Министерство образования и науки РД ГБПОУ «Колледж экономики и предпринимательства»

ФОНД-ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

ОП.03 ОСНОВЫ ЭЛЕКТРОНИКИ И ЦИФРОВОЙ СХЕМОТЕХНИКИ

программы подготовки квалифицированных рабочих, служащих по профессии

09.01.03 Мастер по обработке цифровой информации

PACCMOTPEHO

на заседании ПЦК

«Информатика и информационные технологии»

Протокол № 1 от «28» августа 2023 г.

Председатель ПЦК

Таймасханова Э.М.

(подпись)

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта (далее – ФГОС) по профессии 09.01.03 Мастер по обработке цифровой информации, утвержденного приказом Минобрнауки России ОТ 02.08.2013 $N_{\underline{0}}$ 854 (ред. ОТ 13.07.2021) (Зарегистрировано в Минюсте России 20.08.2013 № 29569), в соответствии с приказом Минобрнауки РФ от 05.06.2014 № 632 «Об установлении соответствия профессий и специальностей среднего профессионального образования, перечни которых утверждены приказом министерства образования и науки Российской Федерации от 29 октября 2013 г. № 1199, профессиям начального профессионального образования, перечень которых утвержден приказом министерства образования и науки российской федерации от 28 сентября 2009 г. № 354, и специальностям среднего профессионального образования, перечень которых утвержден приказом министерства образования российской федерации OT 28 сентября 2009 (Зарегистрировано в Минюсте РФ 08.07.2014 № 33008) и рабочей программы учебной дисциплины ОП.03 ОСНОВЫ ЭЛЕКТРОНИКИ И ЦИФРОВОЙ СХЕМОТЕХНИКИ

СОДЕРЖАНИЕ

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	4
2. ПАСПОРТ ФОС ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ	6
3. ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ	8
4. ПАСПОРТ ФОС ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	18
5 ОПЕНОЧНЫЕ СРЕДСТВА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	20

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств (далее ФОС) предназначен для оценки достижения запланированных результатов обучения по учебной дисциплине ОП.3 Основы электроники и схемотехники по профессии СПО 09.01.03 Мастер по обработке цифровой информации.

Обучающийся должен овладеть предусмотренными ФГОС следующими образовательными результатами: умениями, знаниями:

- У1 определять параметры полупроводниковых приборов и элементов схемотехники;
- 31 основные сведения об электровакуумных и полупроводниковых приборах, выпрямителях, колебательных системах, антеннах; усилителях, генераторах электрических сигналов;
 - 32 общие сведения о распространении радиоволн;
 - 33 принцип распространения сигналов в линиях связи;
 - 34 сведения о волоконно-оптических линиях;
 - 35 цифровые способы передачи информации;
- 36 общие сведения об элементной базе схемотехники (резисторы, конденсаторы, диоды, транзисторы, микросхемы, элементы оптоэлектроники);
 - 37 логические элементы и логическое проектирование в базисах микросхем;
- 38 функциональные узлы (дешифраторы, шифраторы, мультиплексоры, демультиплексоры, цифровые компараторы, сумматоры, триггеры, регистры, счетчики);
 - 39 запоминающие устройства на основе БИС/СБИС;
 - 310 цифро-аналоговые и аналого-цифровые преобразователи которые формируют общие компетенциии профессиональные компетенции:
- OК 2 Организовывать собственную деятельность, исходя из цели и способов ее достижения, определенных руководителем
- OK 3 Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы
- OК 4 Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач
 - ОК 6 Работать в команде, общаться с коллегами, руководством, клиентами.
- ПК 1.1. Подготавливать к работе и настраивать аппаратное обеспечение, периферийные устройства, операционную систему персонального компьютера и мультимедийное оборудование

Формой промежуточной аттестации по учебной дисциплине является дифференцированный зачет (ДЗ).

В результате текущего контроля успеваемости и промежуточной аттестации по учебной дисциплине осуществляется комплексная проверка образовательных результатов.

