УПРАВЛЕНИЕ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ЩЕРБИНОВСКИЙ РАЙОН

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №12 ИМЕНИ ГЕРОЯ СОВЕТСКОГО СОЮЗА ИВАНА ГРИГОРЬЕВИЧА ОСТАПЕНКО СЕЛО ГЛАФИРОВКА

Принята на заседании педагогического совета от «30» августа 2024 Протокол №1

Утверждаю Директор МБОУ СОШ№12 Сипец Г.И.Цигельман «30» августа 2024

ДОПОЛНИТЕЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА ЕСТЕСТВЕННО-НАУЧНОЙ НАПРАВЛЕННОСТИ

«Олимпиадные задачи по физике » 10 класс

Уровень программы: базовый

Срок реализации программы: 34 часа

Возрастная категория: от 15 до 17 лет

Состав группы: до 10 человек

Форма обучения: <u>очная</u>

Вид программы: модифицированная

Программа реализуется: на бюджетной основе

Автор-составитель: Голованов Юрий Семенович, педагог дополнительного образования

Рабочая программа дополнительного образования «Решение олимпиадных задач по физике »

10 класс.

Рабочая программа внеурочной деятельности для учащихся 10 класса по физике « Решение олимпиадных задач по физике » составлена на основе:

- 1. «Программы элективных курсов. Физика. 9 11 классы. Профильное обучение», составитель: В. А. Коровин, Дрофа, 2007 г.
- 2. Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10 11 классы», М., ВАКО, 2007 г. (мастерская учителя).
- 3. Для реализации программы использовано учебное пособие: В. А. Орлов, Ю. А. Сауров «Практика решения физических задач. 10 11 классы», «Вентана Граф», 2010 г.

Учебник: Физика:10-11 класс. Углубленный уровень: учебник/ Г.Я. Мякишев, А.З. Синяков. 5-е изд., стереотип.- М.: Дрофа,2017 г

Курс рассчитан на 1 год обучения.

Настоящая программа по внеурочной деятельности рассчитана на преподавание в объеме 34 часов (1 час в неделю). Цель данного курса углубить и систематизировать знания учащихся 10 классов по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Основная направленность программы - подготовить к ЕГЭ с опорой на знания и умения учащихся, приобретенные при изучении физики в 7-9 классах, а также углублению знаний по темам при изучении курса физики в 10 классе.

Цели:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представителей о постановке, классификаций, приемах и методах решения физических задач;
- 4. применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

1. Личностные, метапредметные и предметные результаты освоения физики.

Личностные:

Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;

Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общения, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;

Самостоятельность в приобретении новых знаний и практических умений;

Мотивация образовательной деятельности школьников на основе личностноориентированного подхода;

Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные:

Овладевать навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановка целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

Понимать различия между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладевать универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений; Формировать умения воспринимать, перерабатывать и представлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

Приобретать опыт самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

Развивать монологическую и диалогическую речь, уметь выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на его точку зрения, признавать право другого человека на иное мнение;

Осваивать приемы действий в нестандартных ситуациях, овладевать эвристическими методами решения проблем;

Формировать умения работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные:

Формировать представления о закономерной связи и познания природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; о научном мировоззрении как результате изучения основ строения материи и фундаментальных законов физики;

Формировать первоначальные представления о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усваивать основные идеи механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладевать понятийным аппаратом и символическим языком физики;

Приобретать опыт применения научных методов познания, наблюдения физических явлений, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимать неизбежность погрешности любых измерений;

Осознавать необходимость применения достижений физики и технологий для рационального природопользования;

Овладевать основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;

Развивать умение планировать в повседневной жизни свои действия с применением полученных знаний механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;

Формировать представления о нерациональном использовании природных ресурсов и энергии, о загрязнении окружающей среды как следствии несовершенства машин и механизмов.

Познавательные: в предлагаемом курсе физики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, объяснений физических явлений, поиска решения задач у учеников формируются и развиваются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать разнообразные явления, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации, используя при решении самых разных физических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с физическим содержанием, требующие различного уровня логического мышления.

Регулямивные: в процессе решения задачи ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат.

Коммуникативные: в процессе решения задач осуществляется знакомство с физическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием физических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия,

обосновывают этапы решения учебной задачи, учатся работать в парах, группах, фронтально.

2. Содержание курса.

10 КЛАСС, МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА – 34 часа

1. Правила и примы решения физических задач (2 часа)

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

2. Кинематика (4 часа)

Равномерное движение. Средняя скорость (2 часа). Прямолинейное равномерное движение и его характеристики: перемещение, путь. Графическое представление движения РД. Графический и координатный способы решения задач на РД. Алгоритм решения задач на расчет средней скорости движения.

Одномерное равнопеременное движение (2 часа). Ускорение. Равнопеременное движение: движение при разгоне и торможении. Перемещение при равноускоренном движении. Графическое представление РУД. Графический и координатный способы решения задач на РУД.

