МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ АПШЕРОНСКИЙ РАЙОН

муниципальное бюджетное общеобразовательное учреждение ООШ №23

РАССМОТРЕНО ШМО естественно-научного и математического цикла

Шаргина М.В. Протокол №1 от «28»08.2025 г. СОГЛАСОВАНО Зам.директора по УВР

Наумова А.А. Протокол №1 от «29» 08.2025 г. УТВЕРЖДЕНО Директор МБОУООШ № 23

Насущный В.В. Протокол №1 от «29» 08.2025 г.

АДАПТИРОВАННАЯ РАБОЧАЯ ПРОГРАММА

для обучающихся с задержкой психического развития

Похимии

Уровень образования (класс), основное общее образование, 8-9 класс

Количество часов 136

Программа разработана в соответствии Федерального государственного образовательного стандарта основного общего образования обучающихся с ОВЗ

На основе «Адаптированной основной общеобразовательной программы основного общего образования обучающихся с задержкой психического развития МБОУООШ 23

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебный предмет «Химия» входит в предметную область «Естественнонаучные предметы». В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, создании основы химических знаний, необходимых для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры.

Успешность изучения химии связана с овладением химическим языком, соблюдением правил безопасной работы при выполнении химического эксперимента, осознанием многочисленных связей химии с другими предметами школьного курса.

Программа включает в себя основы неорганической и органической химии. Главной идеей программы является создание базового комплекса опорных знаний по химии, выраженных в форме, соответствующей возрасту обучающихся и их особым образовательным потребностям.

В содержании данного курса представлены основополагающие химические теоретические знания, включающие изучение состава и строения веществ, зависимости их свойств от строения, прогнозирование свойств веществ, исследование закономерностей химических превращений и путей управления ими в целях получения веществ и материалов.

Теоретическую основу изучения неорганической химии составляет атомномолекулярное учение, Периодический закон Д.И. Менделеева с краткими сведениями о строении атома, видах химической связи, закономерностях протекания химических реакций.

В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ, описанию результатов ученического эксперимента, соблюдению норм и правил безопасной работы в химической лаборатории.

Реализация данной программы в процессе обучения позволит обучающимся с ЗПР усвоить ключевые химические компетенции и понять роль и значение химии среди других наук о природе.

Изучение химии способствует формированию у обучающихся научного мировоззрения, освоению общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоению практического применения научных знаний, основанного на межпредметных связях с предметами «Окружающий мир», «Физика», «Биология», «География», «Математика» и формирует компетенции, необходимые для продолжения образования в области естественных наук.

Изучение химии способствует развитию у обучающихся с ЗПР пространственного воображения, функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах. Значимость предмета для развития жизненной компетенции обучающихся с ЗПР заключается в усвоении основы химических знаний, необходимых для повседневной жизни; навыков здорового и безопасного для человека и окружающей его среды образа жизни; формировании экологической культуры.

Программа отражает содержание обучения предмету «Химия» с учетом особых образовательных потребностей обучающихся с ЗПР. Овладение учебным предметом «Химия» представляет определенную трудность для обучающихся с ЗПР. Это связано с особенностями мыслительной деятельности, периодическими колебаниями внимания, малым объемом памяти, недостаточностью общего запаса знаний, пониженным познавательным интересом и низким уровнем речевого развития.

Для преодоления трудностей в изучении учебного предмета «Химия» необходима адаптация объема и характера учебного материала к познавательным возможностям данной категории обучающихся, учет их особенностей развития: использование алгоритмов,

внутрипредметных и межпредметных связей, постепенное усложнение изучаемого материала.

При изучении химии необходимо осуществлять взаимодействие на полисенсорной основе.

Теоретический материал рекомендуется изучать в процессе практической деятельности. Возможно выделение отдельных уроков на решение задач в связи со сложностью анализа текста обучающимися с ЗПР. Органическое единство практической и мыслительной деятельности обучающихся на уроках химии способствует прочному и осознанному усвоению базисных химических знаний и умений. Особое внимание при изучении химии уделяется изучению «сквозных» понятий и формированию навыка структурирования материала.

Цели и задачи изучения учебного предмета «Химия»

Общие цели изучения учебного предмета «Химия» представлены в Примерной рабочей программе основного общего образования. Они актуализированы с учетом новых приоритетов в системе основного общего образования, направленности обучения на развитие и саморазвитие личности, формирование её интеллекта и общей культуры. Обучение умению учиться и продолжать своё образование самостоятельно в настоящее время является одной из важнейших функций учебных предметов, в том числе и «Химии».

Для обучающихся с ЗПР, так же, как и для нормативно развивающихся сверстников, осваивающих основную образовательную программу, доминирующее значение приобретают такие *цели*, как:

- формирование интеллектуально развитой личности, готовой к сотрудничеству, самостоятельному принятию решений, способной адаптироваться к быстро меняющимся условиям жизни;
- направленность обучения на систематическое приобщение учащихся к самостоятельной познавательной деятельности, научным и практическим методам познания, формирующим мотивацию и развитие способностей к химии;
- обеспечение условий, способствующих приобретению обучающимися опыта разнообразной деятельности, познания и самопознания, ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности;
- формирование умений объяснять и оценивать явления окружающего мира на основании знаний и опыта, полученных при изучении химии;
- формирование у обучающихся гуманистических отношений, понимания ценности химических знаний для выработки экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды;
- развитие мотивации к обучению, способностей к самоконтролю и самовоспитанию на основе усвоения общечеловеческих ценностей, готовности к осознанному выбору профиля и направленности дальнейшего обучения.

Курс направлен на решение следующих *задач*, обеспечивающих реализацию личностно-ориентированного и деятельностного подходов к обучению химии обучающихся с ЗПР на уровне основного общего образования:

- формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;

- овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды;
- формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- приобретение опыта использования различных методов изучения веществ, наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- формирование представлений о значении химической науки и решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф.

Особенности отбора и адаптации учебного материала по химии

Обучение учебному предмету «Химия» необходимо строить на создании оптимальных условий для усвоения программного материала обучающимися с ЗПР. Большое внимание должно быть уделено отбору учебного материала в соответствии с принципом доступности при сохранении общего базового уровня. Он должен по содержанию и объему быть адаптированным для обучающихся с ЗПР в соответствии с их особыми образовательными потребностями. Следует облегчить овладение материалом обучающимися с ЗПР посредством его детального объяснения с систематическим повтором, многократной тренировкой в применении знаний с использованием приемов алгоритмизации и визуальных опор, обучения структурированию материала.

Большое значение для полноценного усвоения учебного материала имеет опора на межпредметные связи вопросов, изучаемых в данном курсе, с такими учебными предметами как «География», «Физика», «Биология». Позволяя рассматривать один и тот же учебный материал с разных точек зрения, межпредметные связи способствуют его лучшему осмыслению, более прочному закреплению полученных знаний и практических умений.