Распределение образовательных результатов по формам и методам контроля и

оценки результатов обучения

оценки результатов обучения				
Образовательные результаты	Теку	щий конт	роль	
	yc	певаемос	ТИ	
	Оценочные средства лекций, уроков	Практические занятия	Самостоятельна я работа	Зачётное задание промежуточной аттестации
Уметь:				
определять параметры		+		
полупроводниковых приборов и				
элементов системотехники				
знать:				
основные сведения об электровакуумных				
и полупроводниковых приборах,				
выпрямителях, колебательных системах,				
антеннах; усилителях, генераторах				
электрических сигналов;				
общие сведения о распространении	+			
радиоволн;	'			
принцип распространения сигналов в		+		
линиях связи				
сведения о волоконно-оптических линиях			+	
цифровые способы передачи информации		+		
общие сведения об элементной базе				
схемотехники (резисторы, конденсаторы,				
диоды, транзисторы, микросхемы,	+			
элементы оптоэлектроники);				
логические элементы и логическое		+		
проектирование в базисах микросхем				
функциональные узлы (дешифраторы,				
шифраторы, мультиплексоры,				
демультиплексоры, цифровые			+	
компараторы, сумматоры, триггеры,				
регистры, счетчики)				
запоминающие устройства на основе БИС/СБИС;		+		
цифро-аналоговые и аналого-цифровые		+		
преобразователи		+		
преобразователи	1		1	

Проверка освоения знаний, умений проводится с учетом результатов текущего контроля успеваемости по учебной дисциплине.

Фонд оценочных средств включает материалы для текущего контроля успеваемости и промежуточной аттестации.

2. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

Учебной дисциплины ОП.03 Основы электроники и цифровой схемотехники

Цель - контроль освоения запланированных по $V\!\mathcal{I}$ образовательных результатов: умений и знаний, обеспечивающих формирование общих и профессиональных компетенций.

Формы текущего контроля:

Текущий контроль $V\!\mathcal{I}$ проводится в формах:

- Тестирование
- Практическое занятие
- Доклад

Периодичность:

текущий контроль проводиться в соответствии с рабочей программой и планами занятий. Периодичность проведения не реже 1 раза за 12 часов.

Порядок проведения:

текущий контроль проводится на учебных занятиях, а также включает в себя оценку выполнения самостоятельной работы. Порядок проведения текущего контроля определяется оценочными средствами (инструкционными листами, заданиями на ТК).

3. ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

Перечень лекций (уроков)

Тема лекции	Задание	время	
Тема 1.1Электронные приборы	Тест	10 мин	
Тема 1.2. Распространение сигналов радиоволн	Инструкционная карта	45мин	
П.р.«Исследование характеристик радиоволн»	инструкционная карта	43мин	
Тема 2.1 Элементы цифровых электронных			
цепей	Инструкционная карта	45мин	
П.р «Исследование состава электронной базы	инструкционная карта		
схемотехники»			
Тема 2.2 Логические элементы			
П.р. «Заполнение таблицы истинности по виду	Инструкционная карта	45мин	
логической функции»			
Тема 2.3 Функциональные узлы	тест	10 мин	
Тема 2.4 Запоминающие устройства			
П.Р. «Исследование характеристик	Инструкционная карта	45 мин	
запоминающих устройств на основе	тнетрукционная карта	+3 мин	
микросхем»			

Тест

1.	Как называется электроизмерительный прибор, с помощью которого определяют
	количество потребляемой энергии в доме?
	Ответ:

2. Стоимость электроэнергии - это?

Выберите один из 3 вариантов ответа:

- 1) разность конечного и начального показаний электросчётчика
- 2) произведение расхода электроэнергии на определённый тариф
- 3) сумма конечного и начального показаний электросчётчика
- 3. Наибольшее значение измеряемой величины называют Ответ:
- 4. Сопоставьте.

Укажите соответствие для всех 2 вариантов ответа:

- 1) последовательно с нагрузкой
- 2) параллельно нагрузке
- __ Вольтметр включают __ Амперметр включают
- 5. Каким электроизмерительным прибором измеряют сопротивление?

Выберите один из 5 вариантов ответа:

- 1) частотомер 2) вольтметр
- 3) омметр 4) ваттметр
- 5) амперметр
- 6. С помощью амперметров измеряют

Выберите один из 4 вариантов ответа:

- 1) сопротивление 2) напряжение
- 3) мощность 4) силу тока
- 7. Для чего нужны электроизмерительные приборы?

