МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство общего и профессионального образования Ростовской области

Отдел образования Администрации Октябрьского района

МБОУ СОШ № 68

PACCMOTPEHO СОГЛАСОВАНО **УТВЕРЖДЕНО** Методическим объедине-Директор Заместитель директора нием учителей по УВР Руководитель ШМО Чупрова О.А. _Белоусова М.С. _Верзакова Л.М. Протокол № 1 от Протокол № 1 от Приказ №130 от 30.08.2022г. 30.08.2022г. $30.08.2022\Gamma$.

РАБОЧАЯ ПРОГРАММА учебного предмета «Астрономия»

для 11 класса среднего общего образования на 2022–2023 учебный год

Составитель: Верховод Вячеслав Иванович учитель физики

п. Новоперсиановка 2022

Раздел 1. Пояснительная записка

Рабочая программа составлена на основе фундаментального ядра содержания общего образования и требований к результатам обучения, представленных в Стандарте среднего общего образования, в соответствии с примерной программой среднего общего образования, учебником астрономии Б.А.Воронцов-Вельяминов, Е.К.Страут. 11 класс. М.: Дрофа, 2018. Учебный предмет физика относится к образовательной области «Естественнонаучные предметы».

Программа определяет содержание учебного материала, его структуру, последовательность изучения, пути формирования системы знаний, умений, способов деятельности, развитие учащихся, их социализации и воспитания.

<u>Количество часов в неделю по программе – 1</u> <u>Количество часов в неделю по учебному плану – 1</u> <u>Количество часов в год – 34</u>

Данная программа «Астрономия» для 11 класса разработана на основе:

- Федерального государственного образовательного стандарта, утверждённого приказом Министерства образования и науки Российской Федерации;
 - Закона Российской Федерации «Об образовании в РФ»;
- Положения о рабочей программе учебных предметов, дисциплин (модулей) общеобразовательного учреждения МБОУ СОШ № 68;
 - Учебного плана МБОУ СОШ № 68 на 2022–2023 учебный год.

Раздел 2. Планируемые результаты освоения учебного предмета «Астрономия» 11 класс

<u>Личностными результатами</u> освоения учебного предмета «Астрономия» в 11 классе являются:

- формирование умения управлять своей познавательной деятельностью, ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию, а также осознанному построению индивидуальной образовательной деятельности на основе устойчивых познавательных интересов;
- формирование познавательной и информационной культуры, в том числе навыков самостоятельной работы с книгами и техническими средствами информационных технологий;
- формирование убежденности в возможности познания законов природы и их использования на благо развития человеческой цивилизации;
- формирование умения находить адекватные способы поведения, взаимодействия и сотрудничества в процессе учебной и внеучебной деятельности, проявлять уважительное отношение к мнению оппонента в ходе обсуждения спорных проблем науки.

<u>Метапредметными результатами</u> изучения учебного предмета «Астрономия» в 11 классе являются формирование универсальных учебных действий (УУД):

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный, классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;
- анализировать наблюдаемые явления и объяснять причины их возникновения;
- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
- выполнять познавательные и практические задания, в том числе проектные;
- извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

<u>Предметными результатами</u> изучения учебного предмета «Астрономия» в 11 классе является формирование следующих умений.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:

- цели и задачи этих видов деятельности, учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;
- учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают

нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;

 организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

Раздел 3. Содержание учебного предмета «Астрономия» 11 класс

Астрономия, ее значение и связь с другими науками (2 часа).

Астрономия, ее связь с другими науками. Развитие астрономии было вызвано практическими потребностями человека, начиная с глубокой древности. Астрономия, математика и физика – их развитие в тесной связи друг с другом. Структура и масштабы Вселенной. Наземные и космические приборы и методы исследования астрономических объектов. Телескопы и радиотелескопы. Всеволновая астрономия

Практические основы астрономии (7 часов).

