Методические рекомендации для образовательных организаций Краснодарского края о преподавании информатики в 2020—2021 учебном году

1. Нормативно-правовые документы

Преподавание **информатики** в 2020-2021 учебном году ведётся в соответствии со следующими нормативными и распорядительными документами:

- 1. Закон «Об образовании в Российской Федерации» от 29.12.2012 № 273-ФЗ (с изменениями и дополнениями).
- 2. Федеральный закон «Об информации, информационных технологиях и о защите информации» от 27.07.2006 № 149-ФЗ (последняя редакция).
- 3. Федеральный закон «О защите детей от информации, причиняющей вред их здоровью и развитию» от 29.12.2010 № 436-ФЗ (последняя редакция).
- 4. Закон Краснодарского края от 16.07.2013 № 2770-КЗ «Об образовании в Краснодарском крае» (с изменениями и дополнениями).
- 5. Приказ Минобразования РФ от 05.03.2004 № 1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» (с изменениями и дополнениями).
- 6. Приказ Минобразования РФ от 09.03.2004 № 1312 «Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования» (с изменениями и дополнениями).
- 7. Приказ Министерства образования и науки РФ от 06.10.2009 № 373 «Об утверждении и введении в действие федерального государственного образовательного стандарта начального общего образования» (с изменениями и дополнениями).
- 8. Приказ Министерства образования и науки РФ от 17.12.2010 № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» (с изменениями и дополнениями).
- 9. Приказ Министерства образования и науки РФ от 17.05.2012 № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (с изменениями и дополнениями).
- 10. Приказ Министерства образования и науки Российской Федерации 30.08.2013 $N_{\underline{0}}$ 1015 «Об утверждении Порядка организации образовательной деятельности осуществления ПО основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования» (с изменениями и дополнениями).
- 11. Приказ Министерства просвещения РФ от 03.09.2019 № 465 «Об утверждении перечня средств обучения и воспитания, необходимых для

реализации образовательных программ начального общего, основного общего и среднего общего образования, соответствующих современным условиям обучения, необходимого при оснащении общеобразовательных организаций в целях реализации мероприятий по содействию созданию в субъектах РФ (исходя из прогнозируемой потребности) новых мест в образовательных организациях, критериев его формирования и требований к функциональному оснащению, а также норматива стоимости оснащения одного места обучающегося указанными средствами обучения и воспитания».

- 12. Приказ Министерства просвещения РФ от 28.12.2018 № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» (с изменениями и дополнениями).
- 13. Приказ Министерства образования и науки РФ от 09.06.2016 № 699 «Об утверждении перечня организаций, осуществляющих выпуск учебных пособий, которые допускаются к допускаются к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» (с изменениями и дополнениями).
- 14. Постановление Федеральной службы по надзору в свете защиты прав потребителей и благополучия человека, Главного государственного санитарного врача РФ от 29.12.2010 № 189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» (с изменениями и дополнениями).
- 15. Приказ министерства образования и науки Краснодарского края от 05.11.2015 № 5758 «Об утверждении порядка организации индивидуального отбора при приеме либо переводе в государственные и муниципальные образовательные организации для получения основного общего и среднего общего образования с углубленным изучением отдельных учебных предметов или для профильного обучения в Краснодарском крае» (с изменениями и дополнениями).

Концепции:

- 1. Распоряжение Правительства РФ от 24.12.2013 № 2506-р «О Концепции развития математического образования в Российской Федерации».
- 2. Распоряжение Правительства Российской Федерации «Об утверждении Концепции информационной безопасности детей» от 02.12.2015 № 2471-р.

На основании следующих инструктивных и методических материалов:

1. Примерная основная образовательная программы начального общего образования. Одобрена решением федерального учебнометодического объединения по общему образованию, протокол от 28.10.2015

- № 3/15 // Реестр Примерных основных общеобразовательных программ Министерства просвещения Российской Федерации [Электронный ресурс]. URL: http://fgosreestr.ru/.
- 2. Примерная основная образовательная программы основного общего образования. Одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 08.04.2015 № 1/15 (в редакции протокола от 04.02.2020 № 1/20) // Реестр Примерных основных общеобразовательных программ Министерства просвещения Российской Федерации [Электронный ресурс]. URL: http://fgosreestr.ru/.
- 3. Примерная основная образовательная программа среднего общего образования. Одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 28.06.2016 № 2/16-3 // Реестр Примерных основных общеобразовательных программ Министерства просвещения Российской Федерации [Электронный ресурс]. URL: http://fgosreestr.ru/.
- 4. Письмо министерства образования и науки Краснодарского края от 16.03.2015 № 47-3353/15-14 «О структуре основных образовательных программ общеобразовательных организаций».
- 4. Письмо министерства образования и науки Краснодарского края от 24.07.2020 № 47-01-13-15182/20 «О формировании учебных планов образовательных организаций Краснодарского края на 2020-2021 учебный год».
- 5. Письмо министерства образования, науки и молодёжной политики Краснодарского края от 07.07.2016 № 47-11727/16-11 «О рекомендациях по составлению рабочих программ учебных предметов, курсов и календарнотематического планирования».
- 6. Письмо министерства образования, науки и молодёжной политики Краснодарского края от 18.03.2016 № 47-4067/16-14 «Об организации сетевого взаимодействия».
- 7. Письмо министерства образования, науки и молодежной политики Краснодарского края от 11.11.2019 № 47-01-13-24761/19 «Об организации профильного обучения и подготовке к проведению ГИА в 2020 году».