При подготовке к урокам учитель должен предусмотреть формирование у обучающихся умений анализировать, сравнивать, обобщать изучаемый материал, планировать предстоящую работу, осуществлять самоконтроль. Необходимо постоянно следить за правильностью речевого оформления высказываний обучающихся с ЗПР.

В связи с особенностями поведенияи деятельности обучающихся с ЗПР (расторможенность, неорганизованность) необходим строжайший контроль соблюдения правил техники безопасности при проведении лабораторных работ в химическом кабинете.

Примерные виды деятельности обучающихся с ЗПР, обусловленные особыми образовательными потребностями и обеспечивающие осмысленное освоение содержании образования по предмету «Химия»

Содержание видов деятельности обучающихся с ЗПР на уроках химии определяется их особыми образовательными потребностями. Помимо широко используемых в ООП ООО общих для всех обучающихся видов деятельности следует усилить виды деятельности, специфичные для данной категории обучающихся, для обеспечения осмысленного освоения содержания образования по предмету: усиление предметно-практической деятельности с активизацией сенсорных систем; чередование видов деятельности, задействующих различные сенсорные системы; освоение материала с опорой на алгоритм; «пошаговость» в изучении материала; использование дополнительной визуальной опоры (планы, образцы, схемы, шаблоны, опорные таблицы). Для развития у обучающихся с ЗПР умения делать выводы, формирования грамотного речевого высказывания необходимо использовать

опорные слова и клише. Особое внимание следует уделить обучению структурированию материала: составление рисуночных и вербальных схем, составление таблиц, составление классификации с обозначенными основаниями для классификации и наполнение их примерами и др.

Примерная тематическая и терминологическая лексика соответствует ООП ООО.

Для обучающихся с ЗПР существенными являются приемы работы с лексическим материалом по предмету. Проводится специальная работа по введению в активный словарь обучающихся соответствующей терминологии. Изучаемые термины вводятся на полисенсорной основе, обязательна визуальная поддержка, алгоритмы работы с определением, опорные схемы для актуализации терминологии.

Место учебного предмета «Химия» в учебном плане

В соответствии с Федеральным государственным образовательным стандартом основного общего образования учебный предмет «Химия» входит в предметную область «Естественнонаучные предметы» и является обязательным для изучения.

Учебным планом на её изучение отведено 136 учебных часов – по 2 ч в неделю в 8 и 9 классах соответственно.

Содержание учебного предмета «Химия», представленное в Примерной рабочей программе, соответствует ФГОС ООО, разработано с учетом Примерной основной образовательной программы основного общего образования по учебному предмету «Химия», соответствует Примерной адаптированной основной образовательной программе основного общего образования обучающихся с задержкой психического развития.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «ХИМИЯ»

8 КЛАСС

Первоначальные химические понятия

Предмет химии. *Роль химии в жизни человека*. Тела и вещества. Физические свойства веществ. Агрегатное состояние веществ. *Химия в системе наук*. Чистые вещества и смеси. Способы разделения смесей. Правила безопасного обращения с веществами и лабораторным оборудованием. *Понятие о методах познания в химии*.

Атомы и молекулы. Химические элементы. Знаки (символы) химических элементов. Относительная атомная масса. Простые и сложные вещества. Атомно-молекулярное учение.

Химическая формула. Валентность атомов химических элементов. *Закон постоянства состава веществ*. Относительная молекулярная масса. Массовая доля химического элемента в соединении.

Физические и химические явления. Химическая реакция. Признаки химических реакций. Уравнения химических реакций. Закон сохранения массы веществ. Классификация химических реакций (соединения, разложения, замещения, обмена).

Химический эксперимент: знакомство с химической посудой, с правилами работы в лаборатории и приёмами обращения с лабораторным оборудованием; изучение и описание физических свойств образцов неорганических веществ; наблюдение физических (плавление воска, таяние льда, растирание сахара в ступке, кипение и конденсация воды) и химических (горение свечи, прокаливание медной проволоки, взаимодействие мела с кислотой) явлений, наблюдение и описание признаков протекания химических реакций (разложение сахара, взаимодействие серной кислоты с хлоридом бария, разложение гидроксида меди (II) при нагревании, взаимодействие железа с раствором соли меди (II));изучение способов разделения смесей (с помощью магнита, фильтрование, выпаривание, дистилляция, хроматография), проведение очистки поваренной соли; наблюдение и описание результатов проведения опыта, иллюстрирующего закон сохранения массы; создание моделей молекул (шаростержневых).

Важнейшие представители неорганических веществ

Воздух – смесь газов. Состав воздуха. Кислород – элемент и простое вещество. Нахождение кислорода в природе, физические и химические свойства. Реакции горения

простых и сложных веществ. Способы получения кислорода в лаборатории *и промышленности*. Применение кислорода. Понятие об оксидах. Круговорот кислорода в природе. *Озон* — аллотропная модификация кислорода.

Тепловой эффект химической реакции, термохимические уравнения, экзо- и эндотермические реакции. Топливо: уголь и метан. Загрязнение воздуха, усиление парникового эффекта, разрушение озонового слоя.

Водород – элемент и простое вещество. Нахождение водорода в природе, физические и химические свойства (на примере взаимодействия с неметаллами и оксидами металлов), применение, *способы получения*. Понятие о кислотах и солях.

Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объём газов. Расчеты по химической формуле. Расчеты массовой доли химического элемента в соединении, количества вещества, молярной массы, молярного объема газов. Расчёты по химическим уравнениям.

Физические свойства воды. Вода. Ее состав, строение и молекулы. Вода как растворитель. Растворы. Понятие о насыщенных и ненасыщенных растворах. Понятие растворимости веществ в воде. Расчет массовой доли вещества в растворе (процентная концентрация). Массовая доля вещества в растворе. Химические свойства воды (разложение, реакции с натрием, оксидом кальция, оксидом серы (IV) реакции с металлами, кислотными и основными оксидами). Понятие об основаниях. Роль растворов в природе и в жизни человека. Круговорот воды в природе. Загрязнение природных вод. Охрана и очистка природных вод.

Важнейшие классы неорганических соединений. Классификация неорганических соединений. Оксиды: состав, классификация (кислотные, основные, амфотерные, несолеобразующие - на примере оксида углерода (II) и оксида азота (II), номенклатура. Получение и химические свойства оксидов (взаимодействие с водой, кислотами, щелочами). Основания. Классификация оснований: щёлочи и нерастворимые основания. Номенклатура оснований. Физические и химические свойства оснований (взаимодействие с оксидами неметаллов, кислотами, солями). Получение оснований.