Звездная величина как характеристика освещенности, создаваемой звездой. Согласно шкале звездных величин, разность на 5 величин, различие в потоках света в 100 раз. Экваториальная система координат: прямое восхождение и склонение. Использование звездной карты для определения объектов, которые можно наблюдать в заданный момент времени. Высота полюса мира над горизонтом и ее зависимость от географической широты места наблюдения. Небесный меридиан. Кульминация светил. Определение географической широты по измерению высоты звезд в момент их кульминации. Эклиптика и зодиакальные созвездия. Наклон эклиптики к небесному экватору. Положение Солнца на эклиптике в дни равноденствий и солнцестояний. Изменение в течение года продолжительности дня и ночи на различных географических широтах. Луна – ближайшее к Земле небесное тело, ее единственный естественный спутник. Период обращения Луны вокруг Земли и вокруг своей оси – сидерический (звездный) месяц. Синодический месяц – период полной смены фаз Луны. Условия наступления солнечных и лунных затмений. Их периодичность. Полные, частные и кольцеобразные затмения Солнца. Полные и частные затмения Луны. Предвычисление будущих затмений. Точное время и определение географической долготы. Часовые пояса. Местное и поясное, летнее и зимнее время. Календарь – система счета длительных промежутков времени. История календаря. Високосные годы. Старый и новый стиль.

Строение Солнечной Системы (5 часов)

Геоцентрическая система мира Аристотеля — Птолемея. Система эпициклов и дифферентов для объяснения петлеобразного движения планет. Создание Коперником гелиоцентрической системы мира. Роль Галилея в становлении новой системы мира. Внутренние и внешние планеты. Конфигурации

планет: противостояние и соединение. Периодическое изменение условий видимости внутренних и внешних планет. Связь синодического и сидерического (звездного) периодов обращения планет. Три закона Кеплера. Эллипс. Изменение скорости движения планет по эллиптическим орбитам. Открытие Кеплером законов движения планет — важный шаг на пути становления механики. Третий закон — основа для вычисления относительных расстояний планет от Солнца. Размеры и форма Земли. Триангуляция. Горизонтальный параллакс. Угловые и линейные размеры тел Солнечной системы. Подтверждение справедливости закона тяготения для Луны и планет. Возмущения в движении тел Солнечной системы. Открытие планеты Нептун. Определение массы небесных тел. Масса и плотность Земли. Приливы и отливы. Время старта КА и траектории полета к планетам и другим телам Солнечной системы. Выполнение маневров, необходимых для посадки на поверхность планеты или выхода на орбиту вокруг нее.

Природа тел Солнечной системы (8 часов)

Гипотеза о формировании всех тел Солнечной системы в процессе длительной эволюции холодного газопылевого облака. Объяснение их природы на основе этой гипотезы. Краткие сведения о природе Земли. Условия на поверхности Луны. Два типа лунной поверхности – моря и материки. Горы, кратеры и другие формы рельефа. Процессы формирования поверхности Луны и ее рельефа. Результаты исследований, проведенных автоматическими аппаратами и астронавтами. Внутреннее строение Луны. Химический состав лунных пород. Обнаружение воды на Луне. Перспективы освоения Луны. Анализ основных характеристик планет. Разделение планет по размерам, массе и средней плотности. Планеты земной группы и планеты-гиганты. Их различия. Сходство внутреннего строения и химического состава планет земной группы. Рельеф поверхности. Вулканизм и тектоника. Метеоритные кратеры. Особенности температурных условий на Меркурии, Венере и Марсе. Отличия состава атмосферы Земли от атмосфер Марса и Венеры. Сезонные изменения в атмосфере и на поверхности Марса. Состояние воды на Марсе в прошлом и в настоящее время. Эволюция природы планет. Поиски жизни на Марсе. Химический состав и внутреннее строение планет-гигантов. Источники энергии в недрах планет. Облачный покров и атмосферная циркуляция. Разнообразие природы спутников. Сходство природы спутников с планетами земной группы и Луной. Наличие атмосфер у крупнейших спутников. Строение и состав колец. Астероиды главного пояса. Их размеры и численность. Малые тела пояса Койпера. Плутон и другие карликовые планеты. Кометы. Их строение и состав. Орбиты комет. Общая численность комет. Кометное облако Оорта. Астероидно-кометная опасность. Возможности и способы ее предотвращения. Одиночные метеоры. Скорости встречи с Землей. Небольшие тела (метеороиды). Метеорные потоки, их связь с кометами. Крупные тела. Явление болида, падение метеорита. Классификация метеоритов: железные, каменные, железокаменные.