Для методического обеспечения реализации внеурочной деятельности в рамках Федерального государственного образовательного стандарта основного общего образования рекомендуем использовать следующие пособия:

- 1. Внеурочная деятельность школьников. Методический конструктор/ Д.В. Григорьев, П.В. Степанов. – М.: Просвещение, 2010 -233с.
- 2. Письмо министерства образования, науки и молодежной политики Краснодарского края от 14.07.2017 № 47-13507/17-11 «Об организации внеурочной деятельности в образовательных организациях Краснодарского края».
- 3. Распоряжение Правительства Российской Федерации от 04.09.2014 № 1726-р «Об утверждении Концепции развития дополнительного

образования детей» (в части поддержки внеурочной деятельности и блока дополнительного образования).

4. Письмо Минобрнауки России от 18.08.2017 № 09-1672 «О направлении Методических рекомендаций по уточнению понятий и содержания внеурочной деятельности в рамках реализации основных общеобразовательных программ, в том числе в части проектной деятельности».

2. Особенности преподавания учебного предмета «Информатика» в 2020-2021 учебном году

В условиях современного образовательного процесса, осуществляемого с применением информационной образовательной среды, цифровые навыки в той или иной степени формируются в процессе учебной деятельности с использованием информационных и коммуникационных технологий при изучении всех школьных предметов. При этом целенаправленное и систематическое освоение предметных научных знаний (теоретических основ) и способов деятельности, формирование мировоззрения, соответствующего современному уровню развития технологий, происходит именно при изучении предмета «Информатика», являющегося основой современного школьного ИТ-образования.

Прикладное значение информатики в том, что она предлагает набор инструментов и методов обработки данных и анализа информации, моделирования и прототипирования, которые используются в рамках изучения других учебных предметов. Так, например, роль информатики в учебном процессе заключается в формировании навыков использования информационных технологий для сбора и анализа исходных данных, представленных в различных форматах: от абстрактных математических выражений и значений физических величин до слабо формализованных данных. Возможности визуализации моделей, организации имитационных экспериментов, автоматизации трудоемких рутинных операций определяют значение средств информатики при изучении различных предметных областей.

ИТ-образование в образовательных организациях реализуется через преподавание учебного предмета «Информатика», внеурочную деятельность и программы дополнительного образования. Ведущими компонентами учебного предмета «Информатика» являются предметные научные знания, способы деятельности и мировоззрение, соответствующее современному уровню развития цифровых технологий.

Основные **задачи** учебного предмета «Информатика» — сформировать у обучающихся:

- понимание принципов устройства компонентов цифрового окружения;
- навыки грамотной постановки задач, возникающих в практической деятельности, для их решения с помощью информационных технологий; навыки формализованного описания поставленных задач;

- навыки квалифицированного использования основных типов прикладных программ (приложений) общего назначения и информационных систем для решения с их помощью практических задач, понимание основных принципов, лежащих в основе работы этих систем;
- базовые знания о математическом моделировании и умение строить простые математические модели поставленных задач;
- знание основных алгоритмических структур и умение применять эти знания для построения алгоритмов решения задач по их математическим моделям;
- навыки составления простых программ по построенному алгоритму на одном из языков программирования высокого уровня;
- умение грамотно интерпретировать результаты решения практических задач с помощью информационных технологий и применять эти результаты в практической деятельности.

В 2020-2021 учебном году продолжается работа по реализации Федерального государственного образовательного стандарта основного общего образования (далее - ФГОС ООО) и переход на Федеральный государственный образовательный стандарт среднего общего образования (далее ФГОС СОО) и реализация программ Федерального компонента государственного образовательного стандарта (далее - ФКГОС).

Учебный предмет «Информатика» входит в состав предметной области «Математика и информатика». В соответствии с ФГОС общего образования «Информатика» не является обязательным предметом для изучения на уровне начального общего образования и в 5-6 классах. Информатика в 7–9 классах является обязательным предметом учебного плана, на преподавание которого отводится не менее 1 ч в неделю. В рамках этого курса осуществляется изучение информатики как научной дисциплины, имеющей огромное значение в формировании мировоззрения современного человека.

В процессе обучения информатике в основной школе требования к предметным результатам должны отражать:

- 1) сформированность информационной и алгоритмической культуры; представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- 2) сформированность представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- 3) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;

- 4) сформированность умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- 5) сформированность навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.
- В соответствии с п. 18.3.1 Федерального государственного образовательного стандарта среднего общего образования (далее ФГОС СОО) в учебном плане учебный предмет «Информатика» входит в состав предметной области «Математика и информатика».

Обучение предмету «Информатика» проводится на базовом или углубленном уровне. Предметные результаты освоения основной образовательной программы устанавливается также на базовом н углубленном уровнях.

Требования к предметным результатам освоения базового курса информатики должны содержать:

- 1) сформированность представлений о роли информации и связанных с ней процессов в окружающем мире;
- 2) владение навыками алгоритмического мышления и понимание необходимости формального описания алгоритмов;
- 3) владение умением понимать программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня; знанием основных конструкций программирования; умением анализировать алгоритмы с использованием таблиц;
- 4) владение стандартными приемами написания на алгоритмическом языке программы для решения стандартной задачи с использованием основных конструкций программирования и отладки таких программ; использование готовых прикладных компьютерных программ по выбранной специализации;
- 5) сформированность представлений о компьютерно-математических моделях в необходимости анализа соответствия модели и моделируемого объекта (процесса); о способах хранения н простейшей обработке данных; понятно о базах данных и средствах доступа к ним, умений работать с ними;
- 6) владение компьютерными средствами представления и анализа данных:
- 7) сформированность базовых навыков и умений по соблюдению требований техники безопасности, гигиены н ресурсосбережения при работе со средствами информатизации; понимания основ правовых аспектов использования компьютерных программ и работы в Интернете.