Выберите несколько из 5 вариантов ответа:

- 1) для контроля режима работы электрических установок
- 2) для учёта расходуемой электрической энергии
- 3) для монтажа электрических установок
- 4) для ремонта электрических установок
- 5) для испытания электрических установок

8. Как называют приборы, или класс устройств, которые применяют для измерения различных электрических величин?

Ответ:

9. Укажите, какие бывают типы электроизмерительных приборов.

Выберите несколько из 5 вариантов ответа:

- 1) табличные 2) шкальные
- 3) стрелочные 4) указательные
- 5) цифровые
- 10. Единица измерения потребляемой энергии в домах?

Выберите один из 3 вариантов ответа:

- 1) A · ч
- 2) кВт · ч
- 3) Вт · мин

Эталон ответов

```
1

) "ЭЛЕКТРОСЧЁТЧИК". 6) 4;

2) 2; 7) 1; 2; 5;

3) "пределом". 8) "ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ".

4) 2; 1; 9) 3; 5;

5) 3; 10) 2;
```

Инструкционная карта

к практическому занятию

Тема: «Исследование характеристик радиоволн»

Количество часов:45 минут

Цель: освоить алгоритм построения таблиц истинности для логических функций;

научиться определять и анализировать функции проводимости переключательных схем.

Дидактическое обеспечение: инструкционная карта.

Порядок выполнения работы

Теоретическая часть

Радиоволны пронизывают наши тела и каждый миллиметр пространства вокруг нас. Без них невозможно представить жизнь современного человека.

Радиоволны проникли в каждую сферу нашей жизни. Уже более 100 лет они являются частью нашей жизни и невозможно представать существование человека без них. Что это такое?

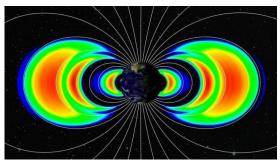
Радиоволна - электромагнитное излучение, которое распространяется в пространстве с особой частотой. Слово «радио» произошло от латинского - луч. Одна из характеристик радиоволн - частота колебаний, которая измеряется в Герцах. Так она названа в честь немецкого учёного, физика Генриха Герца. Он получил электромагнитные волны и исследовал их свойства. Колебания волны и её частота связаны друг с другом. Чем выше последняя, тем короче колебания.

История

Существует теория о том, что радиоволны возникли в момент большого взрыва. И хотя магнитные волны были всегда, человечество открыло их для себя сравнительно недавно. В 1868 году шотландец Джеймс Максвелл в своей работе описал их. Затем немецкий физик Генрих Герц доказал в

теории их существование. Это произошло в 1887 году. С тех пор интерес к магнитным волнам не иссякает. Исследования радиоволн ведутся во многих ведущих институтах мира.

Сферы применения радиоволн обширны - это и радио, и средства радиолокации, телевидение, телескопы, радары, микроволновые печи и всевозможные беспроводные средства связи. Широко используют их и в косметологии. Интернет, телевидение и телефония - все современные коммуникации, невозможны без магнитных волн.


Изобретение радио началось с устройства радиокондуктора Эдварда Бранли в 1890 году. Этот французский учёный создал свой прибор на основе идеи Генриха Герца, которая заключалась в том, что когда электромагнитная волна попадает на радиоустройство, возникает искра.

Прибор Бранли использовали для приёма сигнала. Первым опробовал этот прибор на 40 метров англичанин Оливер Лодж в 1894 году.

Александр Попов усовершенствовал приёмник Лоджа. Произошло это в 1895 году.

Телевидение

Применение радиоволн в телевидении имеет тот же принцип. Телевышки усиливают и передают сигнал в телевизоры, и они уже преобразуют их в изображение. Применение радиоволн в сотовой связи выглядит так же. Только требуется более плотная сеть ретросерсорных вышек. Эти вышки являются базовыми станциями, которые

передают сигнал и принимают его от абонента.

Сейчас распространена технология Wi-Fi, которая была разработана в 1991 году. Ее работа стала возможной после изучения свойств радиоволн и применение их значительно расширилось. Именно радиолокация даёт представление о том, что происходит на земле, в небе и в море, и в космосе. Принцип работы прост - радиоволна, передаваемая антенной, отражается от препятствия и возвращается назад сигналом. Компьютер обрабатывает его и выдаёт данные о размере объекта, скорости передвижения и направлении.

