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ВВЕДЕНИЕ 

§1 Предмет физики 

Физика – это наука, изучающая простейшие и вместе с тем наиболее об-

щие закономерности явлений природы, свойства и строение материи, законы её 

движения.  

В настоящее время известны два вида неживой материи: вещество и по-

ле. К первому виду материи – веществу – относятся атомы, молекулы и все те-

ла, состоящие из них. Второй вид материи образуют гравитационные, электро-

магнитные и другие поля.  

Материя находится в непрерывном движении, под которым понимается 

всякое изменение вообще. Движение является неотъемлемым свойством мате-

рии. Материя существует и движется в пространстве и во времени.  

Основным методом исследования в физике является эксперимент (опыт), 

то есть наблюдение исследуемого явления в точно контролируемых условиях, 

позволяющих следить за ходом исследования и воссоздавать его каждый раз 

при повторении этих условий. Для объяснения физических явлений используют 

гипотезы. Гипотеза – это научное предположение, выдвигаемое для объясне-

ния какого-либо факта или явления и требующее проверки и доказательства. 

Правильность гипотезы проверяется постановкой соответствующих опытов, 

путем выяснения согласия следствий, вытекающих из гипотезы, с результатами 

опытов и наблюдений. Доказанная гипотеза превращается в научную теорию 

или закон. Физическая теория – это система основных идей, обобщающих 

опытные данные и отражающих объективные закономерности природы. Физи-

ческая теория дает объяснение целой области явлений природы с единой точки 

зрения.  

§2 Общие сведения  

1. Реальные свойства материальных объектов очень сложны, поэтому в 

процессе познания необходимо выделять в изучаемых объектах главное, суще-

ственное и отвлекаться от всего случайного, второстепенного.  

Мысленная операция, в ходе которой главное отделяется от второстепен-

ного, называется абстрагированием или идеализацией. Построенная в резуль-

тате абстрагирования идеализированная, упрощенная схема явления или объек-

та называется физической моделью. Любая физическая модель имеет ограни-
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ченный характер и пригодна лишь для приближенного описания явления и объ-

екта.  

2. Все понятия и физические модели вводятся в науку с помощью опреде-

лений, которые позволяют создать единую научную терминологию. Определе-

ние – это сформулированное в сжатой форме содержание понятия. Во всех 

научных теориях есть понятия, которые принимаются без определений. В фи-

зике без определений принимаются такие понятия, как состояние, явление, 

процесс, взаимодействие др. Основными физическими понятиями являются 

физическая величина и физический закон.  

2.1. Физическая величина – это характеристика одного из свойств физи-

ческого объекта или физического явления, которую можно прямо или косвенно 

измерить и выразить числом. В качественном отношении эта величина присуща 

многим объектам, в количественном отношении – индивидуальна. Например, 

любое физическое тело можно характеризовать массой, но численное значение 

массы у каждого тела свое.  

2.2. Физический закон – это найденная на опыте или установленная тео-

ретически, путем обобщения опытных данных, количественная или качествен-

ная зависимость одних физических величин от других. Не следует путать опре-

деление физической величины с физическим законом.  

Единицей физической величины называется условно выбранная физиче-

ская величина, имеющая тот же физический смысл, что и рассматриваемая. Си-

стемой единиц называется совокупность единиц физических величин, образо-

ванная в соответствии с определенными правилами.  

Основными единицами данной системы называются единицы несколь-

ких разнородных физических величин, произвольно выбранные при построении 

этой системы.  

Производными единицами называются единицы, устанавливаемые через 

другие единицы данной системы на основании физических законов, которые 

выражают взаимосвязь между соответствующими физическими величинами. 

Стандартом установлено, что обязательному применению подлежат единицы 

Международной системы единиц (SI), а также десятичные кратные и дольные 

от них.   

 

Основными единицами SI являются:  
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• метр (м) – единица длины;  

• килограмм (кг) – единица массы;  

• кельвин (К) – единица термодинамической температуры;  

• кандела (кд) – единица силы света;  

• моль (моль) – единица количества вещества.  

• секунда (с) – единица времени;  

• ампер (А) – единица силы тока;  

Используются также дополнительные единицы SI, такие как:  

• радиан (рад) – единица плоского угла;  

• кулон (Кл) – единица электрического заряда; 

• стерадиан (ср) – единица телесного угла, 

• и так далее. 
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Тема 1: ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ 

 КИНЕМАТИКА 

Механикой называется раздел физики, в котором рассматриваются ос-

новные законы механического движения и взаимодействия материальных тел. 