Требования к предметным результатам освоения углубленного курса информатики должны включать:

1) владение системой базовых знаний, отражающих вклад информатики в формирование современной научной картины мира;

- 2) овладение понятием сложности алгоритма, знание основных алгоритмов обработки числовой и текстовой информации, алгоритмов поиска и сортировки;
- 3) владение универсальным языком программирования высокого уровня (по выбору); представление о базовых типах данных и структурах данных; умение использовать основные управляющие конструкции;
- 4) владение навыками н опытом разработки программ в выбранной среде программирования, включая тестирование и отладку программ; владение элементарными навыками формализации прикладной задачи и документирования программ;
- 5) сформированность представлений о важнейших видах дискретных объектов н об их простейших свойствах, алгоритмах анализа этих объектов, о кодировании и декодировании данных и причинах искажения данных при передаче;
- 6) систематизация знаний, относящихся к математическим объектам информатики; умение строить математические объекты информатики, в том числе логические формулы;
- 7) сформированность представлений об устройстве современных компьютеров, о тенденциях развития компьютерных технологий, о понятии «операционная система» и основных функциях операционных систем, об общих принципах разработки н функционирования интернет-приложений;
- 8) сформированность представлений о компьютерных сетях и их роли в современном мире; знание базовых принципов организации и функционирования компьютерных семей, норм информационной этики и права, принципов обеспечения информационной безопасности, способов и средств обеспечения надежного функционирования средств ИКТ;
- 9) владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними;
- 10) владение опытом построения и использования компьютерноматематических моделей, проведения экспериментов и статистической обработки данных с помощью компьютера, интерпретации результатов, получаемых в ходе моделирования реальных процессов; умение оценивать числовые параметры моделируемых объектов и процессов, пользоваться базами данных и справочными системами;
- 11) сформированность умения работать с библиотеками программ; наличие опыта использование компьютерных средств представления и анализа данных.

ФГОС СОО не определяет содержание и последовательность изучения различных разделов информатики в каждом классе, а дает общее стратегическое направление, следуя которому, формируются компетенции обучающихся на базовом и углубленном уровнях. Выбор учебников и учебных пособий относится к компетенции образовательной организации в

соответствии со статьей 18 части 4 и пункта 9, статье 28 части 3 Федерального закона.

Считаем целесообразным рекомендовать следующие процедуры, направленные на эффективность преподавания предмета в 10 классе, описанные к.т.н. Н.П. Макаровой, автором УМК по предмету «Информатика»:

- 1) Проанализировать материал, изученный в 9 классе (если в классе есть обучающиеся, пришедшие из других классов, то эта процедура усложняется), и сопоставить его с программой 10 класса.
- 2) Определить основные учебники (методическую литературу) и разработать на их основе рабочую программу изучения предмета в 10 классе.
- 3) Определить темы межпредметных связей и сформировать перечень практических задач, упражнений, уроков с применением материала из других предметов.
- 4) Изложить на первом уроке содержание всего курса с четким представлением конечной цели занятий в части теории и практики, например, представить решение некоторой сложной задачи, которую обучающиеся должны научиться решать по окончания 10 класса. А также обозначить место изучаемого материала во всем курсе информатики, до 11 класса включительно.
- 5) При проведении контрольных и самостоятельных работ использовать как можно больше вариантов, в идеале по количеству учеников в классе. Это позволяет максимально обеспечить самостоятельность выполнения заданий, повысить объективность оценки.
- 6) Важнейшим условием успеха при изучении информатики является домашнее задание, которое должно включать в себя как теоретические вопросы, требующие заучивания наизусть, так и практические примеры, разного уровня сложности. При решении сложной задачи положительным может считаться не только полное решение задачи, но и правильно выполненный отдельный этап решения.

При изучении курса «Информатика» в соответствии с требованиями ФГОС СОО формируются следующие метапредметные результаты:

1) Умение самостоятельно определять цели и составлять планы; самостоятельно осуществлять, контролировать и корректировать учебную и внеучебную (включая внешкольную) деятельность; использовать все возможные ресурсы для достижения целей; выбирать успешные стратегии в различных ситуациях.

Данная компетенция формируется при изучении информатики в нескольких аспектах, таких как

- учебно-проектная деятельность планирование целей и процесса выполнения проекта и самоконтроль за результатами работы;
- изучение основ системологии: способствует формированию системного подхода к анализу объекта деятельности;

- алгоритмическая линия курса: алгоритм можно назвать планом достижения цели исходя из ограниченных ресурсов (исходных данных) и ограниченных возможностей исполнителя (системы команд исполнителя).
- 2) Умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты.

Формированию данной компетенции способствуют следующие аспекты методической системы курса:

- формулировка многих вопросов и заданий к теоретическим разделам курса стимулирует к дискуссионной форме обсуждения и принятия согласованных решений;
- ряд проектных заданий предусматривает коллективное выполнение, требующее от учеников умения взаимодействовать; защита работы предполагает коллективное обсуждение ее результатов.
- 3) Готовность и способность к самостоятельной информационнопознавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников.

Информационные технологии являются одной из самых динамичных предметных областей. Поэтому успешная учебная и производственная деятельность в этой области невозможна без способностей к самообучению, к активной познавательной деятельности.

Интернет является важнейшим современным источником информации, ресурсы которого постоянно расширяются. В процессе изучения информатики ученики осваивают эффективные методы получения информации через Интернет, ее отбора и систематизации.

4) Владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Формированию этой компетенции способствует методика индивидуального дифференцированного подхода при распределении практических заданий, которые разделены на три уровня сложности: репродуктивный, продуктивный и творческий. Такое разделение станет для некоторых учеников стимулирующим фактором к переоценке и повышению уровня своих знаний и умений. Дифференциация происходит и при распределении между учениками проектных заданий.

В работе с одарёнными школьниками, в рамках преподавания информатики, необходимо помнить о двух традиционных формах: классной (индивидуальная форма) и внеклассной (элективные курсы, факультативы, конкурсы, В т.ч. межпредметные, интеллектуальные марафоны). Для их организации учителям информатики рекомендуем http://olimpiada.ru; использовать ресурсы сайтов: https://olimpiada.ru/activity/73/tasks; https://mega-talant.com/olimpiadainformatika: https://konkurskit.org/; https://www.infoznaika.ru/.

рекомендует проведение предметных летних и зимних площадок, лагерей на базе школ муниципалитетов; также возможна организация районного постоянно действующего семинара по работе с одаренными школьниками как старших, так и младших классов.

2.1. Освоение обучающимися федерального компонента государственных образовательных стандартов

В соответствии с письмом министерства образования, науки и молодёжной политики Краснодарского края от 24.07.2020 № 47-01-13-15182/20_«О формировании учебных планов образовательных организаций Краснодарского края на 2020-2021 учебный год» и федеральным БУП количество часов, предусмотренное для изучения информатики в 10-11 классах, следующее:

Наименование уровня	Средняя школа (часы в неделю)	
	-	11 класс
Базовый уровень	-	2
Профильный уровень	-	4

При выборе профиля рекомендуем руководствоваться приказом министерства образования и науки Краснодарского края от 05.11.2015 № 5758 «Об утверждении организации индивидуального отбора при приеме либо переводе в государственные и муниципальные образовательные организации для получения основного общего образования с углубленным изучением отдельных предметов или для профильного обучения в Краснодарском (c изменениями дополнениями), письмом крае» И министерства образования, науки и молодёжной политики Краснодарского 47-4067/16-14 18.03.2016 Ŋo «Об организации взаимодействия», письмом министерства образования, науки и молодежной политики Краснодарского края от 11.11.2019 № 47-01-13-24761/19 «Об организации профильного обучения и подготовке к проведению ГИА в 2020 году».

При разработке рабочих программ и составлении календарнотематического планирования преподавания (название предмета) в 11 классах необходимо руководствоваться письмом министерства образования, науки и молодёжной политики Краснодарского края от 07.07.2016 № 47-11727/16-11 «О рекомендациях по составлению рабочих программ учебных предметов, курсов и календарно-тематического планирования». (Указать структуру рабочей программы по предмету).

Рабочая программа по информатике, реализуемая в рамках ФГОС, разрабатывается образовательной организацией на основе требований к результатам освоения основной образовательной программы по ФГОС соответствующего уровня, с учетом примерной программы по информатике,

входящей в государственный реестр (http:/www.fgosreestr.ru).

Примерные программы не могут использоваться в качестве рабочих, поскольку не задают последовательности изучения материала и распределения его по классам или годам обучения, в них не отражаются особенности образовательной программы школы, контингента обучающихся, методической системы и индивидуального стиля учителя.

Педагоги имеют право на разработку и применение авторских программ и методов обучения и воспитания в пределах реализуемой учебного образовательной программы, отдельного предмета, дисциплины (модуля) (пункт 3 части 3 статьи 47 Федерального закона № 273-Авторские учебных предметов, разработанные программы соответствии с требованиями ФГОС и с учетом примерной основной образовательной программы соответствующего уровня образования, также могут рассматриваться как рабочие программы учебных предметов. Решение о возможности их использования в структуре основной образовательной образовательной организации принимается образовательной организации (письмо Минобрнауки России от 28.10.2015 № 08-1786 «О рабочих программах учебных предметов»).

В соответствии с ФГОС в структуре рабочей программы по предмету обязательно должны быть представлены:

планируемые результаты освоения учебного предмета;

содержание учебного предмета;

тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.

Программы отдельных учебных предметов (курсов) разрабатываются:

- на основе требований к результатам освоения ООП СОО;
- на основе программы формирования универсальных учебных действий (УУД);
- с учетом основных направлений других программ, включенных в структуру ООП.
- В рабочей программе учебных предметов (курсов) могут фиксироваться элементы общей стратегии развития УУД, организации и механизма реализации задач программы, могут быть раскрыты направления и ожидаемые результаты работы развития УУД в конкретном предмете, описаны специальные требования к условиям реализации программы развития УУД.

2.2. Освоение обучающимися ФГОС ООО

Основная задача изучения информатики в 5-6-х классах – добиться формирования базовых компонентов цифровой грамотности и основ вычислительного мышления обучающихся. Освоение алгоритмического целесообразно проводить на примерах задач мышления управления числе использованием исполнителями, TOM c сред программирования. Работу с виртуальными (экранными) исполнителями

рекомендуется подкреплять работой с роботами, действующими в реальном физическом мире. Это позволяет перейти к разработке алгоритмов взаимодействия исполнителя с окружающей средой, управлению с обратной связью.

В 7-9-х классах обучающиеся знакомятся с теоретическими основами математической информатики (системами счисления, логикой, моделированием), учатся использовать современные также информационные технологии в практической деятельности. В этот период начинается изучение текстового программирования на одном из языков высокого уровня. Особое внимание должно быть уделено реализации в языке программирования основных алгоритмических конструкций (следование, ветвление, цикл), методам хранения данных в памяти (переменные, массивы), использованию подпрограмм для структурирования программ.