Солнце и звезды (8 часов)

Источник энергии Солнца и звезд – термоядерные реакции. Перенос энергии внутри Солнца. Строение его атмосферы. Грануляция. Солнечная корона. Обнаружение потока солнечных нейтрино. Значение этого открытия для физики и астрофизики. Проявления солнечной активности: солнечные пятна, протуберанцы, вспышки, корональные выбросы массы. Потоки солнечной плазмы. Их влияние на состояние магнитосферы Земли. Магнитные бури, полярные сияния и другие геофизические явления, влияющие на радиосвязь, сбои в линиях электропередачи. Период изменения солнечной активности. Звезда – природный термоядерный реактор. Светимость звезды. Многообразие мира звезд. Их спектральная классификация. Звезды-гиганты и звезды-карлики. Диаграмма «спектр – светимость». Двойные и кратные звезды. Звездные скопления. Их состав и возраст. Цефеиды – природные автоколебательные системы. Зависимость «период – светимость». Затменно-двойные звезды. Вспышки новых – явление в тесных системах двойных звезд. Открытие «экзопланет» – планет и планетных систем вокруг других звезд. Зависимость скорости и продолжительности эволюции звезд от их массы. Вспышка сверхновой – взрыв звезды в конце ее эволюции. Конечные стадии жизни звезд: белые карлики, нейтронные звезды (пульсары), черные дыры.

Строение и эволюция Вселенной (3 часа)

Размеры и строение Галактики. Расположение и движение Солнца. Плоская и сферическая подсистемы Галактики. Ядро и спиральные рукава Галактики. Вращение Галактики и проблема «скрытой» массы. Радиоизлучение межзвездного вещества. Его состав. Области звездообразования. Обнаружение сложных органических молекул. Взаимосвязь звезд и межзвездной среды. Планетарные туманности – остатки вспышек сверхновых звезд. Спиральные, эллиптические и неправильные галактики. Их отличительные особенности, размеры, масса, количество звезд. Сверхмассивные черные дыры в ядрах галактик. Квазары и радиогалактики. Взаимодействующие галактики. Скопления и сверхскопления галактик. Общая теория относительности. Стационарная Вселенная А. Эйнштейна. Вывод А. А. Фридмана о нестационарности Вселенной. «Красное смещение» в спектрах галактик и закон Хаббла. Расширение Вселенной происходит однородно и изотропно. Гипотеза Г. А. Гамова о горячем начале Вселенной, ее обоснование и подтверждение. Реликтовое излучение. Теория Большого взрыва. Образование химических элементов. Формирование галактик и звезд. Ускорение расширения Вселенной. «Темная энергия» и антитяготение. Тема проекта или исследования: «Исследование ячеек Бенара». Наблюдения (в телескоп): «Звездные скопления (Плеяды, Гиады)», «Большая туманность Ориона», «Туманность Андромеды».

Раздел 4. Тематическое планирование учебного предмета «Астрономия» 11 класс

	Тема, раздел			C	
№	курса,		Основные виды	Содержание воспитатель-	
π/	пример-	Основное содержание	деятельности уча-	ного потенци-	
П	ное ко-		щихся	ала	
	личество				
1	Часов	A omnoviousia oo ongov o	Помом приморов	Иотот зорочи	
1.	Астроно-	Астрономия, ее связь с	Поиск примеров,	Использование	
	мия, ее значение	другими науками. Разви- тие астрономии было вы-	подтверждающих практическую	различных ис-	
	и связь с	звано практическими по-	направленность	лучения физиче-	
	другими	требностями человека,	астрономии. При-	ской информа-	
	науками	начиная с глубокой древ-	менение знаний,	ции	
	- 2 часа	ности. Астрономия, мате-	полученных в	ции	
	2 1404	матика и физика – их раз-	курсе физики, для		
		витие в тесной связи друг	описания устрой-		
		с другом. Структура и	ства телескопа. Ха-		
		масштабы Вселенной.	рактеристика пре-		
		Наземные и космические	имуществ наблю-		
		приборы и методы иссле-	дений, проводи-		
		дования астрономических	мых из космоса		
		объектов. Телескопы и ра-			
		диотелескопы. Всеволно-			
		вая астрономия			
2.	Практи-	Звездная величина как ха-	Применение зна-	Использование	
	ческие	рактеристика освещенно-	ний, полученных в	умений и навы-	
	основы	сти, создаваемой звездой.	курсе географии, о	ков различных	
	астроно-	Согласно шкале звездных	составлении карт в	видов познава-	
	мии – 7	величин, разность на 5 ве-	различных проек-	тельной деятель-	
	часов	личин, различие в потоках	циях. Работа со	ности, примене-	
		света в 100 раз. Экватори-	звездной картой	ние основных	
		альная система коорди-	при организации и	методов позна-	
		нат: прямое восхождение и склонение. Использова-	проведении наблю-дений. Характери-	ния (си-си-	
		ние звездной карты для	стика отличитель-	стемно инфор- мационный ана-	
		определения объектов, ко-	ных особенностей	лиз, моделирова-	
		торые можно наблюдать в	суточного движе-	ние и т.д.) для	
		заданный момент вре-	ния звезд на полю-	изучения раз-	
		мени. Высота полюса	сах, экваторе и в	личных сторон	
		мира над горизонтом и ее	средних широтах	окружающей	