Радары с 1950 г. применяются также на дорогах, для контроля скорости автомобилей. Это было обусловлено растущим количеством автомобилей на дорогах и необходимым контролем над ними. Радар — это устройство для дистанционного определения скорости движущегося автомобиля. Полицейские оценили удобство использования этого устройства и через несколько лет радары были на всех дорогах мира. С каждым годом эти приборы видоизменялись, совершенствовались и на сегодняшний день их есть огромное количество видов. Делятся они на две группы: лазерные и «доплеровские».

Свойства радиоволн

Радиоволны обладают интересными особенностями:

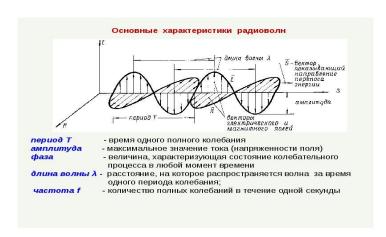
если радиоволна распространяется в среде, отличающаяся от воздуха, то она поглощает энергию;

траектория волны искривляется, если она находится в неоднородной среде и называется рефракцией радиоволны;

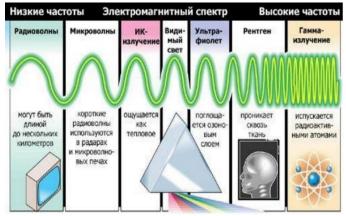
в однородной сфере радиоволны распространяются прямолинейно со скоростью, зависящей от параметров среды, и сопровождаются убыванием плотности потока энергии с увеличением расстояния;

когда радиоволны переходят с одной среды в другую, они отражаются и преломляются;

дифракцией называется свойство радиоволны огибать препятствие, которое встречается на их пути, но здесь есть одно необходимое условие - величина препятствия должна быть соизмерима с длиной волны.


Виды волн

Радиоволны делятся на три категории: короткие, средние и длинные. К первым относят волны с длиной от 10 до 100 м, что позволяет создавать направленные антенны. Они могут быть земными и ионосферными. Применение коротким радиоволнам нашлось в связи и вещании на большие расстояния.


Длина средних волн обычно варьируется от 100 до 1000 м. Частоты, характерные для них — 526-1606 кГц. Применение средних радиоволн реализовано во многих каналах вещания России.

Длинная — это волна от 1000 до 10 000 м. То, что выше этих показателей, называют сверхдлинными волнами. Эти волны имеют свойства малого поглощения при прохождении через сушу и море. Поэтому основное применение длинных радиоволн — в подводной и подземной связи. Особым их свойством является устойчивость к напряжённости электрического тока.

Наконец, стоит отметить, что изучение радиоволн идёт и по сей день. И, возможно, принесёт людям ещё немало сюрпризов.

Шкала электромагнитных волн

Инструкционная карта практическому занятию

Тема: ««Заполнение таблицы истинности по виду логической функции»»

Количество часов:45 минут

Цель: освоить алгоритм построения таблиц истинности для логических функций;

научиться определять и анализировать функции проводимости переключательных схем.

Дидактическое обеспечение: инструкционная карта.

Порядок выполнения работы

Алгебра логики — раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Алгебра логики возникла в середине XIX века в трудах английского математика Джорджа Буля. Буль первым показал, что существует аналогия между алгебраическими и логическими действиями, так как и те, и другие предполагают лишь два варианта ответов — истина или ложь, нуль или единица.

На основе анализа логической связи между высказываниями делается логический вывод. Для получения логического вывода составляется *таблица истинности*, в которой записывают все возможные комбинации каждого простого высказывания.

Работа ЭВМ как автоматических устройств основана исключительно на математически строгих правилах выполнения команд, программ и интерпретации данных. Тем самым работа компьютеров допускает строгую однозначную проверку правильности своей работы в плане заложенных в них процедур и алгоритмов обработки информации. Это позволяет использовать математический аппарат для анализа и разработки логических устройств вычислительной техники.

Функцией логических переменных называют взаимосвязь логических переменных по законам логики. Значения входных переменных и выходных функций связаны некоторым преобразованием, которое реализует логическую функцию.