Кислоты: состав, классификация, номенклатура, физические и химические свойства (взаимодействие с металлами, основными оксидами, основаниями, солями, на примере соляной и серной кислот), способы получения. Ряд активности металлов Н. Н. Бекетова. Соли (средние): номенклатура солей, способы получения, взаимодействие солей с металлами, кислотами, щелочами и солями, применение.

Понятие об амфотерных гидроксидах (на примере цинка *и алюминия): химические* свойства (взаимодействие с кислотами и щелочами, разложение при нагревании) и получение.

Генетическая связь между классами неорганических соединений. Генетические ряды.

Химический эксперимент: качественное определение содержания кислорода в воздухе; получение и изучение свойств кислорода; наблюдение взаимодействия веществ с кислородом и условия возникновения и прекращения горения (пожара); ознакомление с образцами оксидов и описание их свойств; получение и изучение свойств водорода (горение); наблюдение образцов веществ количеством 1 моль; исследование особенностей растворения веществ с различной растворимостью; приготовление растворов с определённой массовой долей растворённого вещества; взаимодействие воды с металлами (натрием и кальцием) (возможно использование видеоматериалов); определение растворов кислот и щелочей с помощью индикаторов; исследование образцов неорганических веществ различных классов; наблюдение изменения окраски индикаторов в растворах кислот и щелочей; изучение взаимодействия оксида меди(II) с раствором серной кислоты, кислот с металлами, реакций нейтрализации; получение нерастворимых оснований, вытеснение одного металла другим из раствора соли; решение экспериментальных задач по теме

«Важнейшие классы неорганических соединений».

Периодический закон и Периодическая система

химических элементов Д. И. Менделеева. Строение атомов. Химическая связь.

Окислительно-восстановительные реакции

Первые попытки классификации химических элементов. Понятие о группах сходных элементов (щелочные и щелочноземельные металлы, галогены, инертные газы). Элементы, которые образуют амфотерные оксиды и гидроксиды.

Периодический закон. Периодическая система химических элементов Д. И. Менделеева. Короткопериодная и *длиннопериодная* формы Периодической системы химических элементов Д. И. Менделеева. Периоды и группы. Физический смысл порядкового номера, номеров периода и группы элемента.

Строение атомов. Состав атомных ядер. *Изотопы*. Электроны. Строение электронных оболочек атомов первых 20 химических элементов Периодической системы Д. И. Менделеева. Характеристика химического элемента по его положению в Периодической системе Д. И. Менделеева.

Закономерности изменения свойств элементов малых периодов и главных подгрупп, в зависимости от атомного (порядкового) номера Значение Периодического закона и Периодической системы химических элементов для развития науки и практики. Д. И. Менделеев — учёный и гражданин.

Химическая связь. Ковалентная (полярная и неполярная) связь. Электроотрицательность атомов химических элементов. Ионная связь.

Степень окисления. Окислительно-восстановительные реакции. Процессы окисления и восстановления. Окислители и восстановители.

Химический эксперимент: изучение образцов веществ металлов и неметаллов; взаимодействие гидроксида цинка с растворами кислот и щелочей; проведение опытов, иллюстрирующих примеры окислительно-восстановительных реакций (горение, реакции разложения, соединения).

Межпредметные связи

Реализация межпредметных связей при изучении химии в 8 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: научный факт, гипотеза, теория, закон, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, модель, явление.

Физика: материя, атом, электрон, протон, нейтрон, ион, нуклид, изотопы, радиоактивность, молекула, электрический заряд, вещество, тело, объём, агрегатное состояние вещества, газ, физические величины, единицы измерения, космос, планеты, звёзды, Солнце.

Биология: фотосинтез, дыхание, биосфера.

География: атмосфера, гидросфера, минералы, горные породы, полезные ископаемые, топливо, водные ресурсы.

9 КЛАСС

Вещество и химическая реакция

Периодический закон. Периодическая система химических элементов Д. И. Менделеева. Строение атомов. Закономерности в изменении свойств химических элементов первых трёх периодов, калия, кальция и их соединений в соответствии с положением элементов в Периодической системе и строением их атомов.

Строение вещества: виды химической связи. Типы кристаллических решёток, зависимость свойств вещества от типа кристаллической решётки и вида химической связи.

Классификация и номенклатура неорганических веществ (международная и тривиальная). Химические свойства веществ, относящихся к различным классам неорганических соединений, генетическая связь неорганических веществ.

Классификация химических реакций по различным признакам (по числу и составу участвующих в реакции веществ, по тепловому эффекту, по изменению степеней окисления химических элементов, по *обратимости*, *по участию катализатора*). Экзо- и эндотермические реакции. *Термохимические уравнения*.

Понятие о скорости химической реакции. Понятие об обратимых и необратимых химических реакциях. Понятие о гомогенных и гетерогенных реакциях. Понятие о химическом равновесии. Смещение химического равновесия. Факторы, влияющие на скорость химической реакции и положение химического равновесия.

Окислительно-восстановительные реакции, электронный баланс окислительно-восстановительной реакции. Составление уравнений окислительно-восстановительных реакций с использованием метода электронного баланса.

Теория электролитической диссоциации. Электролитическая диссоциация. Электролиты и неэлектролиты. Катионы, анионы. *Механизм диссоциации веществ с различными видами химической связи. Понятие о степени диссоциации.* Сильные и слабые электролиты.

Реакции ионного обмена. Условия протекания реакций ионного обмена до конца. Полные и сокращённые ионные уравнения реакций. Химические свойства кислот, оснований и солей в свете представлений об электролитической диссоциации. Среда раствора. Качественные реакции на катионы и анионы: хлорид-, бромид-, иодид-, сульфат-, карбонат-, силикат-, фосфат- анионы; гидроксид-ионы; катионы аммония, магния, кальция, алюминия, железа (2+) и (3+), меди (2+), цинка, присутствующие в водных растворах.

Химический эксперимент: ознакомление с моделями кристаллических решёток неорганических веществ — металлов и неметаллов (графита и алмаза), сложных веществ (хлорида натрия); исследование зависимости скорости химической реакции от воздействия различных факторов; исследование электропроводности растворов веществ, процесса диссоциации кислот, щелочей и солей (возможно использование видеоматериалов); проведение опытов, иллюстрирующих признаки протекания реакций ионного обмена (образование осадка, выделение газа, образование воды); опытов, иллюстрирующих примеры окислительно-восстановительных реакций (горение, реакции разложения, соединения); распознавание неорганических веществ с помощью качественных реакций на ионы; решение экспериментальных задач.

Неметаллы и их соединения

Общая характеристика галогенов. Особенности строения атомов, характерные степени окисления. Строение и физические свойства простых веществ — галогенов. Химические свойства на примере хлора (взаимодействие с металлами, неметаллами — водородом и кислородом, *щелочами*). Хлороводород. Соляная кислота, химические свойства, *получение*, применение. *Действие хлора и хлороводорода на организм человека*. Важнейшие хлориды и их нахождение в природе.