зависимость от географической широты места наблюдения. Небесный меридиан. Кульминация светил. Определение географической широты по измерению высоты звезд в момент их кульминации. Эклиптика и зодиакальные созвездия. Наклон эклиптики к небесному экватору. Положение Солнца на эклиптике в дни равноденствий и солнцестояний. Изменение в течение года продолжительности дня и ночи на различных географических широтах. Луна – ближайшее к Земле небесное тело, ее единственный естественный спутник. Период обращения Луны вокруг Земли и вокруг своей оси – сидерический (звездный) месяц. Синодический месяц – период полной смены фаз Луны. Условия наступления солнечных и лунных затмений. Их периодичность. Полные, частные и кольцеобразные затмения Солнца. Полные и частные затмения Луны. Предвычисление будущих затмений. Точное время и определение географической долготы. Часовые пояса. Местное и поясное, летнее и зимнее время. Календарь – система

Земли, особенностей суточного движения Солнца на полюсах, экваторе и в средних широтах Земли. Изучение основных фаз Луны. Описание порядка смены фаз Луны, взаимного расположения Земли, Луны и Солнца в моменты затмений. Анализ причин, по которым Луна всегда обращена к Земле одной стороной, необходимости введения часовых поясов, високосных лет и нового календарного стиля. Объяснение причин, по которым затмения Солнца и Луны не происходят каждый месяц. Подготовка и выступление с презентациями и сообщени-

действительности

ями

		счета длительных промежутков времени. История календаря. Високосные годы. Старый и новый стиль.		
3.	Строение Солнечной Системы – 5 часов	Геоцентрическая система мира Аристотеля – Птолемея. Система эпициклов и дифферентов для объяснения петлеобразного движения планет. Создание Коперником гелиоцентрической системы мира. Роль Галилея в становлении новой системы мира. Внутренние и внешние планеты. Конфигурации планет: противостояние и соединение. Периодическое изменение условий видимости внутрених и внешних планет. Связь синодического и сидерического (звездного) периодов обращения планет. Три закона Кеплера. Эллипс. Изменение скорости движения планет по эллиптическим орбитам. Открытие Кеплером законов движения планет — важный шаг на пути становления механики. Третий закон — основа для вычисления относительных расстояний планет от Солнца. Размеры и форма Земли. Триангуляция. Горизонтальный параллакс. Угловые и линейные размеры тел Солнечной системы. Подтверждение справедливости закона тя-	Объяснение пет- леобразного дви- жения планет с ис- пользованием эпи- циклов и диффе- рентов. Описание условий видимости планет, находя- щихся в различных конфигурациях. Анализ законов Кеплера, их значе- ния для развития физики и астроно- мии. Объяснение механизма возник- новения возмуще- ний и приливов. Подготовка пре- зентаций и сооб- щений и выступле- ние с ними. Реше- ние задач	Использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов

		-		'
		готения для Луны и планет. Возмущения в движении тел Солнечной системы. Открытие планеты Нептун. Определение массы небесных тел. Масса и плотность Земли. Приливы и отливы. Время старта КА и траектории полета к планетам и другим телам Солнечной системы. Выполнение маневров, необходимых для посадки на поверхность планеты или выхода на орбиту вокруг нее. Практическая работа с планом Солнечной системы Контрольная работа № 2 по теме «Строение Солнечной системы». Тема проекта или исследования: «Конструирование и установка глобуса Набокова». Наблюдения (в телескоп): «Рельеф Луны», «Фазы Венеры», «Марс», «Юпитер и его спутники», «Сатурн, его кольца и спут-		
		ники».		
4	Природа тел Солнечной системы – 8 часов	Гипотеза о формировании всех тел Солнечной системы в процессе длительной эволюции холодного газопылевого облака. Объяснение их природы на основе этой гипотезы. Краткие сведения о природе Земли. Условия на поверхности Луны. Два типа лунной поверхности — моря и материки. Горы, кратеры и другие формы	Анализ основных положений современных представлений о происхождении тел Солнечной системы, табличных данных, признаков сходства и различий изучаемых объектов, классификация объектов, определения понятия «планета».	Использование умений и навыков различных видов познавательной деятельности