Механическим движением называется изменение положения материального 

тела относительно других тел. 

§1  Кинематика материальной точки 

Одним из разделов механики является кинематика, которая рассматри-

вает способы описания движения с чисто математической точки зрения, без 

учета массы тел и действующих на них сил. Движение считается заданным, ес-

ли математически можно указать положение любой точки тела в произвольный 

момент времени. 

1.1 Основные понятия кинематики 

В задачах механики могут рассматриваться следующие идеализирован-

ные объекты: 

• Материальная точка – тело, размеры которого можно не учитывать, 

• Материальное тело – Совокупность материальных точек, заполняющих 

некоторый объем без пустот. 

• Абсолютно твёрдое тело – тело, деформации которого в данной задаче 

можно не учитывать. 

• Деформируемое тело – тело, которое под действием сил изменяет форму 

и/или размеры. Частными случаями деформируемых тел являются: 

o Абсолютно упругое тело – деформируемое тело, которое  полностью 

восстанавливает первоначальные размеры и форму, после того как 

внешние силы перестают действовать, 

o Абсолютно неупругое тело – деформируемое тело, которое  полно-

стью сохраняет полученные под действием внешних сил деформации, 

после того как те перестают действовать, 

1.2  Система отчета и траектория. Путь и перемещение. 

 Движение может рассматриваться только по отношению к другому телу, 

которое в рамках данной задачи можно считать неподвижным. С этим телом 

связывают систему координат. Систему координат, снабжённую измеряющи-

ми время часами, называют системой отсчёта. Время в классической меха-
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нике принято считать абсолютным, то есть протекающим одинаково во всех си-

стемах отсчёта. 

 Для указания положения точки в некоторой системе координат исполь-

зуют радиус-вектор ��⃗ .  Он представляет собой вектор, соединяющий начало 

системы координат с рассматриваемой точкой  (рис. 1.1).  

x
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Рис. 1.1 

 Радиус-вектор �⃗ можно разложить на составляющие по координатным 

осям следующим образом: 

  �⃗ = ��⃗ + 	
⃗ + ���⃗ ,       

где  �⃗, 
⃗, ��⃗  – единичные вектора (орты). 

 Радиус-вектор �⃗ зависит от времени, поскольку в процессе движения по-

ложение точки М всё время меняется: 

  �⃗ = �⃗���. 

 Линия, которую описывает точка в своем движении, называется траек-

торией точки.  Траектория точки может быть криволинейной или прямоли-

нейной. Частным, но часто встречающимся в технических задачах  случаем, яв-

ляется движение точки по окружности. 

 Рассмотрим случай, когда некоторая материальная точка, двигаясь по 

траектории (рис. 1.2),  перешла из положения 1 в положение 2.  Длина траекто-

рии, расположенной между точками 1 и 2 представляет пройденный путь точ-

ки  –  ���.  Если по достижении точки 2 направление движения изменится, и 
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точка перейдёт в положение 3, то полный путь будет равен � = ��� + ���. Та-

ким образом, путь всегда является величиной положительной. 

 

1 2

3

 

Рис. 1.2. 

 Вектор  ∆�⃗, проведённый из начального положения точки в её конечное 

положение,  называется её перемещением или смещением (рис.1.3). 

1 2r
r∆

 
Рис. 1.3. 

 

Положение точки в данной системе отсчета можно определить, задав ее 

координаты в виде функций времени: 

   �� = ����,	 = 	���,� = ����.        

 Приведённые уравнения, описывающие изменение координат точки во 

времени, называются уравнениями движения точки. 

  

1.3  Скорость материальной точки 

 Пусть, двигаясь по траектории, точка за некоторый промежуток времени  ∆� = �� − �� перешла из положения 1 в положение 2.  Её перемещение в этом 

случае выразится вектором  ∆�⃗  (рис. 1.3). 

 Если взять вектор, равный пределу отношения перемещения точки  ∆�⃗ к 

времени её движения  ∆� и устремить этот промежуток времени к нулю ∆� → 0, 

то мы получим вектор, который называется скоростью точки. 
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  �⃗ = ���∆ →! ∆"⃗∆ = #"⃗# = �⃗  $       (1.1) 

x

y 1

2
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rv ∆+

S
v
r

 

Рис. 1.4. 