Общая характеристика элементов VIA-группы. Особенности строения атомов кислорода и серы. Характерные степени окисления.

Строение и физические свойства простых веществ – кислорода и серы. Аллотропные модификации кислорода и серы. Химические свойства серы (взаимодействие с неметаллами – водородом и кислородом, металлами, концентрированными азотной и серной кислотами). Сероводород: строение, физические и химические свойства (кислотные и восстановительные свойства). Оксиды серы как представители кислотных оксидов. Серная кислота: физические и химические свойства (общие и специфические). Соли серной кислоты, качественная реакция на сульфат-ион. Сернистая кислота. Химические реакции, лежащие в основе

промышленного способа получения серной кислоты. Нахождение серы и её соединений в природе. Применение серы и ее соединений в быту и в промышленности. Химическое загрязнение окружающей среды соединениями серы (кислотные дожди, загрязнение воздуха и водоёмов), способы его предотвращения.

Общая характеристика элементов VA-группы. Особенности строения атомов азота и фосфора, характерные степени окисления.

Азот, распространение в природе, физические и химические свойства (взаимодействие с металлами и неметаллами - кислородом и водородом). Круговорот азота в природе. Аммиак: физические и химические свойства (окисление, основные свойства водного раствора), получение и применение. Соли аммония: состав, физические и химические свойства (разложение, взаимодействие со щелочами), применение. Качественная реакция на ионы аммония. Азотная кислота, её физические и химические свойства (общие и специфические), получение. Нитраты (разложение). Азотистая кислота. Использование нитратов и солей аммония в качестве минеральных удобрений. Химическое загрязнение окружающей среды соединениями азота (кислотные дожди, загрязнение воздуха, почвы и водоёмов).

Фосфор, аллотропные модификации фосфора, физические и химические свойства (взаимодействие с металлами, неметаллами, концентрированными азотной и серной кислотами). Оксид фосфора (V), ортофосфорная кислота: физические и химические свойства, получение. Понятие о минеральных удобрениях: нитраты и фосфаты. Понятие о комплексных удобрениях. Общая характеристика элементов IVA-группы. Особенности строения атомов углерода и кремния. Валентность и характерные степени окисления атомов углерода и кремния. Распространение углерода в природе, характерные степени окисления.

Углерод, аллотропные модификации (графит, алмаз), физические и химические свойства простых веществ (взаимодействие с металлами, неметаллами, концентрированными азотной и серной кислотами). Адсорбция. Круговорот углерода в природе. Оксиды углерода, их физические и химические свойства, получение и применение, действие на организм человека. Экологические проблемы, связанные с оксидом углерода(IV); гипотеза глобального потепления климата; парниковый эффект. Угольная кислота и её соли, их физические и химические свойства, получение и применение. Качественная реакция на карбонат-ионы. Использование карбонатов в быту, медицине, промышленности и сельском хозяйстве.

Общие представления об особенностях состава и строения органических соединений углерода (на примере метана, этилена, этанола, уксусной кислоты. *Их состав и химическое строение*. *Классификация органических вещества*. Понятие о биологически важных веществах: жирах, белках, углеводах — и их роли в жизни человека. *Материальное единство органических и неорганических соединений*.

Кремний, его физические и химические свойства (на примере взаимодействия с металлами и неметаллами), получение и применение. Соединения кремния в природе. Общие представления об оксиде кремния(IV) и кремниевой кислоте. Силикаты, физические и химические свойства, получение и применение в быту, промышленности (в медицинской, электронной, строительной и др.). Важнейшие строительные материалы: керамика, стекло, цемент, бетон, железобетон. Проблемы безопасного использования строительных материалов в повседневной жизни.

Химический эксперимент: изучение образцов неорганических веществ, свойств соляной кислоты; проведение качественных реакций на хлорид-ионы и наблюдение признаков их протекания; опыты, отражающие физические и химические свойства галогенов и их соединений (возможно использование видеоматериалов); ознакомление с образцами хлоридов (галогенидов); ознакомление с образцами серы и её соединениями (возможно использование видеоматериалов); наблюдение процесса обугливания сахара под

действием концентрированной серной кислоты; изучение химических свойств разбавленной серной кислоты, проведение качественной реакции на сульфат-ион и наблюдение признака её протекания; ознакомление с физическими свойствами азота, фосфора и их соединений (возможно использование видеоматериалов), образцами азотных и фосфорных удобрений; получение аммиака и изучение его свойств; проведение качественных реакций на ион аммония и фосфат-ион и изучение признаков их протекания, взаимодействие концентрированной азотной кислоты с медью (возможно использование видеоматериалов); изучение моделей кристаллических решёток алмаза, графита; ознакомление с процессом адсорбции растворённых веществ активированным углём и устройством противогаза; получение углекислого газа и изучение его свойств; проведение качественных реакций на карбонат- и силикат-ионы и изучение признаков их протекания; ознакомление с продукцией силикатной промышленности; решение экспериментальных задач по теме «Важнейшие неметаллы и их соединения».

Металлы и их соединения

Общая характеристика химических элементов — металлов на основании их положения в Периодической системе химических элементов Д. И. Менделеева и строения атомов. Строение металлов. Металлическая связь и металлическая кристаллическая решётка. Электрохимический ряд напряжений металлов. Физические и химические свойства металлов (взаимодействие с кислородом, водой, кислотами). Общие способы получения металлов. Понятие о коррозии металлов, основные способы защиты их от коррозии. Сплавы (сталь, чугун, дюралюминий, бронза) и их применение в быту и промышленности.

Щелочные металлы: положение в Периодической системе химических элементов Д. И. Менделеева; строение атомов. Нахождение в природе. Физические и химические свойства (на примере натрия и калия). Оксиды и гидроксиды натрия и калия. Применение щелочных металлов и их соединений.

Щелочноземельные металлы магний и кальций: положение в Периодической системе химических элементов Д. И. Менделеева; строение их атомов; нахождение в природе. Физические и химические свойства магния и кальция. Важнейшие соединения кальция (оксид, гидроксид, соли). Жёсткость воды и способы её устранения.

Алюминий: положение в Периодической системе химических элементов Д. И. Менделеева; строение атома; нахождение в природе. Физические и химические свойства алюминия. Амфотерные свойства оксида и гидроксида алюминия.

Железо: положение в Периодической системе химических элементов Д. И. Менделеева; строение атома; нахождение в природе. Физические и химические свойства железа (взаимодействие с металлами, кислотами и солями). Оксиды, гидроксиды и соли железа(II) и железа(III): состав, свойства и получение.