рельефа. Процессы формирования поверхности Луны и ее рельефа. Результаты исследований, проведенных автоматическими аппаратами и астронавтами. Внутреннее строение Луны. Химический состав лунных пород. Обнаружение воды на Луне. Перспективы освоения Луны. Анализ основных характеристик планет. Разделение планет по размерам, массе и средней плотности. Планеты земной группы и планеты-гиганты. Их различия. Сходство внутреннего строения и химического состава планет земной группы. Рельеф поверхности. Вулканизм и тектоника. Метеоритные кратеры. Особенности температурных условий на Меркурии, Венере и Марсе. Отличия состава атмосферы Земли от атмосфер Марса и Венеры. Сезонные изменения в атмосфере и на поверхности Марса. Состояние воды на Марсе в прошлом и в настоящее время. Эволюция природы планет. Поиски жизни на Марсе. Химический состав и внутреннее строение планетгигантов. Источники энергии в недрах планет. Облачный покров и атмосферная циркуляция. Раз-

Сравнение природы Земли с природой Луны на основе знаний из курса географии. Объяснение причины отсутствия у Луны атмосферы, причин существующих различий, процессов, происходящих в комете при изменении ее расстояния от Солнца. Описание основных форм лунной поверхности и их происхождения, внешнего вида астероидов и комет. На основе знаний законов физики объяснение явлений и процессов, происходящих в атмосферах планет, описание природы планет-гигантов, описание и объяснение явлений метеора и болида. Описание и сравнение природы планет земной группы. Участие в дискуссии. Подготовка презентаций и сообщений и выступление с ними

		нооброзно		
		нообразие природы спут-		
		ников. Сходство природы		
		спутников с планетами		
		земной группы и Луной.		
		Наличие атмосфер у круп-		
		нейших спутников. Стро-		
		ение и состав колец. Асте-		
		роиды главного пояса. Их		
		размеры и численность.		
		Малые тела пояса Кой-		
		пера. Плутон и другие		
		карликовые планеты. Ко-		
		меты. Их строение и со-		
		став. Орбиты комет. Об-		
		щая численность комет.		
		Кометное облако Оорта.		
		Астероидно-кометная		
		опасность. Возможности		
		и способы ее предотвра-		
		щения. Одиночные ме-		
		теоры. Скорости встречи		
		с Землей. Небольшие тела		
		(метеороиды). Метеорные		
		потоки, их связь с коме-		
		тами. Крупные тела. Яв-		
		ление болида, падение ме-		
		теорита. Классификация		
		метеоритов: железные, ка-		
		менные, железокаменные.		
5	Солнце и	Источник энергии Солнца	На основе знаний	Умение опреде-
	звезды –	и звезд – термоядерные	законов физики	лять цели и за-
	8 часов	реакции. Перенос энергии	описание и объяс-	дачи деятельно-
		внутри Солнца. Строение	нение явлений и	сти, выбирать
		его атмосферы. Грануля-	процессов, наблю-	средства реали-
		ция. Солнечная корона.	даемых на Солнце.	зации целей и
		Обнаружение потока сол-	Описание: процес-	применять их на
		нечных нейтрино. Значе-	сов, происходящих	практике
		ние этого открытия для	при термоядерных	_
		физики и астрофизики.	реакциях протон-	
		Проявления солнечной	протонного цикла;	
		активности: солнечные	образования пятен,	
		пятна, протуберанцы,	протуберанцев и	
		вспышки, корональные	других проявлений	
		выбросы массы. Потоки		
		_	других проявлений	