 Скорость точки показывает, как быстро изменяется положение точки в 

пространстве. Вектор скорости всегда лежит на касательной к траектории, и 

всегда направлен в сторону движения точки. 

 Модуль скорости можно определить как производную пути по времени: 

  � = #%#          (1.2) 

 Единицы измерения модуля скорости:  &�' = мс = мс*�. 

 Из формулы (1.2) следует, что за бесконечно малый промежуток 

времени +�  точка пройдет путь, который на  графике  ����   (рис. 1.5) показан 

вертикально расположенным заштрихованным прямоугольником: 

  +� = ���� +�. 

 Понятно, что полный пройденный путь за время  ∆� = �� − ��  должен 

определяться как интегральная сумма: 

  � = , +� - . = , ���� +� - . .      (1.3) 

 Значение этого интеграла равно площади, которая  на рис. 1.5 закрашена 

серым цветом. 
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 Движение, при котором модуль скорости с течением времени не меняет-

ся, называется равномерным движением. 

 Движение, при котором не меняется направление вектора скорости, назы-

вается прямолинейным движением.  

t

S

1t 2t

( )tv dt

t

 
Рис. 1.5. 

 При равномерном движении модуль скорости  точки  не изменяется: 

  � = % = /012�,        (1.4) 

и, следовательно, пройденный точкой путь линейно зависит от времени: 

  � = ��.         (1.5)  

1.4  Ускорение  материальной точки 

 Предположим, что за некоторый  промежуток времени  ∆t  движущаяся 

по траектории точка переместилась из положения 1 в положение 2  (рис.1.6, а). 
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Рис. 1.6 
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Пусть в первом положении точка имела скорость  �⃗�, а во втором поло-

жении – скорость �⃗�.  

 Изменение вектора скорости будет равно  ∆�⃗ = �⃗� − �⃗� (рис 1.6, б). 

 Векторная величина, равная пределу отношения ∆�⃗ к ∆t при стремлении 

промежутка времени к нулю называется ускорением точки: 

  3⃗ = ���∆ →! ∆4�⃗∆ = #4�⃗# = �⃗  $       (1.6) 

 Модуль ускорения измеряется в следующих единицах: &3' = м5- = мс*�. 

Объединяя формулы (1.1) и (1.6), получим следующее соотношение: 

 3⃗ = #4�⃗# = #-"⃗# -  или     3⃗ = �⃗$ = �⃗6    (1.7) 

Ускорение  3⃗  показывает как быстро, и в каком направлении происходит 

изменение вектора скорости  �⃗.  

В случае прямолинейного движения вектор ускорения  3⃗, так же как и 

вектор скорости  �⃗, лежит на траектории движения.  Если направление скоро-

сти  �⃗  и ускорения  3⃗  совпадают, движение является ускоренным. Если 

направления векторов  �⃗  и  3⃗  не совпадают, движение является замедленным. 

В случае, когда модуль ускорения равен нулю, то есть при  3 = 0,   дви-

жение называется равномерным. Скорость точки постоянна: 

 �⃗ = /012� . 

В случае, когда ускорение точки не меняется, то есть при  3⃗ = /012� , 

прямолинейное движение называют равнопеременным, поскольку изменение 

модуля скорости  происходит равномерно. Такое движение может быть либо 

равноускоренным, либо равнозамедленным.  При равнопеременном движении 

модуль скорости в любой момент времени может быть вычислен по формуле: 

 � = �! ± 3�,        (1.8) 

где  �! – начальная скорость точки. 

Знак «плюс» в формуле (1.8) соответствует равноускоренному движению, 

а знак «минус» – равнозамедленному. 
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 Используя формулу (1.3), путём интегрирования скорости (1.8) получим 

формулу для вычисления  пройденного пути при равнопеременном движении: 

  � = , ���� +� ! = , ��0 ± 3� �+� ! = �!� ± 8 -
� .  (3.9) 

 Приведённая формула даст правильный результат только том случае, ко-

гда направление движения, то есть направление вектора �⃗, не меняется. 