Химический эксперимент: ознакомление с образцами металлов и сплавов, их физическими свойствами; изучение результатов коррозии металлов (возможно использование видеоматериалов), особенностей взаимодействия оксида кальция и натрия с водой (возможно использование видеоматериалов); исследование свойств жёсткой воды; процесса горения железа в кислороде (возможно использование видеоматериалов); признаков протекания качественных реакций на ионы (магния, кальция, алюминия, цинка, железа(II) и железа(III), меди(II)); наблюдение и описание процессов окрашивания пламени ионами натрия, калия и кальция (возможно использование видеоматериалов): исследование свойств гидроксида алюминия И гидроксида цинка; решение экспериментальных задач по теме «Важнейшие металлы и их соединения».

Химия и окружающая среда

Новые материалы и технологии. Вещества и материалы в повседневной жизни

человека. Химия и здоровье. Безопасное использование веществ и химических реакций в быту. Первая помощь при химических ожогах и отравлениях. Основы экологической грамотности. Химическое загрязнение окружающей среды (предельная допустимая концентрация веществ — ПДК). Роль химии в решении экологических проблем.

Природные источники углеводородов (уголь, природный газ, нефть), продукты их переработки, их роль в быту и промышленности.

Химический эксперимент: изучение образцов материалов (стекло, сплавы металлов, полимерные материалы).

Межпредметные связи

Реализация межпредметных связей при изучении химии в 9 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, модель, явление, парниковый эффект, технология, материалы.

Физика: материя, атом, электрон, протон, нейтрон, ион, нуклид, изотопы, радиоактивность, молекула, электрический заряд, проводники, полупроводники, диэлектрики, фотоэлемент, вещество, тело, объём, агрегатное состояние вещества, газ, раствор, растворимость, кристаллическая решётка, сплавы, физические величины, единицы измерения, космическое пространство, планеты, звёзды, Солнце.

Биология: фотосинтез, дыхание, биосфера, экосистема, минеральные удобрения, микроэлементы, макроэлементы, питательные вещества.

География: атмосфера, гидросфера, минералы, горные породы, полезные ископаемые, топливо, водные ресурсы.

Выполнение практических работ

При проведении практической работы каждый ее этап выполняется обучающимися с ЗПР вместе с учителем и под его руководством. На доске обязательно вывешиваются правила техники безопасности, соответствующие данному виду работы, дается правильная запись формул и указывается цель проведения работы. При необходимости дается визуальный алгоритм выполнения задания. Это способствует осознанию обучающимися выполняемых действий и полученного результата.

Примерные контрольно-измерительные материалы по химии

Для организации проверки, учета и контроля знаний обучающихся по предмету предусмотрены контрольные работы, самостоятельные работы, зачеты, практические работы, тестирование. Одним из методов контроля результатов обучения обучающихся с ЗПР является метод поливариативного экспресс-тестирования с конструируемыми ответами. Его отличительными чертами являются оперативность, высокая степень индивидуализации знаний, сравнительно малые затраты времени и труда на проверку ответов обучающихся.

Для обучающихся с ЗПР возможно изменение формулировки заданий на «пошаговую», адаптация предлагаемого обучающемуся тестового (контрольно-оценочного) материала: использование устных и письменных инструкций, упрощение длинных сложных формулировок инструкций, решение с опорой на алгоритм, образец, использование справочной информации.

Планируемые результаты освоения учебного предмета «химия» на уровне основного общего образования

В целом результаты освоения обучающимися с ЗПР учебного предмета «Химия» должны совпадать с результатами РАБОЧЕЙ ПРОГРАММЫ МБОУСОШ № 15 ИМ. ГУСЕВА В.В. основного общего образования. Наиболее значимыми являются:

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ:

мотивация к обучению и целенаправленной познавательной деятельности;

установка на осмысление личного опыта, наблюдений за химическими экспериментами;

ориентация на правила индивидуального и коллективного безопасного поведения при взаимодействии с химическими веществами и соединениями;

практическое изучение профессий и труда различного рода, в том числе на основе применения изучаемого предметного знания (например, лаборант химического анализа);

уважение к труду и результатам трудовой деятельности;

готовность к осознанному построению дальнейшей индивидуальной траектории образования на основе ориентировки в мире профессий и профессиональных предпочтений, уважительного отношения к труду;

осознание своего поведения с точки зрения опасности или безопасности для себя или для окружающих;

основы экологической культуры, соответствующей современному уровню экологического мышления, приобретение опыта экологически ориентированной практической деятельности в жизненных ситуациях;

осознание последствий и неприятие вредных привычек (употребления алкоголя, наркотиков, курения) и иных форм вреда для физического и психического здоровья;

принятие решений в жизненной ситуации на основе переноса полученных в ходе обучения знаний в актуальную ситуацию, восполнять дефицит информации;

готовность отбирать и использовать нужную информацию в соответствии с контекстом жизненной ситуации.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Овладение универсальными учебными познавательными действиями:

выявлять причины и следствия простых химических явлений;

осуществлять сравнение, классификацию химических веществ по заданным основаниям и критериям для указанных логических операций;

строить логическое суждение после предварительного анализа, включающее установление причинно-следственных связей;

выявлять дефициты информации, данных, необходимых для решения поставленной задачи;

преобразовывать информацию из одного вида в другой (таблицу в текст и пр.);

создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач с помощью педагога;

- с помощью педагога проводить химический опыт, несложный эксперимент, для установления особенностей объекта изучения, причинно-следственных связей и зависимостей объектов между собой;
- с помощью педагога или самостоятельно формулировать обобщения и выводы по результатам проведенного наблюдения, опыта;

прогнозировать возможное развитие химических процессов и их последствия;

искать или отбирать информацию или данные из источников с учетом предложенной учебной задачи и заданных критериев.

Овладение универсальными учебными коммуникативными действиями:

организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.).

с помощью педагога или самостоятельно составлять устные и письменные тексты с использованием иллюстративных материалов для выступления перед аудиторией;

организовывать учебное сотрудничество и совместную деятельность с учителем и

сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;

оценивать качество своего вклада в общий продукт, принимать и разделять ответственность и проявлять готовность к предоставлению отчета перед группой.