Логические операции

Инверсия (логическое отрицание)

Операция, выражаемая словом "не", называется *погическим отрицанием* (инверсией) делает истинное выражение ложным и, наоборот, ложное – истинным.

Обозначается « ».

Обозначение: HE, OA, \overline{A} , NOT A

Таблица истинности для логического выражения А имеет вид

 $\begin{array}{ccc}
A & \overline{A} \\
0 & 1 \\
1 & 0
\end{array}$

Конъюнкция (логическое умножение)

Операция, выражаемая связкой "u", называется логическим умножением (конъюнкцией) и обозначается " U" (может также обозначаться знаками «?» (точка) или &). Высказывание AUB истинно тогда и только тогда, когда оба высказывания A и B истинны.

Обозначение: A и B, AUB, A?B, A AND B^{-1}

Таблица истинности для логических переменных А и В

\boldsymbol{A}	В	$A/\backslash B$
1	1	1
1	0	0
0	1	0

Дизъюнкция (логическое сложение)

Операция, выражаемая связкой "или" (в неисключающем смысле этого слова), называется логическим сложением (дизъюнкцией) и обозначается знаком U (или

+). Высказывание $A \cup B$ ложно тогда и только тогда, когда оба высказывания A и B ложны.

Обозначение: A ИЛИ B, AUB, A+B, A OR B

Таблица истинности для логических переменных А и В

\boldsymbol{A}	\boldsymbol{B}	$A \cup B$
1	1	1
1	0	1
0	1	1
0	0	0

В алгебре логики любую логическую функцию можно выразить через основные логические операции, записать ее в виде логического выражения и упростить ее, применяя законы логики и свойства логических операций. По формуле логической функции легко рассчитать ее таблицу истинности. Необходимо только учитывать порядок выполнения логических операций (приоритет) и скобки. Операции в логическом выражении выполняются слева направо с учетом скобок.

Приоритет выполнения логических операций:

- инверсия,
- конъюнкция,
- дизъюнкция.

Задание 1.

Построить таблицу истинности для логической функции $F = A \wedge (B \vee \overline{B} \wedge \overline{C})$

1. Определить *количество строк* в таблице истинности, которое равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение: количество строк = 2n, где n – количество переменных

Количество логических переменных -3 (A, B, C) поэтому количество строк -2n = 8.

2. Определить количество столбцов:

количество столбцов=количество переменных+количество операций. Количество логических операций -5 (умножение -2, сложение -1, отрицание -2), поэтому количество столбцов 3+5=8

Функции проводимости F некоторых переключательных схем:

1) Схема не содержит переключателей и проводит ток всегда, следовательно **F=1**;

2) 0______0

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

Схема проводит ток, когда переключатель \mathbf{x} замкнут, и не проводит, когда \mathbf{x} разомкнут, следовательно, $\mathbf{F}(\mathbf{x}) = \mathbf{x}$;

Схема проводит ток, когда переключатель **x** разомкнут, и не проводит, когда x замкнут, следовательно, (**x**) = \bar{x} ;

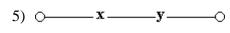
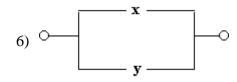



Схема проводит ток, когда оба переключателя замкнуты, следовательно, $\mathbf{F}(\mathbf{x},\mathbf{y}) = \mathbf{x} \ \mathbf{U}\mathbf{y}$;

____ Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, **F**(**x**,**y**)=**x U y**;

Любая сложная схема может быть преобразована в отдельные группы и представлена в виде логических функций нескольких переменных.

Задание 3.

Определить и проанализировать функцию проводимости переключательной схемы

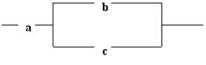
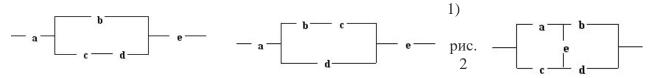


рис.