С учетом общих требований ФГОС ООО изучение предметной области «Математика и информатика» должно обеспечить:

- осознание значения математики и информатики в повседневной жизни человека;
- формирование представлений о социальных, культурных и исторических факторах становления математической науки;
- понимание роли информационных процессов в современном мире;
- формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

результате изучения предметной области информатика» обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.

Предметные результаты изучения предметной области «Математика и информатика» должны отражать: Информатика:

- 1) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;
- 2) овладение символьным языком алгебры, приемами выполнения тождественных преобразований уравнений, выражений, решения уравнений, неравенств И неравенств; умения систем моделировать реальные ситуации на языке алгебры, исследовать использованием аппарата алгебры, построенные модели c интерпретировать полученный результат;
- 3) овладение простейшими способами представления и анализа статистических данных; формирование представлений о

статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений;

- 4) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах;
- 5) формирование информационной и алгоритмической культуры;
- б) формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования
- 7) компьютерных устройств;
- 8) формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- 9) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с
- 10) одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- 11) формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- 12) формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

2.3 Освоение обучающимися ФГОС СОО

Для педагогов образовательных организаций, которые приступают к введению ФГОС СОО необходимо выстраивать деятельность обучающихся, опираясь, в том числе и на действующий федеральный перечень учебников.

образовательных организациях, являющихся ΦΓΟС введению COO, В соответствии «Примерной основной программой образовательной образовательного учреждения» (http:fgosreestr.ru) и письмом министерства образования, науки и молодёжной политики Краснодарского края от 24.07.2020 № 47-01-13-15182/20 «О формировании учебных планов образовательных организаций Краснодарского края на 2020-2021 учебный год» количество часов, предусмотренное для изучения информатики в 10-11 классах, следующее:

Наименование уровня	Предмет	Средняя школа (часы в неделю)	
		10 класс	11класс
Базовый уровень		1	1
Углубленный уровень		4	4

Основной принцип в преподавании учебного предмета «Информатика» на уровне среднего общего образования заключается в изучении информатики как фундаментальной отрасли научного знания и нацелен на формирование научного мировоззрения школьников. На этом этапе раскрываются и обосновываются закономерности предметной области, которые были определены в рамках изучения предмета на уровне основного общего образования.

Освоение учебного предмета «Информатика» на уровне среднего образования должно быть согласовано с профилем, реализуемым в рамках основной образовательной программы, и способствовать решению задачи раннего профессионального самоопределения. Формирование учебного плана профиля предусматривает выбор одного из двух уровней изучения информатики: базовый (1 час/нед.), углубленный (4 часа/нед.). За счет вариативной части учебного плана возможно использование дополнительных часов для изучения курсов по выбору определенной тематики, учитывающей индивидуальные интересы обучающихся.

Углубленный уровень изучения информатики наряду с решением задачи формирования системного понимания фундаментальных принципов информатики реализует предпрофессиональное образование, включая профессиональные пробы одном направлениях В или нескольких практической деятельности. Такие направления должны быть определены в соответствии с потребностями в подготовке кадров для национальной экономики, определенных в государственных программах учетом региональной специфики рынка труда.

Национальная программа «Цифровая экономика Российской Федерации» определяет 9 сквозных цифровых технологий:

- большие данные;
- новые производственные технологии;
- промышленный интернет;
- искусственный интеллект;
- технологии беспроводной связи;
- компоненты робототехники и сенсорика;
- квантовые технологии;
- системы распределенного реестра;

технологии виртуальной и дополненной реальностей.
В углубленном курсе информатики сквозные цифровые технологии

могут быть раскрыты через следующие элементы содержания:

№ п/п	Сквозные циф- ровые техноло- гии	Элементы содержания в курсе информатики углубленного уровня		
1	Большие данные	Вопросы кодирования и обработки структурированных и неструктурированных данных; структуры данных и алгоритмы их обработки; основные методы анализа и обработки больших данных, связь с направлениями искусственного интеллекта.		
2	Нейротехнологии и искусственный интеллект	Задачи искусственного интеллекта, интеллектуальные системы; онтологии и их классификации; экспертные системы; самообучающиеся технические системы; интеллектуальные алгоритмы и их реализация.		
3	Системы распределенного реестра			
4	Новые производ- ственные техно- логии	Могут рассматриваться как компоненты техносферы в интеграции. Цифровое проектирование и моделирование: САD системы и 3D моделирование; сквозные PLM системы. Аддитивные и гибридные технологии: 3D-печать.		
5	Промышленный интернет	Концепция интернета вещей промышленного назначения, возможности в условиях цифровой экономики (взаимодействие сетевых комплексов без участия человека, интеллектуальные алгоритмы управления).		
6	Компоненты ро- бототехники и сенсорика	Интегрируется с новыми производственными технологиями (автоматизированные производственные комплексы), использующими облачные технологии и интеллектуальные алгоритмы.		
7	Технологии бес- проводной связи	Сети и сетевые технологии. Интегрируется со всеми направлениями информационных технологий.		
8	Технологии вир-	Фотореалистичные изображения, визуализация.		

№ п/п	Сквозные циф- ровые техноло- гии	Элементы содержания в курсе информатики углубленного уровня	
	туальной и до- полненной реаль- ностей	Реализации и сферы применения технологий. Моделирование процессов и сложных явлений, аналогонитационное моделирование.	