3. Динамика и статика (13 часов)

Решение задач на основы динамики (4 часа). Решение задач по алгоритму

на законы Ньютона с различными силами (силы упругости, трения, сопротивления). Координатный метод решения задач по динамике по алгоритму: наклонная плоскость, вес тела, задачи с блоками и на связанные тела.

Движение под действием силы всемирного тяготения (5 часов). Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.

Движение материальной точки по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость. Центростремительное ускорение. Космические скорости. Решение астрономических задач на движение планет и спутников.

Условия равновесия тел (2 часа). Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи на определение характеристик равновесия физических систем и алгоритм их

решения.

Проверочная работа в форме ЕГЭ по теме «Кинематика и динамика» - 2 часа.

4. Законы сохранения (9 часов)

Импульс. Закон сохранения импульса (2 часа). Импульс тела и импульс силы. Решение задач на второй закон Ньютона в импульсной форме. Замкнутые системы. Абсолютно упругое и неупругое столкновения. Алгоритм решение задач на сохранение импульса и реактивное движение.

Работа и энергия в механике. Закон изменения и сохранения механической энергии (4 часа). Энергетический алгоритм решения задач на работу и мощность. Потенциальная и кинетическая энергия. Полная механическая энергия. Алгоритм решения задач на закон сохранения и превращение механической энергии несколькими способами. Решение задач на использование законов сохранения.

Гидростатика (2 часа). Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач динамическим способом на плавание тел.

Тестирование по теме «Законы сохранения. Гидростатика» - 1час.

5. Молекулярная физика (6 часов)

Строение и свойства газов, жидкостей и твёрдых тел (5 часов). Решение задач на основные характеристики молекул на основе знаний по химии и физики. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Графическое решение задач на изопроцессы.

Алгоритм решения задач на определение характеристик влажности воздуха. Решение задач на определение характеристик твёрдого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Промежуточная аттестация: Проверочная работа по теме «Молекулярная физика» - 1 час.

3. Тематическое планирование.

№	Название темы	Количество часов	Контрольные работы
1.	Правила и примы решения	2	
	физических задач		
2.	Кинематика	4	
3.	Динамика и статика	9	1
4.	Законы сохранения	9	
5.	Молекулярная физика	6	1
6.	Основы термодинамики	5	1
7.	Итого:	34 ч	3

Календарно-тематическое планирование.

	Календарі	ное планиј	рование -10) класс	
$N_{\underline{0}}$	Тема занятия	Кол-во	Дата по	Дата	Примечание
		уроков	плану	фактически	
1/1	Что такое физическая	1			
	задача? Классификация				
2 /2	физических задач.	4			
2/2	Общие требования. Этапы	1			
	решения задач. Различные				
	приемы и способы решения: геометрические				
	приемы, алгоритмы,				
	аналогии.				
1/3	Прямолинейное	1			
	равномерное движение.				
	Графическое				
	представление движения и				
	решение задач на РД				
	различными способами				
	(координатный и				
2/4	графический).	1			
2/4	Решение задач на	1			
	определение средней скорости . Графический				
	способ определения				
	средней скорости.				
3/5	Ускорение.	1			
	Равнопеременное				
	движение: движение при				
	разгоне и торможении.				
	Перемещение при				
	равноускоренном				
1/5	движении.	1			
4/6	Графическое	1			
	представление РУД. Графический и				
	координатный методы				
	решения задач на РУД.				
	Графический способ				
	решения задач на среднюю				
	скорость при РУД.				
	Решение задач на законы	1			
1/7	Ньютона по алгоритму.				
	Силы в природе.				
	Координатный метод	1			
2/8	решения задач: движение				
	тел по наклонной				
	плоскости.				

	TC V	1	1	1
2/0	Координатный метод	1		
3/9	решения задач: вес			
	движущегося тела.			
4/10	Координатный метод	1		
	решения задач: движение			
	связанных тел и с блоками.			
	Решение задач на законы	1		
	для сил тяготения:			
5/11	свободное падение;			
	движение тела, брошенного			
	вертикально вверх.			
	Движение тела,	1		
	брошенного под углом к			
	горизонту, и движение			
6/12-	тела, брошенного			
7/13	горизонтально:			
7713	определение дальности,			
	времени полета,			
	максимальной высота			
	подъема.			
	Характеристики движения	1		
	тел по окружности: угловая			
	скорость, циклическая			
8/14	частота,			
	центростремительное			
	ускорение, период и			
	частота обращения.			
	Движение в поле	1		
	гравитации и решение			
9/15	астрономических задач.			
	Космические скорости и их			
	вычисление.			
	Центр тяжести. Условия и	1		
	виды равновесия. Момент			
10/16	силы. Определение центра			
	масс и алгоритм решения			
	задач на его нахождение.			
	Решение задач на	1		
11/17	определение характеристик			
11/1/	равновесия физической			
10	системы по алгоритму.			
12-	Проверочная работа по	2		
13/	кинематике и динамике.			
18-	Анализ работы и разбор			
19	наиболее трудных задач.	1		
	Импульс силы. Решение	1		
1/20	задач на второй закон			
	Ньютона в импульсной			
	форме. Алгоритм решения			
	задач на абсолютно			
	упругий и абсолютно			
	неупругий.			