		20 777 277 277 277 277 277 277 277 277 2	20 HH21112 × 2	
		солнечной плазмы. Их	солнечной актив-	
		влияние на состояние маг-	ности на основе	
		нитосферы Земли. Маг-	знаний о плазме,	
		нитные бури, полярные	полученных в	
		сияния и другие геофизи-	курсе физики. Ха-	
		ческие явления, влияю-	рактеристика про-	
		щие на радиосвязь, сбои в	цессов солнечной	
		линиях электропередачи.	активности и меха-	
		Период изменения сол-	низма их влияния	
		нечной активности.	на Землю. Опреде-	
		Звезда – природный тер-	ление понятия	
		моядерный реактор. Све-	«звезда». Указание	
		тимость звезды. Многооб-	положения звезд	
		разие мира звезд. Их спек-	на диаграмме	
		тральная классификация.	«спектр – свети-	
		Звезды-гиганты и звезды-	мость» согласно их	
		карлики. Диаграмма	характеристикам.	
		«спектр – светимость».	Анализ основных	
		Двойные и кратные	групп диаграммы	
		звезды. Звездные скопле-	«спектр – свети-	
		ния. Их состав и возраст.	мость». На основе	
		Цефеиды – природные ав-	знаний по физике:	
		токолебательные си-	описание пульса-	
		стемы. Зависимость «пе-	ции цефеид как ав-	
		риод – светимость». За-	токолебательного	
		тменно-двойные звезды.	процесса; оценка	
		Вспышки новых – явле-	времени свечения	
		ние в тесных системах	звезды по извест-	
		двойных звезд. Открытие	ной массе запасов	
		«экзопланет» – планет и	водорода; описа-	
		планетных систем вокруг	ние природы объ-	
		других звезд. Зависимость	ектов на конечной	
		скорости и продолжитель-	стадии эволюции	
		ности эволюции звезд от	звезд. Подготовка	
		их массы. Вспышка	презентаций и со-	
		сверхновой – взрыв	общений и выступ-	
		звезды в конце ее эволю-	ление с ними. Ре-	
		ции. Конечные стадии	шение задач	
		жизни звезд: белые кар-		
		лики, нейтронные звезды		
		(пульсары), черные дыры.		
5	Строение	Размеры и строение Га-	Описание строения	Использование
	и эволю-	лактики. Расположение и	и структуры Галак-	умений и навы-
	и эволю-	лактики. т асположение и		=
			тики, процесса	ков различных

ция Вселенной – 3 часа

движение Солнца. Плоская и сферическая подсистемы Галактики. Ядро и спиральные рукава Галактики. Вращение Галактики и проблема «скрытой» массы. Радиоизлучение межзвездного вещества. Его состав. Области звездообразования. Обнаружение сложных органических молекул. Взаимосвязь звезд и межзвездной среды. Планетарные туманности – остатки вспышек сверхновых звезд. Спиральные, эллиптические и неправильные галактики. Их отличительные особенности, размеры, масса, количество звезд. Сверхмассивные черные дыры в ядрах галактик. Квазары и радиогалактики. Взаимодействующие галактики. Скопления и сверхскопления галактик. Общая теория относительности. Стационарная Вселенная А. Эйнштейна. Вывод А. А. Фридмана о нестационарности Вселенной. «Красное смещение» в спектрах галактик и закон Хаббла. Расширение Вселенной происходит однородно и изотропно. Гипотеза Г. А. Гамова о горячем начале Вселенной, ее обоснование и подтверждение. Реликтовое излучение. Теория Большого взрыва. Образование химических

формирования звезд из холодных газопылевых облаков. Изучение объектов плоской и сферической подсистем. Объяснение на основе знаний по физике различных механизмов радиоизлучения. Определение типов галактик. Применение принципа Доплера для объяснения «красного смещения». Доказательство справедливости закона Хаббла для наблюдателя, расположенного в любой галактике. Подготовка презентаций и сообщений и выступление с ними

видов познавательной деятельности, применение основных методов познания (си-системно информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности

	элементов. Формирование		
	галактик и звезд. Ускоре-		
	ние расширения Вселен-		
	ной. «Темная энергия» и		
	антитяготение. Тема про-		
	екта или исследования:		
	«Исследование ячеек Бе-		
	нара». Наблюдения (в те-		
	лескоп): «Звездные скоп-		
	ления (Плеяды, Гиады)»,		
	«Большая туманность		
	Ориона», «Туманность		
	Андромеды».		