Овладение универсальными учебными регулятивными действиями:

обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;

владеть основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

давать адекватную оценку ситуации и предлагать план ее изменения;

предвидеть трудности, которые могут возникнуть при решении учебной задачи;

понимать причины, по которым не был достигнут требуемый результат деятельности, определять позитивные изменения и направления, требующие дальнейшей работы;

осознанно относиться к другому человеку, его мнению.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В составе предметных результатов по освоению обязательного содержания, установленного данной примерной рабочей программой, выделяют: научные знания, умения и способы действий, специфические для учебного предмета «Химия», виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных и новых ситуациях:

- представление о закономерностях и познаваемости явлений природы, понимание объективной значимости основ химической науки как области современного естествознания, компонента общей культуры и практической деятельности человека в условиях современного общества; понимание места химии среди других естественных наук;
- владение основами понятийного аппарата и символического языка химии для составления формул неорганических веществ, уравнений химических реакций (с опорой на алгоритм учебных действий); владение основами химической номенклатуры (IUPAC и тривиальной) и умение использовать её для решения учебно-познавательных задач с помощью учителя; умение использовать модели для объяснения строения атомов и молекул по алгоритму с опорой на определения;
- представление о системе химических знаний и умение с помощью учителя применять систему химических знаний для установления взаимосвязей между изученным материалом и при получении новых знаний, а также в процессе выполнения учебных заданий и при работе с источниками химической информации, которая включает:

важнейшие химические понятия: химический элемент, атом, молекула, вещество, простое и сложное вещество, однородная и неоднородная смесь, относительные атомная и молекулярная массы, количество вещества, моль, молярная масса, молярный объем, оксид, кислота, основание, соль (средняя), химическая реакция, реакции соединения, реакции разложения, реакции замещения, реакции обмена, тепловой эффект реакции, экзо- и эндотермические реакции, раствор, массовая доля химического элемента в соединении, массовая доля и процентная концентрация вещества в растворе, ядро атома, электрический слой атома, атомная орбиталь, радиус атома, валентность, степень окисления, химическая связь, электроотрицательность, полярная и неполярная ковалентная связь, ионная связь, металлическая связь, кристаллическая решетка (атомная, ионная, металлическая,

молекулярная), ион, катион, анион, электролит и не электролит, электролитическая диссоциация, реакции ионного обмена, окислительно-восстановительные реакции, окислитель и восстановитель, окисление и восстановление, электролиз, химическое равновесие, обратимые и необратимые реакции, скорость химической реакции, катализатор, предельно допустимая концентрация (ПДК), коррозия металлов, сплавы;

основополагающие законы химии: закон сохранения массы, Периодический закон Д. И. Менделеева, закон постоянства состава, закон Авогадро;

теории химии: атомно-молекулярная теория, теория электролитической диссоциации, а также представления о научных методах познания, в том числе экспериментальных и теоретических методах исследования веществ и изучения химических реакций;

- представление о периодической зависимости свойств химических элементов (радиус атома, электроотрицательность), простых и сложных веществ от положения элементов в Периодической системе (в малых периодах и главных подгруппах) и электронного строения атома; умение объяснять связь положения элемента в Периодической системе с числовыми характеристиками строения атомов химических элементов (состав и заряд ядра, общее число электронов), распределением электронов по энергетическим уровням атомов первых трех периодов, калия и кальция; классифицировать химические элементы с опорой на определения физического смысла цифровых данных периодической таблицы;
- умение классифицировать химические элементы, неорганические вещества и химические реакции с опорой на схемы; определять валентность и степень окисления химических элементов, вид химической связи и тип кристаллической структуры в соединениях, заряд иона, характер среды в водных растворах веществ (кислот, оснований), окислитель и восстановитель по алгоритму учебных действий;
- умение характеризовать с опорой на схему физические и химические свойства простых веществ (кислород, озон, водород, графит, алмаз, кремний, азот, фосфор, сера, хлор, натрий, калий, магний, кальций, алюминий, железо) и сложных веществ, в том числе их водных растворов (вода, аммиак, хлороводород, сероводород, оксиды и гидроксиды металлов I IIA групп, алюминия, меди (II), цинка, железа (II и III), оксиды углерода (II и IV), кремния (IV), азота и фосфора (III и V), серы (IV и VI), сернистая, серная, азотистая, азотная, фосфорная, угольная, кремниевая кислота и их соли); описывать с опорой на план и ключевые слова; умение прогнозировать и характеризовать свойства веществ в зависимости от их состава и строения после предварительного анализа под руководством педагога, применение веществ в зависимости от их свойств, возможность протекания химических превращений в различных условиях, влияние веществ и химических процессов на организм человека и окружающую природную среду;
- умение составлять по образцу, схеме, алгоритму учебных действий молекулярные и ионные уравнения реакций (в том числе реакций ионного обмена и окислительно-восстановительных реакций), иллюстрирующих химические свойства изученных классов / групп неорганических веществ, а также подтверждающих генетическую взаимосвязь между ними;
- умение вычислять относительную молекулярную и молярную массы веществ, массовую долю химического элемента в соединении, массовую долю вещества в растворе, количество вещества и его массу, объём газов с опорой на общие формулы; умение проводить расчеты по уравнениям химических реакций и находить количество вещества, объем и массу реагентов или продуктов реакции с опорой на образец, алгоритм учебных действий;
- владение основными методами научного познания (наблюдение, измерение, эксперимент, моделирование) при изучении веществ и химических явлений с опорой на

алгоритм учебных действий; умение сформулировать проблему и предложить пути ее решения с помощью педагога; знание основ безопасной работы с химическими веществами, химической посудой и лабораторным оборудованием;

• наличие практических навыков планирования и осуществления следующих химических экспериментов под руководством учителя с обсуждением плана работы или составлением таблицы:

изучение и описание физических свойств веществ;

ознакомление с физическими и химическими явлениями;

опыты, иллюстрирующие признаки протекания химических реакций;

изучение способов разделения смесей;

получение кислорода и изучение его свойств;

получение водорода и изучение его свойств;

получение углекислого газа и изучение его свойств;

получение аммиака и изучение его свойств;

приготовление растворов с определенной массовой долей растворенного вещества;

исследование и описание свойств неорганических веществ различных классов;

применение индикаторов (лакмуса, метилоранжа и фенолфталеина) для определения характера среды в растворах кислот и щелочей;

изучение взаимодействия кислот с металлами, оксидами металлов, растворимыми и нерастворимыми основаниями, солями;

получение нерастворимых оснований;

вытеснение одного металла другим из раствора соли;

исследование амфотерных свойств гидроксидов алюминия и цинка;

решение экспериментальных задач по теме «Основные классы неорганических соединений»;

решение экспериментальных задач по теме «Электролитическая диссоциация»;

решение экспериментальных задач по теме «Важнейшие неметаллы и их соединения»; решение экспериментальных задач по теме «Важнейшие металлы и их соединения»;

химические эксперименты, иллюстрирующие признаки протекания реакций ионного обмена;

качественные реакции на присутствующие в водных растворах ионы: хлорид-, бромид-, иодид-, сульфат-, фосфат-, карбонат-, силикат-анионы, гидроксид-ионы, катионы аммония, магния, кальция, алюминия, железа (2+) и железа (3+), меди (2+), цинка;