 Рассмотрим случай криволинейного движения, при котором может из-

меняться как модуль, так и направление вектора скорости. Соответственно вме-

сте с ускорением, которое изменяет величину скорости, возникает также уско-

рение, которое влияет на направление вектора скорости (рис. 1.7). 
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Рис. 1.7 

Таким образом, полное ускорение равно векторной сумме двух векторов: 

касательного и нормального ускорений: 

  3⃗ = 3⃗9 + 3⃗:        (1.10) 

 Очевидно, что модуль полного ускорения при этом равен 

 3 = ;39� + 3:�.        (1.11) 

 Первый вектор лежит на касательной к траектории и называется каса-

тельным или тангенциальным ускорением.  Касательное ускорение характе-

ризует быстроту изменения скорости по величине. Его модуль равен 

 39 = #4#          (1.12) 

Вторая составляющая перпендикулярна к касательной (лежит на нормали 

к траектории) и называется нормальным или центростремительным ускоре-

нием. Нормальное ускорение изменяет направление вектора скорости. Оно 

направлено по радиусу к центру кривизны траектории. Его модуль равен 



16 

 

 3: = 4-
<          (1.13) 

 

§2  Поступательное и вращательное движения тела 

 Простейшими формами движения твёрдого тела являются поступатель-

ное движение и вращательное движения. Рассмотрим их ниже. 

2.1.  Кинематика поступательного движения 

 Поступательным движением называется движение, при котором любой 

отрезок принадлежащий телу перемещается, оставаясь параллельным своему 

первоначальному направлению (рис. 2.1). 

 

B
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Рис. 2.1 

 

Поступательное движение тела имеет следующие особенности: 

• Все точки твердого тела, движущегося поступательно, описывают тожде-

ственные, то есть совпадающие при наложении, траектории. 

• Все точки тела в один и тот же момент имеют одинаковые скорости и 

одинаковые ускорения.  

По этим причинам описание поступательного движения тела сводится к 

описанию движения одной его точки,  которую в этом случае принято называть 

полюсом. Скорости и ускорения других точек тела будут совпадать со скоро-

стью и ускорением полюса. Обычно в качестве полюса выбирают точку, кото-

рая называется центр масс.  

В случае поступательного движения тела приобретают смысл выражения 

«скорость  тела» и «ускорение  тела». При других формах движения скоро-

сти и ускорения различных точек тела будут отличаться друг от друга, поэтому 
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выражения «скорость  тела» и «ускорение  тела» теряют смысл. 

2.2.  Кинематика вращательного движения 

Движение тела, при котором все точки тела, лежащие на некоторой прямой, 

остаются неподвижными, называется вращательным движением. При этом 

сама прямая называется осью вращения. 

Точки, не лежащие на оси вращения, при движении описывают окружно-

сти в плоскостях, которые к ней перпендикулярны. В процессе вращения ради-

ус вектор,  лежащий в плоскости вращения (рис. 2.2) , будет поворачиваться на 

некоторый угол =. 

Для указания направления вращения и величины угла вводится векторная 

величина  =�⃗ ,  которая называется угловым перемещением или поворотом. Мо-

дуль этого вектора равен углу поворота, измеренному в радианах, а направле-

ние определяется по распространённому в технике правилу правого винта, в 

соответствии с которым  вращение происходит против часовой стрелки, если 

смотреть навстречу вектору =�⃗ . 
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Рис. 2.2 

 Вращательное движение считается заданным, если известна векторная 

функция 

  =�⃗ = =�⃗ ���.         (2.1) 

 Основными характеристиками вращательного движения тела являются 

угловая скорость >��⃗  и угловое ускорение ?⃗. 
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 Угловая скорость – векторная величина характеризующая быстроту вра-

щения. Она определяется как первая производная углового перемещения по 

времени: 

  >��⃗ = #@��⃗# = =�⃗   $         (2.2) 

Единица измерения модуля угловой скорости:  &>' = радс = �с = с*�. 

 Вращение является равномерным, если происходит с постоянной угловой 

скоростью. При этом 

  > = @          (2.3) 

 Характеристиками равномерного вращения являются период вращения и 

частота вращения. 

 Периодом вращения называется время, за которое тело совершает один 

оборот. Эта величина определяется по формуле 

  D = �EF          (2.4) 

 Обратная величина называется частотой вращения. Она равна числу 

оборотов за единицу времени: 

  G = �H = F�E ,  откуда следует, что   > = 2JG   (2.5) 

Угловое ускорение определяется как первая производная угловой скоро-

сти. Оно показывает, как быстро меняется угловая скорость: 

 ?⃗ = #F���⃗# = >��⃗ $         (2.6) 

Единицы, в которых измеряется модуль углового ускорения следующие: 

 &?' = рад5- = �5- = /*�. 

При равномерном вращении модуль углового ускорения равен нулю. 