Конкретные направления предпрофессиональной подготовки, реализуемые наряду с углубленным курсом информатики за счет вариативной части учебного плана могут быть определены как в пределах отдельных сквозных цифровых технологий, так и за счет интеграции компонентов различных технологий. Примерный перечень направлений включает в себя:

- высокопроизводительные вычисления;
- основы сетевых технологий;
- основы информационной безопасности;
- прикладное программирование;
- управление и анализ данных;
- основы систем искусственного интеллекта.

При разработке рабочей программы учебного предмета «Информатика» необходимо использовать рекомендации, указанные в письме министерства образования, науки и молодёжной политики Краснодарского края от 07.07.2016 № 47-11727/16-11 «О рекомендациях по составлению рабочих программ учебных предметов, курсов и календарнотематического планирования».

Программы, обеспечивающие реализацию ФГОС СОО, выпускаются издательствами:

- «Просвещение» www.prosv.ru
- «Дрофа, корпорация «Российский учебник» https://rosuchebnik.ru
- «Вентана-Граф, корпорация «Российский учебник» www.vgf.ru

В рамках реализации практической части рекомендуется использовать примерную программу 10-11 класс и авторскую программу, соответствующую выбранному УМК. Обратите внимание на рекомендации по выполнению практической части УМК.

2.4 Организация оценивания планируемых результатов, обучающихся по информатике

Важнейшей составной частью ФГОС являются требования к результатам освоения основных образовательных программ (личностным, метапредметным, предметным) и системе оценивания. Требования к результатам образования делят на два типа: требования к результатам, не подлежащим формализованному итоговому контролю и аттестации, и требования к результатам, подлежащим проверке и аттестации.

Планируемые результаты освоения учебных программ приводятся в блоках «Выпускник научится» и «Выпускник получит возможность научиться» К каждому разделу учебной программы. Достижение планируемых результатов, отнесенных к блоку «Выпускник научится», выносятся на итоговую оценку, которая может осуществляться как в ходе обучения (с помощью накопленной оценки или портфолио достижений), так и в конце обучения, в том числе в форме государственной итоговой аттестации. Успешное выполнение обучающимися заданий базового уровня служит единственным основанием возможности перехода на следующую ступень обучения.

В блоках «Выпускник получит возможность научиться» приводятся планируемые результаты, характеризующие систему учебных действий в знаний, умений, навыков, расширяющих и углубляющих опорного учебного материала выступающих понимание или дальнейшего изучения данного пропедевтика ДЛЯ предмета. достижения этих целей ведется преимущественно в ходе процедур, допускающих предоставление И использование исключительно неперсонифицированной информации. Невыполнение обучающихся заданий, с помощью которых ведется оценка достижения планируемых результатов данного блока, не является препятствием для перехода на следующую ступень обучения.

Полнота итоговой оценки планируемых результатов обеспечивается двумя процедурами:

- 1) формированием накопленной оценки, складывающейся из текущего и промежуточного контроля;
- 2) демонстрацией интегрального результата изучения курса в ходе выполнения итоговой работы. Это позволяет также оценить динамику образовательных достижений обучающихся.

Оценка достижения планируемых результатов в рамках накопительной системы может осуществляться по результатам выполнения заданий на уроках, по результатам выполнения самостоятельных творческих работ и домашних заданий. задания для итоговой оценки должны включать:

- 1) текст задания;
- 2) описание правильно выполненного задания;
- 3) критерии достижения планируемого результата на базовом и повышенном уровне достижения.

Итоговая работа осуществляется в конце изучения курса информатики выпускниками основной школы и может проводится как в письменной, так и устной форме (в виде письменной итоговой работы), по экзаменнационным билетам, в форме защиты индивидуального проекта, ОГЭ, ЕГЭ и т.д.).

Федеральный государственный стандарт общего образования предполагает комплексный подход к оценке результатов образования (оценка личностных, метапредметных и предметных результатов основного общего образования). Необходимо учитывать, что оценка успешности освоения содержания всех учебных предметов проводится на основе системно-

деятельностного подхода (то есть проверяется способность обучающихся к выполнению учебно-практических и учебно-познавательных задач).

Необходимо реализовывать уровневый подход к определению планируемых результатов, инструментария и представлению данных об итогах обучения, определять тенденции развития системы образования.

3. Обзор действующих учебно-методических комплектов, обеспечивающих преподавание учебного предмета «Информатика»

В соответствии со статьей 8, части 1, пункта 10 Федерального закона от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации», к полномочию органов государственной власти субъектов Российской Федерации в сфере образования относится организация обеспечения муниципальных образовательных организаций и образовательных организаций субъектов Российской Федерации учебниками в соответствии с федеральным перечнем учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, и учебными пособиями, допущенными к использованию при реализации указанных образовательных программ.

При этом выбор учебников и учебных пособий относится к компетенции образовательного учреждения в соответствии с Федеральным законом «Об образовании в Российской Федерации»:

статья 18 ФЗ «Об образовании в Российской Федерации» №273-ФЗ: «4. Организации, осуществляющие образовательную деятельность... для использования при реализации указанных образовательных программ выбирают:

- 1) учебники из числа входящих в федеральный перечень учебников...;
- 2) учебные пособия, выпущенные организациями, входящими в перечень организаций, осуществляющих выпуск учебных пособий...»;

статья 35 ФЗ «Об образовании в Российской Федерации» №273-ФЗ: «2. Обеспечение учебниками и учебными пособиями... осуществляется за счет бюджетных ассигнований федерального бюджета, бюджетов субъектов Российской Федерации и местных бюджетов».