умение представлять результаты эксперимента в форме выводов, доказательств, графиков и таблиц и выявлять эмпирические закономерности;

- владение правилами безопасного обращения с веществами, используемыми в повседневной жизни, а также правилами поведения в целях сбережения здоровья и окружающей природной среды; понимание вреда (опасности) воздействия на живые организмы определенных веществ, а также способов уменьшения и предотвращения их вредного воздействия; понимание значения жиров, белков, углеводов для организма человека;
- владение основами химической грамотности, включающей умение правильно использовать изученные вещества и материалы (в том числе, минеральные удобрения, металлы и сплавы, продукты переработки природных источников углеводородов (угля, природного газа, нефти) в быту, сельском хозяйстве, на производстве; умение приводить примеры правильного использования изученных веществ и материалов;
- умение устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в макро- и микромире, объяснять причины

многообразия веществ; умение интегрировать химические знания со знаниями других учебных предметов с помощью педагога;

• представление о сферах профессиональной деятельности, связанных с химией и современными технологиями, основанными на достижениях химической науки; наличие опыта работы с различными источниками информации по химии (научно-популярная литература, словари, справочники, интернет-ресурсы) с опорой на алгоритм: умение объективно оценивать информацию о веществах, их превращениях и практическом применении.

Требования к предметным результатам освоения учебного предмета «Химия», распределенные по годам обучения

Результаты по годам формулируются по принципу добавления новых результатов от года к году, уже названные в предыдущих годах позиции, как правило, дословно не повторяются, но учитываются (результаты очередного года по умолчанию включают результаты предыдущих лет).

8 КЛАСС

раскрывать смысл основных химических понятий: атом, молекула, химический элемент, простое вещество, сложное вещество, смесь (однородная и неоднородная), валентность, относительная атомная и молекулярная масса, количество вещества, моль, молярная масса, массовая доля химического элемента в соединении, молярный объём, оксид, кислота, основание, соль, электроотрицательность , степень окисления, химическая реакция, классификация реакций: реакции соединения, реакции разложения, реакции замещения, реакции обмена, экзо- и эндотермические реакции; тепловой эффект реакции; ядро атома, электронный слой атома, атомная орбиталь, радиус атома, химическая связь, полярная и неполярная ковалентная связь, ионная связь, ион, катион, анион, раствор, массовая доля вещества (процентная концентрация) в растворе;

иллюстрировать взаимосвязь основных химических понятий (см. п. 1) и применять эти понятия при описании веществ и их превращений;

использовать химическую символику для составления формул веществ, молекулярных уравнений химических реакций, электронного баланса;

определять валентность атомов элементов в бинарных соединениях; степень окисления элементов в бинарных соединениях с опорой на определения, в том числе структурированные; принадлежность веществ к определённому классу соединений по формулам; вид химической связи (ковалентная и ионная) в неорганических соединениях;

иметь представление о системе химических знаний, уметь с помощью учителя применять систему химических знаний, для установления взаимосвязи между изученным материалом и при получении новых знаний, а также при работе с источниками химической информации. Ориентироваться в понятиях и оперировать ими на базовом уровне, применять при выполнении учебных заданий и решении расчетных задач с опорой на алгоритм учебных действий изученные законы и теории: закон сохранения массы, Периодический закон Д.И. Менделеева, закон постоянства состава, закон Авогадро; атомно-молекулярная теория. Соотносить обозначения, которые имеются в таблице «Периодическая система химических элементов Д. И. Менделеева» с числовыми характеристиками строения атомов химических элементов (состав и заряд ядра, общее число электронов и распределение их по электронным слоям);

классифицировать химические элементы; неорганические вещества; химические реакции (по числу и составу участвующих в реакции веществ, по тепловому эффекту, по

¹ Здесь и далее курсивом обозначаются планируемые предметные результаты, которые могут быть потенциально достигнуты обучающимся с ЗПР, но не являются обязательными.

изменению степени окисления химических элементов) с опорой на схемы;

характеризовать (описывать) общие химические свойства веществ различных классов, подтверждая описание примерами молекулярных уравнений соответствующих химических реакций с опорой на схемы;

прогнозировать свойства веществ в зависимости от их состава и строения; возможности протекания химических превращений в различных условиях после предварительного обсуждения с педагогом;

вычислять относительную молекулярную и молярную массы веществ; массовую долю химического элемента по формуле соединения; массовую долю вещества в растворе; проводить расчёты по уравнению химической реакции с опорой на алгоритм;

применять основные операции мыслительной деятельности — анализ и синтез, сравнение, обобщение, систематизация, классификация, выявление причинно-следственных связей — для изучения свойств веществ и химических реакций; естественно-научные методы познания — наблюдение, измерение, моделирование, эксперимент (реальный и мысленный) под руководством педагога;

следовать правилам пользования химической посудой и лабораторным оборудованием, а также правилам обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов по получению и собиранию газообразных веществ (водорода и кислорода), приготовлению растворов с определённой массовой долей растворённого вещества; планировать и проводить химические эксперименты по распознаванию растворов щелочей и кислот с помощью индикаторов (лакмус, фенолфталеин, метилоранж и др.), подтверждающих качественный состав неорганических веществ (качественные реакции на ионы) под руководством педагога.

9 КЛАСС

раскрывать смысл основных химических понятий: химический элемент, атом, молекула, ион, катион, анион, простое вещество, сложное вещество, валентность, электроотрицательность, степень окисления, химическая реакция, химическая связь, тепловой эффект реакции, моль, молярный объём, раствор; электролиты, неэлектролиты, электролитическая диссоциация, реакции ионного обмена, катализатор, химическое равновесие, обратимые и необратимые реакции, окислительно-восстановительные реакции, окислитель, восстановитель, окисление и восстановление, аллотропия, амфотерность, химическая связь (ковалентная, ионная, металлическая), кристаллическая решётка, коррозия металлов, сплавы; скорость химической реакции, предельно допустимая концентрация (ПДК) вещества;

иллюстрировать взаимосвязь основных химических понятий (см. п. 1) и применять эти понятия при описании веществ и их превращений;

использовать знаки и символы для фиксации результатов наблюдений, составления формул веществ и уравнений химических реакций, записи данных условий задач. Использовать обозначения, имеющиеся в Периодической системе и таблице растворимости кислот, оснований и солей в воде для выполнения заданий.