При неравномерном вращении, когда модуль углового ускорения нулю не 

равен, возможны следующие случаи: 
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• Вектор угловой скорости >��⃗  совпадает по направлению с вектором угло-

вого ускорения ?⃗ (рис. 2.3, а). В этом случае вращение является ускорен-

ным. 

• Вектор угловой скорости >��⃗  не совпадает по направлению с вектором уг-

лового ускорения ?⃗ (рис. 2.3, б). В этом случае вращение является замед-

ленным. 
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Рис. 2.3 

 Вращение, при постоянном угловом ускорении называется равнопере-

менным вращением.  

При  ?⃗ = /012�  справедливы соотношения аналогичные соотношениям, 

описывающим прямолинейное равнопеременное движение материальной точ-

ки: 

   > = >! ± ?�,      (2.7) 

где  >! – начальная угловая скорость точки. 

  = = , >��� +� ! = , �>0 ± ?� �+� ! = >!� ± K -
� .  (2.8) 

Знак «плюс» в формулах (2.7, 2.8) соответствует равноускоренному вра-

щению, а знак «минус» – равнозамедленному. 
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2.3.  Скорость и ускорение точки вращающегося тела 

Пусть за некоторый промежуток времени  t  вращающееся тело поверну-

лось на некоторый угол =. При этом точка М, находящаяся на расстоянии R от 

оси вращения (рис.2.4, а),  пройдёт  путь  

  � = L=         (2.9) 
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Рис. 2.4 

Теперь с помощью формулы (1.2)  определим модуль скорости точки  М: 

  � = #%# = #�<@�# = L #@# = L>    (2.10)  

Далее с помощью формул (1.12, 1.13) определим модули касательного и 

нормального ускорений этой точки (рис. 2.4, б): 

 39 = #4# = # �<F�# = L #F# = L?    (2.11) 

  3: = 4-
< = �<F�-

< = L>�
      (2.12) 
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 ДИНАМИКА 

§3  Динамика движения материальной точки  

и поступательного движения твёрдого тела 

Динамикой называют раздел механики, в котором рассматривается дви-

жение массивных объектов с учётом действующих на них сил. 

3.1  Основные физические величины. 

 Для начала введём в рассмотрение ряд физических величин, которые ис-

пользуются в уравнениях динамики. 

• Сила MN⃗, O�⃗  P 

Сила представляет  собой меру механического действия на тело 

других тел или полей. Сила  –  векторная величина. Характеристиками 

силы являются её величина (модуль), направление и точка приложения. 

Линия, на которой лежит вектор силы, называется линией действия силы. 

Единица измерения модуля силы:  &N' = Q �ньютон�. 
• Масса ��� 

Масса является мерой инертности тела. Она показывает насколько 

действующим на тело силам трудно изменить характер его движения. 

Масса  – скалярная величина. В классической механике масса является 

величиной инвариантной, то есть не зависящей от системы отсчёта. Об-

щая масса замкнутой системы тел является величиной постоянной.  

Единица измерения массы:  &�' = кг �килограмм�. 
• Плотность �[� 

Плотность является характеристикой материала, которая равна мас-

се единицы объёма. Плотность  – скалярная величина. 

  [ = \]         (3.1) 

Единица измерения плотности:  &[' =  кгм^. 
• Импульс тела �_⃗� 

Импульсом тела называется физическая величина, равная произве-

дению массы тела на его скорость. Импульс тела  – векторная величина. 

  _⃗ = ��⃗        (3.2) 

Импульс тела не следует путать с понятием импульс силы. 

В литературе для импульса тела также используется название количе-

ство движения. 
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Единица измерения модуля импульса тела:  &_' = кг∙мс . 

3.2  Виды механического взаимодействия. 

 Характер проявления сил, возникающих во взаимодействии материаль-

ных объектов, зависит от природы этого взаимодействия.   

Приведём примеры: 

• Гравитационные взаимодействия. 

В соответствии с законом всемирного тяготения 

две материальные точки массами  ab  и  ac  притягиваются друг к другу 

с силой прямо пропорциональной массам этих точек и обратно пропорцио-

нальной квадрату расстояния между ними (рис. 3.1). 
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Рис. 3.1 

  N = d \.\-"-         (3.3) 

где коэффициент  d = 6.67 ∙ 10*��  Н∙м-
кг-   –  гравитационная постоянная. 