		T	T		_
	Решение задач на закон	1			
0/01	сохранения импульса и				
	реактивное движение.				
2/21	Алгоритм решения задач на				
	абсолютно упругий и				
	абсолютно неупругий.				
	Работа и мощность. КПД	1			
	механизмов. Динамический				
3/22	и энергетический методы				
3/22	решение задач на				
	определение работы и				
	мощности.				
	Потенциальная и	1			
	кинетическая энергия.	-			
4/23	Решение задач на закон				
4/23					
	сохранения и превращения				
	энергии.	1			
5/24	Решение задач средствами	1			
2,2.	кинематики, динамики, с				
6/25	помощью законов				
0/23	сохранения.				
	Давление в жидкости.	1			
	Закон Паскаля. Сила				
7/06	Архимеда. Вес тела в				
7/26	жидкости. Условия				
	плавания тел.				
	Воздухоплавание.				
	Решение задач на	1			
		1			
8/27	гидростатику с элементами				
	статики динамическим				
	способом.				
	Тестовая работа по теме	1			
9/28	«Законы сохранения.				
	Гидростатика».				
	Решение задач на основные	1			
	характеристики частиц				
4 /5 =	(масса, размер, скорость).				
1/29	Решение задач на основное				
	уравнение МКТ и его				
	следствия.				
	Решение задач на	1			
	1 '	1			
2/20	характеристики состояния				
2/30	газа в изопроцессах.				
	Графические задачи на				
	изопроцессы.				
	Решение задач на свойство	1			
3/31	паров и характеристик				
	влажности воздуха.				
	Решение задач на	1			
4/00	определение характеристик				
4/32	твердого тела: закон Гука в				
	двух формах, графические				
	двух формах, графические			<u> </u>	

	задачи на закон Гука.			
5-6/	Проверочная работа на	2		
	основы МКТ.Анализ теста			
33- 34	по законам сохранения и			
	разбор наиболее трудных			
	задач по основам МКТ.			

Литература для учителя

- 1. Орлов В. Л., Сауров Ю. А. «Методы решения физических задач» («Программы элективных курсов. Физика. 9-11 классы. Профильное обучение»). Составитель В. А. Коровин. Москва: Дрофа, 2005 г.
- 2. Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2007 г. (мастерская учителя).
- 3. Фомина М. В. «Решебник задач по физике», М., Мир, 2008 г.
- 4. Ромашевич А. И. «Физика. Механика. 10 класс. Учимся решать задачи», М., Дрофа, 2007 г.
- 5. Орлов В. А., Никифоров Г. Г. «Единый государственный экзамен. Контрольные измерительные материалы. Физика», М., Просвещение, 2004 г.
- 6. Орлов В. А., Никифоров Г. Г. «Единый государственный экзамен: Методические рекомендации. Физика», М., Просвещение, 2004 г.
- 7. Тульчинский М. Е. «Качественные задачи по физике», М., Просвещение, 1972 г.

Литература для учащихся

- 1. Трофимова Т. И. «Физика для школьников и абитуриентов. Теория. Решение задач. Лексикон», М., Образование, 2003 г.
- 2. Ромашевич А. И. «Физика. Механика. Учимся решать задачи. 10 класс», М., Дрофа, 2007 г.
- 3. Минько Н. В. «Физика: полный курс. 7-11 классы. Мультимедийный репетитор (+CD)», СПб, $2009 \, \Gamma$.
- 4. Балаш В. А. «Задачи по физике и методы их решения», М., Просвещение, 1983 г.
- 5. Гольдфарб И. И. «Сборник вопросов и задач по физике», М., Высшая школа, 1973 г.
- 6. Кабардин О. Ф., Орлов В. А., Зильберман А. Р. «Задачи по физике», М, Дрофа, 2002 г.
- 7. Козел С. М., Коровин В. А., Орлов В. А. и др. «Физика. 10—11 кл.: Сборник задач с ответами и решениями», М., Мнемозина, $2004 \, \Gamma$.
- 8. Малинин А. Н. «Сборник вопросов и задач по физике. 10—11 классы», М., Просвещение, 2002 г.

- 9. Меледин Г. В. «Физика в задачах: экзаменационные задачи с решениями», М., Наука, 1985 г.
- 10. Черноуцан А. И. «Физика. Задачи с ответами и решениями», М., Высшая школа, 2003 г.
- 11. Рымкевич А. Н. «Физика. Задачник. 10-11 классы» (пособие для общеобразовательных учебных заведений), М., Дрофа, 2003 г.
- 12. Степанова Γ . Н. «Сборник задач по физике: для 10-11 классов общеобразовательных учреждений», М., просвещение, 2000 Γ .
- 13. ЕГЭ. Физика: типовые экзаменационные варианты : 30 вариантов / под ред. М. Ю. Демидовой. М.: Издательство «Национальное образование», 2019. 384 с.