определять валентность и степень окисления химических элементов в соединениях различного состава; принадлежность веществ к определённому классу соединений с опорой на определения, в том числе структурированные; виды химической связи (ковалентная, ионная, металлическая) в неорганических соединениях; заряд иона по химической формуле; характер среды в водных растворах кислот и щелочей, *тип кристаллической решётки конкретного вещества*;

раскрывать смысл Периодического закона Д.И. Менделеева и демонстрировать его понимание: *описывать и характеризовать* табличную форму Периодической системы химических элементов: различать понятия «главная подгруппа (А-группа)» и «побочная подгруппа (Б-группа)», малые и большие периоды; *соотносить* обозначения, которые

имеются в периодической таблице, с числовыми характеристиками строения атомов химических элементов (состав и заряд ядра, общее число электронов и распределение их по электронным слоям); *объяснять* общие закономерности в изменении свойств химических элементов и их соединений в пределах малых периодов и главных подгрупп с учётом строения их атомов;

классифицировать химические элементы; неорганические вещества; химические реакции (по числу и составу участвующих в реакции веществ, по тепловому эффекту, по изменению степеней окисления химических элементов) с опорой на схемы;

характеризовать (описывать) общие и специфические химические свойства веществ различных классов, подтверждая описание примерами молекулярных и ионных уравнений соответствующих химических реакций с опорой на схемы;

составлять уравнения электролитической диссоциации кислот, щелочей и солей; полные и сокращённые уравнения реакций ионного обмена; уравнения реакций, подтверждающих существование генетической связи между веществами различных классов;

раскрывать сущность окислительно-восстановительных реакций посредством составления электронного баланса этих реакций;

прогнозировать свойства веществ в зависимости от их строения; возможности протекания химических превращений после предварительного обсуждения с педагогом;

вычислять относительную молекулярную и молярную массы веществ; массовую долю химического элемента по формуле соединения; массовую долю вещества в растворе; проводить расчёты по уравнению химической реакции с опорой на алгоритм;

следовать правилам пользования химической посудой и лабораторным оборудованием, а также правилам обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов по получению и собиранию газообразных веществ (аммиака и углекислого газа);

проводить реакции, подтверждающие качественный состав различных веществ: распознавать опытным путём хлорид- бромид-, иодид-, карбонат-, фосфат-, силикат-, сульфат-, гидроксид-ионы, катионы аммония и ионы изученных металлов, присутствующие в водных растворах неорганических веществ;

применять основные операции мыслительной деятельности — анализ и синтез, сравнение, обобщение, систематизацию, выявление причинно-следственных связей — для изучения свойств веществ и химических реакций; естественно-научные методы познания — наблюдение, измерение, моделирование, эксперимент (реальный и мысленный).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 8 КЛАСС

№ п/ п	Наименование разделов и тем программы	Количество часов			Электронные		
		Всег	Контрольн ые работы	Практическ ие работы	(цифровые) образовательные ресурсы		
Pas	Раздел 1.Первоначальные химические понятия						
1.1	Химия — важная область естествознания и практической деятельности человека	5		2	Библиотека ЦОК https://m.edsoo.ru/7f418 37c		

1.2	Вещества и химические реакции	15	1		Библиотека ЦОК https://m.edsoo.ru/7f418 37c
Ито	Итого по разделу				
Раз	дел 2.Важнейшие пр	е дстави	тели неорганич	еских веществ	
2.1	Воздух. Кислород. Понятие об оксидах	6			Библиотека ЦОК https://m.edsoo.ru/7f418 37c
2.2	Водород. Понятие о кислотах и солях	8		1	Библиотека ЦОК https://m.edsoo.ru/7f418 37c
2.3	Вода. Растворы. Понятие об основаниях	5	1	1	Библиотека ЦОК https://m.edsoo.ru/7f418 37c
2.4	Основные классы неорганических соединений	11	1	1	Библиотека ЦОК https://m.edsoo.ru/7f418 37c
Ито	ого по разделу	30			
Раздел 3.Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Строение атомов. Химическая связь. Окислительно-восстановительные реакции					
3.1	Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Строение атома	7			Библиотека ЦОК https://m.edsoo.ru/7f418 37c
3.2	Химическая связь. Окислительновосстановительные реакции	8	2		Библиотека ЦОК https://m.edsoo.ru/7f418 37c
Итого по разделу		15			Библиотека ЦОК https://m.edsoo.ru/7f418 37c
Резервное время		3			Библиотека ЦОК https://m.edsoo.ru/7f418 37c
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		68	5	5	

9 КЛАСС

No	Наименование разделов и тем программы	Количе	ство часов	Электронные	
Л <u>е</u> П/ П		Всег	Контрольн ые работы	Практическ ие работы	(цифровые) образовательные ресурсы
Разд	цел 1.Вещество и хи	мически	е реакции		
1.1	Повторение и углубление знаний основных разделов курса 8 класса	5	1		Библиотека ЦОК https://m.edsoo.ru/7f41a636
1.2	Основные закономерности химических реакций	4			Библиотека ЦОК https://m.edsoo.ru/7f41a 636
1.3	Электролитическ ая диссоциация. Химические реакции в растворах	8	1	1	Библиотека ЦОК https://m.edsoo.ru/7f41a 636
Ито	го по разделу	17			
	цел 2.Неметаллы и	их соеди	нения		
2.1	Общая характеристика химических элементов VIIA-группы. Галогены	4		1	Библиотека ЦОК https://m.edsoo.ru/7f41a 636
2.2	Общая характеристика химических элементов VIA-группы. Сера и её соединения	6			Библиотека ЦОК https://m.edsoo.ru/7f41a 636
2.3	Общая характеристика химических элементов VA-группы. Азот, фосфор и их соединения	7		1	Библиотека ЦОК https://m.edsoo.ru/7f41a 636
2.4	Общая характеристика химических элементов IVA-группы. Углерод	8	1	2	Библиотека ЦОК https://m.edsoo.ru/7f41a 636

	и кремний и их соединения					
Ито	Итого по разделу					
	дел 3.Металлы и их	соедине	ния			
3.1	Общие свойства металлов	4			Библиотека ЦОК https://m.edsoo.ru/7f41a 636	
3.2	Важнейшие металлы и их соединения	16	1	2	Библиотека ЦОК https://m.edsoo.ru/7f41a 636	
Итого по разделу		20				
Раз,	Раздел 4.Химия и окружающая среда					
4.1	Вещества и материалы в жизни человека	3			Библиотека ЦОК https://m.edsoo.ru/7f41a 636	
Итого по разделу		3				
Резервное время		3			Библиотека ЦОК https://m.edsoo.ru/7f41a 636	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		68	4	7		

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

Химия: 8 класс: базовый уровень: учебник: 6-е издание

О.С. Габриелян, И.Г.Остроумов, С.А.Сладков

АО «Издательство «Просвещение» 2024г;

Химия: 9 класс, базовый уровень: учебник /

Г.Е Рудзитес, Ф.Г. Фельдман : 3-е издание: Издательство «Просвещение» 2017г. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯТаблицы, карточки, видео презентации, макеты, наглядные пособия, приборы для лабораторных работ.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ

интернет

Инфоурок : ссылка https//infourok.ru/