Раздел 5. Календарно-тематическое планирование учебного предмета

«Астрономия» 11 класс

№ урока	Наименование раздела, тема урока	Кол- во ча- сов	Дата
	Введение в астрономию 2		
1	Предмет астрономии	1	7.09
2	Наблюдения – основа астрономии	1	14.09
	Практические основы астрономии	7	
3	Звезды и созвездия	1	21.09
4	Небесные координаты и звездные карты. Практическая работа №1 «Определение горизонтальных небесных координат»	1	28.09
5	Видимое движение звезд на различных географических широтах	1	5.10
6	Годичное движение Солнца по небу. Эклиптика. Практическая работа №2 «Определение экваториальных небесных координат»	1	12.10
7	Движение и фазы Луны	1	19.10
8	Затмения Солнца и Луны	1	26.10
9	Время и календарь	1	9.11
	Строение Солнечной Системы	5	
10	Развитие представления о строении мира	1	16.11
11	Конфигурация планет. Синодический период	1	23.11
12	Законы движения планет Солнечной системы. Практическая работа №3 «Решение задач по теме Конфигурация планет»	1	30.11

13	Определение расстояний и размеров тел в Солнечной системе	1	7.12
14	Движение небесных тел под действием сил тя-	1	14.12
1	готения. Практическая работа №4 «Решение		11112
	задач по теме Движение небесных тел под дей-		
	ствием сил тяготения»		
Прир	ода тел Солнечной системы 8		
15	Общие характеристики планет	1	21.12
16	Солнечная система как комплекс тел, имею-	1	28.12
	щих общее происхождение		
17	Система Земля – Луна. Земля	1	11.01
18	Луна	1	18.01
19	Планеты земной группы. Практическая работа	1	25.01
	№5 «Составление сравнительных характери-		
	стик планет земной группы»		
20	Mapc	1	1.02
21	Далекие планеты	1	8.02
22	Малые тела солнечной системы. Контрольная	1	15.02
	работа №1 «Природа тел Солнечной системы»		
	Солнце и звезды	8	
23	Энергия и температура Солнца. Состав и стро-	1	22.02
	ение Солнца		
24	Атмосфера Солнца. Солнечная активность	1	1.03
25	Расстояния до звёзд. Характеристики изучения	1	15.03
	звёзд.		
26	Спектры, цвет и температура звёзд. Диаграмма	1	22.03
	«Спектр-светимость»		
27	Двойные звезды. Определение массы звёзд.	1	5.04
	Практическая работа №6 «Решение задач по		
	теме Характеристики звезд»		
28	Размеры звезд. Плотность вещества. Модели	1	12.04
	звёзд		
29	Переменные и нестационарные звезды	1	19.04
30	Новые и сверхновые звезды. Обобщающий	1	26.04
	урок «Солнце и звезды»		
_	ение и эволюция Вселенной 3	1	1
31	Наша Галактика Другие звездные системы –	1	3.05
	галактики. Основы современной космологии		
32	Жизнь и разум во Вселенной. Самостоятель-	1	10.05
	ная работа «Строение и эволюция Вселенной»		
33	Итоговая контрольная работа	1	17.05
34	Итоговое повторение	1	24.05

Лист корректировки рабочей программы

Раздел 6. Учебно-методическое обеспечение (включая ЦОР и ЭОР)

Основная литература:

- 1. Астрономия Базовый уровень. 11 класс: учебник. / Б.А.Воронцов-Вельяминов, Е.К.Страут. 5-ое изд., пересмотр. М.: Дрофа, 2018.
- 2. Страут, Е. К. Методическое пособие к учебнику «Астрономия. 11 класс» авторов Б. А. Воронцова-Вельяминова, Е. К. Страута. М.: Дрофа, 2013.

Технические средства обучения:

- 1. Печатные пособия (таблицы, методические разработки);
- 2. Информационно коммуникационные средства.

Цифровые образовательные ресурсы:

Программы-планетарии.

CENTAURE (www.astrosurf.com).

VIRTUAL SKY(www.virtualskysoft.de), ALPHA.

Celestia (https://celestiaproject.net).

Интернет-ресурсы:

- 1. <u>Stellarium</u> бесплатная программа для просмотра звездного неба, виртуальный планетарий.
- 2. WorldWide Telescope программа, помогающая любителям астрономии исследовать Вселенную.