Функция проводимости имеет вид: F(a,b,c) = aU(bUc)


Построим таблицу истинности

buc au	(DUC)
0	0
1	0
1	0
1	0
0	0
1	1
1	1
1	1
	0 1 1 1 0 1 1

Анализируя таблицу истинности, можно сделать логический вывод, что для прохождения тока необходимо и достаточно, чтобы были замкнуты переключатели ${\bf a}$ и ${\bf b}$ или ${\bf a}$ и ${\bf c}$, или все три ${\bf a}$, ${\bf b}$, ${\bf c}$.

Задание 4.

Определить и проанализировать функции проводимости переключательных схем.

4. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ОП.04. Основы электроники и цифровой схемотехники

Цель - контроль освоения запланированных по $V\!\mathcal{I}$ образовательных результатов: умений и знаний, обеспечивающих формирование общих и профессиональных компетенций.

Форма промежуточной аттестации: Формой промежуточной аттестации по учебной дисциплине является дифференцированный зачет

Порядок проведения: дифференцированный зачёт по УД проводится на основе выполненного студентом зачётного задания (тест) и с учётом результатов текущего контроля успеваемости.

Соответствие заданий теста образовательным результатам:

1 Вариант:	2 Вариант:
1 - 31, y1	1 - 33
2 - 34,	2 - 39, V1
3 - 36,У1	3 - 36, V1
4 - 310, y1	4 - 37, Y1
5 - 37, Y1	5 - 31, Y1
6 - 33	6 - 39, V1
$7 - 38, y_1$	7 - 32
8 - 32	8 - 34,
9 - 35, y1	9 - 35, y1
10 - 39, Y1	10 - 310, У1

Критерии оценки дифференцированного зачета

Оценка	Условия
5	Оценка зачетного задания «4» и «5», ТКУ не менее 50% оценок «5»
4	Оценка зачетного задания «3» и «4» или «5», ТКУ не менее 50% оценок
	«4» и «5»
3	ТКУ и зачетное задание оценены «3»
2	ТКУ или зачетное задание оценены «2»

Место проведения: кабинет «Информатики и информационных технологий»

Продолжительность: 1 академический час

5. ОЦЕНОЧНЫЕ СРЕДСТВА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Задание на дифференцированный зачёт (тест)

Задание:

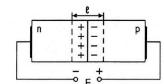
Уважаемый обучающийся. Вам предлагается на 1 вариант, 24 вопросов. Вопросы могут содержать как один, так и несколько правильных ответов! Отвечая на вопросы, Вы должны выбрать верный вариант ответа.

Также есть вопросы, в которых нужно дать развернутый ответ. Данный вопрос оценивается в 3 балла.

Для получения оценки:

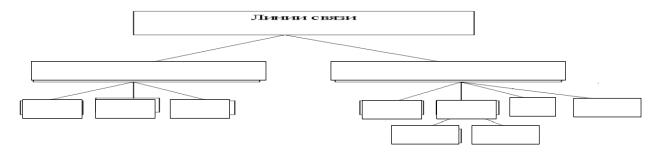
«5» –100% (все 10 ответов)

 $\langle 4 \rangle - 80-90\%$ (8-9 ответов)


(3) - 60-70 % (6-7 ответов)

«2» - 50% и менее

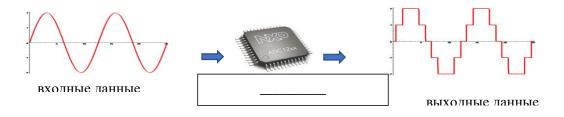
ВАРИАНТ 1


Вопрос № 1 Укажите номер правильного ответа

Как изменятся свойства **p-n** перехода, если к нему подключить источник E, напряжением 0,8 B, в указанной н схеме полярности:

- 1. Не изменятся;
- 2. Переход запирается;
- 3. Увеличится толщина р-пперхода.
- 4. Увеличится электропроводность р-п перехода.

Вопрос № 23аполните схему



Вопрос № 3 Укажите номер правильного ответа

Какие полупроводниковые приборы применяются для получения неизменяющегося напряжения в нагрузке?

- 1) Динисторы.
- 2) Тиристоры.
- 3) Стабилитроны.
- 4) Варикапы.

Вопрос № 4Какой вид преобразователя изображён?

Вопрос № 5 Укажите номер правильного ответа

Для какого полупроводникового прибора приведено условное графическое обозначение?