В связи со значительными изменениями в Федеральном перечне учебников, выбор учебников осуществляется с учетом информации об исключении и включении учебников в Федеральный перечень учебников, утвержденный приказом Министерства просвещения РФ от 28.12.2018 № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» (с изменениями и дополнениями: Приказ Минпросвещения России №632 от 22.11.2019 г., Приказ Минпросвещения России от 18.05.2020 №249).

С целью сохранения преемственности в обучении школьников, при организации работы по выбору учебников, необходимо тщательно провести

анализ взаимозаменяемости учебно-методических линий для предотвращения возможных проблем при реализации стандарта, продумать возможность по бесконфликтному замещению исключенных предметных линий альтернативными учебниками.

Основное общее образование				
Номер	Автор	Наименование	Класс	Издательство
1.2.4.4	Информатика (учебный предмет)			
1.2.4.4.1.1	Босова Л.Л.,	Информатика	7	ООО «БИНОМ.
1.2.4.4.1.2	Босова А.Ю.		8	Лаборатория
1.2.4.4.1.3			9	знаний»
1.2.4.4.2.1	Поляков К.Ю.,	Информатика	7	ООО «БИНОМ.
1.2.4.4.2.2	Еремин Е.А.	(в 2 частях)	8	Лаборатория
1.2.4.4.2.3		Информатика	9	знаний»
1.2.4.4.3.1	Семакин И.Г.,	Информатика	7	ООО «БИНОМ.
1.2.4.4.3.2	Залогова Л.А.,		8	Лаборатория
1.2.4.4.3.3	Русаков С.В.,		9	знаний»
	Шестакова Л.В.			
	Сред	днее общее образо	вание	
1.3.4.3.	Информатика (ба	зовый уровень) (у	/чебный пре	едмет)
1.3.4.3.1.1	Босова Л.Л.,	Информатика	10	ООО «БИНОМ.
1.3.4.3.1.2	Босова А.Ю.	(базовый	11	Лаборатория
		уровень)		знаний»
1.3.4.3.2.1	Гейн А.Г.,	Информатика	10	AO
	Юнерман Н.А.	(базовый		«Издательство
		уровень)		«Просвещение»
1.3.4.3.2.2	Гейн А.Г.,	Информатика	11	AO
	Гейн А.А.	(базовый		«Издательство
		уровень)		«Просвещение»
1.3.4.3.3.1	Гейн А.Г.,	Информатика	10	AO
	Ливчак А.Б.,	(базовый и		«Издательство
	Сенокосов А.И.	углубленный		«Просвещение»
	и др	уровень)		
1.3.4.3.3.2	Гейн А.Г.,	Информатика	11	AO
	Сенокосов А.И.	(базовый и		«Издательство
		углубленный		«Просвещение»
		уровень)		
1.3.4.3.4.1	Под ред.	Информатика	10	ООО «БИНОМ.
	Макаровой Н.В.	(базовый	11	Лаборатория
		уровень) (в 2		знаний»
		частях)		
1.3.4.3.5.1	Поляков К.Ю.,	Информатика	10	ООО «БИНОМ.
1.3.4.3.5.2	Еремин Е.А.	(базовый и	11	Лаборатория
		углубленный		знаний»

		уровни) (в 2 частях)		
1.3.4.3.6.1	Семакин И.Г.,	Информатика	10	ООО «БИНОМ.
1.3.4.3.6.2	Хеннер Е.К.,	(базовый	11	Лаборатория
	Шеина Т.Ю.	уровень)		знаний»
1.3.4.3.7.1	Угринович Н.Д.	Информатика	10	ООО «БИНОМ.
1.3.4.3.7.2		(базовый	11	Лаборатория
		уровень)		знаний»
1.3.4.4	Информатика (уг	лубленный уровен	нь) (учебный і	предмет)
1.3.4.4.1.1	Калинин И.А.,	Информатика	10	ООО «БИНОМ.
1.3.4.4.1.2	Самылкина	(углубленный	11	Лаборатория
	Н.Н.	уровень)		знаний»
1.3.4.4.2.1	Семакин И.Г.,	Информатика	10	ООО «БИНОМ.
1.3.4.4.2.2	Шеина Т.Ю.,	(углубленный	11	Лаборатория
	Шестакова Л.В.	уровень) (в 2		знаний»
		частях)		

При организации дистанционного обучения следует использовать следующие ресурсы:

- 1. «Российская электронная школа» https://resh.edu.ru/
- 2. «Мобильное электронное образование» https://mob-edu.ru/
- 3. «Интернет урок» https://interneturok.ru/
- 4. «ЯКласс» https://www.yaklass.ru/
- 5. Площадка образовательного центра «Сириус» https://sochisirius.ru/
- 6. «Московская электронная школа» https://www.mos.ru/
- 7. Видеоуроки по информатике https://videouroki.net/blog/informatika/
- 8. Видеоуроки ЕГЭ по информатике https://ctege.info/videouroki-ege-po-informatike/
- 9. Учительский портал. Уроки информатики https://www.uchportal.ru/load/17
- 10. Авторские мастерские авторов УМК по информатике https://lbz.ru/metodist/authors/informatika/
- 11.Решу ОГЭ (ЕГЭ) Информатика https://inf-oge.sdamgia.ru/
- 12.Сайт К. Полякова http://kpolyakov.spb.ru/

Для проведения дистанционных занятий в синхронном режиме с применением аудио и видео связи можно использовать сервисы: Skype https://www.skype.com/ru/; Zoom https://zoom.us/ru-ru/; Discord https://discord.com/; Moodle https://discord.com/; Moodle https://moodle.org/ru и др.

