ba + HCl \rightarrow$ $Mn + H_2SO_4 \rightarrow$

Химические свойства оснований.

Основания- это сложные вещества, в состав которых входят ионы металлов со степенью окисления +1, +2, (кроме, $Zn(OH)_2$, $Be(OH)_2$, $Pb(OH)_2$, $Sn(OH)_2$) и гидроксид ионы(OH).

Твои Действия:

При написании уравнений реакций с кислотными и амфотерными оксидами их необходимо превратить в кислоту, чтобы определить кислотный осадок образующейся соли.

Например: $CO_2 \rightarrow H_2CO_3$

	1	2	3	4
	Растворимые основания(щелочи) взаимодействуют с кислотными и амфотерными оксидами, образуя соли и воду.	Растворимые основания(щелочи) взаимодействуют с растворами солей, если образуется осадок.	Растворимые и нерастворимые основания взаимодействуют с кислотами, образуется соль и вода. (р.Нейтрализации)	Нерастворимые основания при нагревании разлагаются на оксид и воду.
		АВ+СД→АД+СВ	АВ+СД→АД+СВ	MeOH→MeO+H ₂ O
A	$NaOH + SO_3 \rightarrow KOH + Al_2O_3 \rightarrow Ca(OH)_2 + SiO_2 \rightarrow$	$NaOH + FeCl_2 \rightarrow Ba(OH)_2 + Al(NO_3)_3 \rightarrow$	$Cu(OH)_2 + HCl \rightarrow KOH + H_2SO_4 \rightarrow Al(OH)_3 + HNO_3 \rightarrow$	$Fe(OH)_3 \rightarrow Mg(OH)_2 \rightarrow$
Б	$\begin{array}{c} \text{LiOH} + \text{N}_2\text{O}_5 \rightarrow \\ \text{Ba}(\text{OH})_2 + \text{CO}_2 \rightarrow \\ \text{NaOH} + \text{ZnO} \rightarrow \end{array}$	$Ca(OH)_2 + CrBr_3 \rightarrow KOH + ZnSO_4 \rightarrow$	$NaOH + H3PO4 \rightarrow$ $Fe(OH)3 + H2SO4 \rightarrow$ $Ba(OH)2 + HBr \rightarrow$	$\begin{array}{c} Al(OH)_3 \rightarrow \\ Cu(OH)_2 \rightarrow \end{array}$
В	$Ca(OH)_2 + SO_2 \rightarrow NaOH + Cr_2O_3 \rightarrow LiOH + BeO \rightarrow$	$\begin{array}{c} \text{LiOH} + \text{CuCl}_2 \rightarrow \\ \text{Ba(OH)}_2 + \text{AlJ} \rightarrow \end{array}$	$Zn(OH)_2 + H_2CO_3 \rightarrow Mg(OH)_2 + HC1 \rightarrow Cr(OH)_3 + H_2SO_4 \rightarrow$	$Cr(OH)_3 \rightarrow Ni(OH)_2 \rightarrow$
Γ	$RbOH + P_2O_5 \rightarrow Sr(OH)_2 + N_2O_5 \rightarrow Ba(OH)_2 + ZnO \rightarrow$	$NaOH + NiSO_4 \rightarrow RbOH + Mg(NO_3)_2 \rightarrow$	$NaOH + H2SO4 \rightarrow$ $Fe(OH)2 + HBr \rightarrow$ $Cu(OH)2 + H3PO4 \rightarrow$	$Zn(OH)_2 \rightarrow$ $Fe(OH)_2 \rightarrow$

Химические свойства средних солей.

Соли- сложные вещества, молекулы которых состоят из ионов металла и кислотного остатка.

Общая формула соли- MeR

	1	2	3	4
	Взаимодействуют с металлами, которые в ряду активности стоят до металла в соли, и если образуется растворимая соль. Нельзя применять металлы: Li, Na, K, Ca, Sr, Ba.	Взаимодействуют со щелочами, если в результате реакции образуется осадок.	Растворимые соли взаимодействуют с другими солями, если в результате реакции образуется осадок.	Взаимодействуют с кислотами, если в результате реакции образуется газ или осадок.
	A+BC→B+AC	АВ+СД→АД+СВ	АВ+СД→АД+СВ	АВ+СД→АД+СВ
A	$Zn + Hg(NO_3)_2 \rightarrow$ $Fe + CuCl_2 \rightarrow$ $Al + SnSO_4 \rightarrow$	$NaOH + MgCl2 \rightarrow Ba(OH)2 + Na2SO4 \rightarrow KOH + Al(NO3)3 \rightarrow$	$KCl + AgNO_3 \rightarrow$ $CaJ_2 + Pb(NO_3)_2 \rightarrow$ $Al_2(SO_4)_3 + Na_3PO_4 \rightarrow$	$\begin{aligned} &HCl + Na_2S \rightarrow \\ &H_2SO_4 + BaCl_2 \rightarrow \\ &HNO_3 + K_2SO_3 \rightarrow \end{aligned}$
Б	$Mg + Pb(NO_3)_2 \rightarrow$ $A l + NiCl_2 \rightarrow$ $Zn + CuBr_2 \rightarrow$	$Ca(OH)_2 + K_3PO_4 \rightarrow$ $LiOH + NiCl_2 \rightarrow$ $RbOH + Cr_2(SO_4)_3 \rightarrow$	$ZnCl2 + K2S \rightarrow NiBr2 + Na2CO3 \rightarrow Fe(NO3)3+Na3PO4 \rightarrow$	$\begin{array}{c} H_3PO_4 + Na_2SiO_3 \rightarrow \\ H_2SO_4 + Ca_3(PO_4)_2 \rightarrow \\ HBr + MgCO_3 \rightarrow \end{array}$
В	$Cu + AgNO_3 \rightarrow$ $Zn + FeSO_4 \rightarrow$ $Al + HgCl_2 \rightarrow$	$CsOH + FeCl2 \rightarrow Sr(OH)2 + Zn(NO3)2 \rightarrow Ba(OH)2 + K2CO3 \rightarrow$	$\begin{array}{c} HgCl_2 + Na_2S \rightarrow \\ K_2SiO_3 + Ca(NO_3)_2 \rightarrow \\ CrBr_3 + K_3PO_4 \rightarrow \end{array}$	$HJ + Pb(NO_3)_2 \rightarrow$ $HCl + AgNO_3 \rightarrow$ $HNO_3 + BaCO_3 \rightarrow$
Γ	$Fe + SnSO_4 \rightarrow$ $Pb + Cu(NO_3)_2 \rightarrow$ $Ni + HgCl_2 \rightarrow$	$Ca(OH)_2 + Na_2SiO_3 \rightarrow$ $KOH + CoBr_2 \rightarrow$ $NaOH + CuSO_4 \rightarrow$	$CuSO_4 + K_2S \rightarrow Na_2CO_3 + ZnSO_4 \rightarrow MnJ_2 + Na_2SO_3 \rightarrow$	$\begin{array}{c} H_{3}PO_{4} + CaCO_{3} \rightarrow \\ H_{2}SO_{4} + ZnS \rightarrow \\ HCl + K_{2}SiO_{3} \rightarrow \end{array}$