- 1) Для фотодиода.
- 2) Для фототиристора.
- 3) Для оптрона.
- 4) Нет правильного ответа.

Вопрос № 6 Укажите номер правильного ответа

Что характеризует полоса пропускания усилителя?

- 1) Диапазон частот усиливаемого сигнала.
- 2) Диапазон уровней напряжения входного сигнала.
- 3) Диапазон регулирования громкости выходного сигнала.
- 4) Нет правильного ответа.

Вопрос № 7. Дайте определение

<u>Шифратор</u> —

Вопро	oc №	8. Пе	еречислите	основные	характе	ристики	радиоволн:

- 1)
- 2)
- 3)
- 4)5)
- Вопрос № 9. Дополните

Шифратор иногда называют ______.

Вопрос № 10. Дайте определение

Выпрямитель (электрического тока) —

ВАРИАНТ 2

Вопрос № 1(дать определение) Сообщение -

Вопрос № 2 Укажите номер правильного ответа

К какой степени интеграции относятся интегральные микросхемы, содержащие 500 логических элементов??

- 1)К сверхвысокой
- 2) К малой
- 3) К средней
- 4) К высокой

Вопрос № 3 Укажите номер правильного ответа

Какие диоды применяют для выпрямления переменного тока?

- 1) Никакие
- 2) Точечные
- 3) Те и другие
- 4) Плоскостные

Вопрос № 4 Укажите номер правильного ответа

Для какого полупроводникового прибора приведено условное графическое обозначение?

- 1) Для фототиристора.
- 2) Для фотодиода.
- 3) Нет правильного ответа.
- 4) Для оптрона.

Вопрос № 5 Укажите номер правильного ответа

Какое из перечисленных свойств присуще полевым транзисторам?

- 1) Все ответы правильные.
- 2) Способны длительное время работать в режиме лавинного пробоя.
- 3) Имеют очень большой коэффициент усиления по току.
- 4)Практически отсутствует ток в цепи затвора.

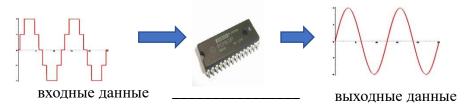
Вопрос № 6Каким образом элементы интегральной микросхемы соединяют между собой?

- 1) Напылением золотых или алюминиевых дорожек через окна в маске
- 2) Всеми перечисленными способами
- 3) Пайкой лазерным лучом
- 4) Термокомпрессией

Вопрос № 7 Укажите номер правильного ответа

Что характеризует полоса пропускания усилителя?

- 1) Диапазон уровней напряжения входного сигнала.
- 2) Диапазон частот усиливаемого сигнала.
- 3) Нет правильного ответа.
- 4) Диапазон регулирования громкости выходного сигнала.


Вопрос № 8.Перечислите основные характеристики

ЛИНИЙ СВЯЗИ: _____

Вопрос № 9. Дайте определение

Регистр —

Вопрос № 10. Какой вид передачи данных изображен

Эталон вариант 1

1	4. Увеличится электропроводность p-n перехода.					
2						
3	3. Стабилитроны.					
4	Аналого-Цифровой Преобразователь					
5	4) Нет правильного ответа.					
6	1. Диапазон частот усиливаемого сигнала.					
7	это комбинационное устройство, преобразующее десятичные числа в двоичную					
	систему счисления, причем каждому входу может быть поставлено в					
	соответствие десятичное число, а набор выходных логических сигналов					
	соответствует определенному двоичному коду.					
8	Период, амплитуда, фаза, длина волны, частота					
9	«кодером»					
10	Выпрямитель (электрического тока) — преобразователь электрической					
	энергии; механическое, электровакуумное, полупроводниковое или другое					
	устройство, предназначенное для преобразования входного электрического тока					
	переменного направления в ток постоянного направления					

Эталон вариант 2

1	Сообщение – форма представления информации для записи, передачи, хранения.
2	4) Высокой
3	1) Никакие
4	3) нет правильного ответа
5	4) Нет правильного ответа.
6	2) всеми перечисленными способами
7	Диапазон частот усиливаемого сигнала.
8	Коэффициент ослабления, Полоса пропускания, Чувствительность к шумам
9	«кодером»
10	Цифро-аналоговый преобразователь