4. Рекомендации по изучению преподавания предмета «Информатика» на основе анализа мониторинговых исследований

(КДР, НИКО, ВПР и ГИА)

В 2020–2021 учебном году в целях совершенствования преподавания учебного предмета «Информатика» рекомендуем на методических объединениях педагогов обсудить и сопоставить результаты оценочных процедур, проводимых по предмету.

В настоящее время на в Российской Федерации создана разноаспектная система оценки качества образования, состоящая из следующих процедур:

- $-O\Gamma 3$;
- $-E\Gamma 3$;
- национальные исследования оценки качества образования (НИКО);
- Всероссийские проверочные работы (ВПР);
- международные исследования (TIMSS, PISA и др.);
- -исследования профессиональных компетенций учителей.

В крае сформирована региональная система оценки качества, состоящая из мониторинга сформированности универсальных учебных действий для обучающихся 1-8 классов (метапредметные результаты), краевые диагностические работы для обучающихся 5-11 классов.

Обращаем особое внимание на **мониторинги сформированности метапредметных достижений обучающихся.** Их проведение направлено на оценку сформированности содержания образования, а не на оценку знаний отдельных предметов.

Циклограмма систематизирует организацию проведения оценочных процедур всех уровней образования, в том числе и школьного.

В помощь педагогам Институтом развития образования Краснодарского края разработан методический анализ оценочных процедур, который поможет учителю выявить предметные и метапредметные затруднения обучающихся. Методический анализ размещен на сайте Института развития образования Краснодарского края http://iro23.ru/podgotovka-k-attestacii-uchashchihsya/kraevye-diagnosticheskie-raboty/analiz-kdr

Рекомендуем педагогам до начала учебного года провести анализ результатов ГИА поможет увидеть преемственность уровней требований к выпускникам основной и средней школы. Для организации этой работы необходимо использовать в работе:

- 1. Методическое письмо федерального уровня «Об использовании результатов единого государственного экзамена в преподавании информатики в средней школе». (текст размещен на сайте ФИПИ www.fipi.org).
- 2. Методический анализ результатов ОО Краснодарского края выполнения ЕГЭ, ОГЭ по информатике (информатике и ИКТ) в 11 классах (www.idppo.kubannet.ru).

Задача учителя не подготовить обучающихся только к итоговой аттестации и каким-то другим проверочным процедурам, а организовать

освоение в полной мере той образовательной программы, которая реализуется в образовательной организации, и на каждом этапе ее освоения каждым обучающимся *проводить оценку объективно*, принимая соответствующие меры, которые будут способствовать корректировке индивидуальных учебных планов и обеспечивать постепенное достижение достаточно высоких результатов у каждого ученика.

Результаты оценочных процедур, в части достижений, обучающихся рекомендуем использовать для коррекции методов и форм обучения. Их анализ по информатике показал, что наиболее сложными для изучения обучающихся являются задания на:

- знание основных понятий и законов математической логики (задание № 18, средний процент выполнения по краю 32%);
- умение анализировать программу, использующую процедуры и функции (задание № 21, средний процент выполнения по краю 38,8%);
- умение строить и преобразовывать логические выражения (задание № 23, средний процент выполнения по краю 16,4%);
- умение создавать собственные программы (30–50 строк) для решения задач средней сложности (задание № 27 – 7,7 тестовых балла)

Современные учебники ПО информатике, ориентированные профильный уровень обучения, содержат всю необходимую теоретическую информацию для подготовки обучающихся к ЕГЭ по информатике, но при этом в учебниках недостаточно задач для отработки практического навыка их решения. Поэтому большинство учителей для подготовки к ЕГЭ прибегают к использованию дополнительных ресурсов: сборников задач, интернетресурсов. Наиболее популярным сайтом онжом считать К.Ю. Полякова http://kpolyakov.spb.ru/ где все задания сгруппированы по темам, к каждой теме дается краткая теория и большое количество задач. посвященная ЕГЭ, Кроме этого, страница, постоянно добавляются новые задания. Отметим, что большинство заданий в вариантах 2020 года содержали незначительные отличия от аналогичных заданий демонстрационного варианта. Небольшие изменения в условии задания позволяют отсечь «натасканных» на решение конкретных обучающихся. Выпускникам для подготовки к ЕГЭ необходимо не только тренироваться в решении задач, но и ориентироваться в содержании темы.

Именно недостаточная теоретическая подготовка стала одной из причин снижения результатов в заданиях на анализ программ.

Второй проблемой является недостаточный уровень функциональной грамотности. Современные школьники склонны к невнимательному прочтению условия задачи, не всегда могут правильно определить исходные данные и результат.

Третья проблема сегодняшних школьников — недостаточные вычислительные навыки, приводящие к большому количеству вычислительных ошибок.

Педагогам необходимо обратить внимание на глубокую проработку содержания изучаемого материала (возможно, с помощью дистанционных ресурсов), а также на выработку навыков смыслового чтения и вычислительных навыков у обучающихся.

Результаты ГИА показывают, что необходимы изменения в методиках обучения предмету, в частности таких тем, как «Основы математической логики», «Моделирование», «Алгоритмизация программирование». наибольшее Именно вызывают затруднение У обучающихся. Формирование логического и алгоритмического мышления, умение выбрать оптимальные методы решения – непростые задачи для учителя, требующие применения действенных, эффективных технологий, методик, методических приемов, нацеленных на повышение качества обучения через повышение мотивации школьников к обучению.

Заведующий кафедрой математики и информатики

Д.С. Барышенский

Доцент кафедры математики и информатики

Е.А. Вербичева