 В частности, если тело  массой   �  находится на поверхности Земли, то 

закон всемирного тяготения запишется в виде 

  N = d i \<- , 

где  j – масса Земли, а  L – её средний радиус. 

Величина    k = d i<-   называется ускорением свободного падения, кото-

рое на поверхности Земли имеет значение 9.81 мс- . 
Введя это обозначение, получим хорошо известную формулу для силы 

тяжести на поверхности Земли: 

  O = �k         (3.4) 
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• Электромагнитные взаимодействия. 

Целый ряд сил возникает по причинам, имеющим электромагнитную 

природу, Рассмотрим некоторые из таких сил. 

o Силы упругости. 

Силы упругости возникают при деформировании упругих матери-

альных тел. Так при изменении длины упругого стержня или пружины 

возникает сила упругости, которая равна 

 

 n = −� ∆�,         (3.5) 

где  n − сила упругости, 

 � − жёсткость пружины или стержня, ∆� − абсолютная продольная деформация. 

Приведённая выше формула известна как закон Гука, в соответ-

ствии с которым  сила упругости при растяжении или сжатии про-

порционально абсолютной продольной деформации 

o Силы сухого трения. 

Экспериментально установлен закон сухого трения: 

Сила трения скольжения пропорциональна модулю нормальной реак-

ции опоры,  не зависит от площади соприкосновения тел и направле-

на в сторону противоположную движению тела 

(рис. 3.2). 

Этот закон можно выразить следующей формулой: 

  NТР = q n,       (3.6)  

где   q − коэффициент трения скольжения. 
N
r

ТРF
r F

r

 
Рис. 3.2 

 

Этот коэффициент определяется экспериментально. Он зависит как от 

материала, так и от качества обработки соприкасающихся поверхностей. 

 

o Силы вязкого трения. 
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Когда тело движется в вязкой среде, возникает сила, тормозящая 

его движение. Эту силу называют силой вязкого трения. 

  N = − � �,        (3.7)  

 где  � − скорость движения тела, 

  � − коэффициент сопротивления. 

  Коэффициент сопротивления зависит от размеров и формы тела, а 

также от свойств жидкости. 

o Выталкивающая сила. 

Эта сила противодействует процессу погружения тела в жидкость 

или газ. Она определяется законом Архимеда: 

На тело, погружённое в жидкость или газ, действует выталки-

вающая сила,  равная весу вытесненной телом жидкости или газа  

(рис.3.3) 
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r

 

Рис.3.3 

   Nr = k [ж t       (3.8) 

 где  [ж − плотность жидкости, 

  t − объём части тела, погруженной в жидкость 

3.3  Основные законы динамики материальной точки. 

 Уравнения динамики опираются на ряд положений, которые являются 

обобщением опыта, и фактически являются аксиомами. Эти положения приня-

то называть законами Ньютона. 

3.3.1  Первый  закон Ньютона 

 Всякое тело сохраняет состояние покоя или равномерного прямоли-

нейного движения до тех пор, пока воздействия со стороны других тел не 

изменят этого состояния 
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 Свойство тел сохранять состояние покоя или равномерного прямолиней-

ного движения называется инерцией. Системы отсчёта, в которых выполняется 

первый закон Ньютона, называют инерциальными системами отсчёта.  

 Можно указать бесконечное множество инерциальных систем отсчета, 

поскольку любая система, которая относительно инерциальной системы дви-

жется равномерно и прямолинейно, также является инерциальной. 

 Первый закон Ньютона известен также как принцип инерции Галилея. 

3.3.2  Второй закон Ньютона 

 Скорость изменения импульса тела равна результирующей всех сил, дей-

ствующих на тело. 

  N⃗ = #u⃗#          (3.9) 

 Преобразуем соотношение (3.9), учитывая, что  _⃗ = ��⃗: 

  N⃗ = #�\4�⃗ �# = #\# �⃗ + � #4�⃗#      (3.10) 

 Формула (3.10) справедлива даже в тех случаях, когда с течением време-

ни меняется масса объекта, или масса меняется вследствие изменения скорости. 

 Из формулы (3.10) вытекают два частных случая. 

1-й частный случай  

имеет место, когда масса тела в процессе движения остаётся постоянной  � =/012�, и, следовательно,  
#\# = 0 . Тогда уравнение (3.10) приобретает вид: 

  N⃗ = � #4�⃗# = �3⃗ 

  N⃗ = �3⃗         (3.11) 

В этом частном случае результирующая всех сил, действующих на те-

ло, равна произведению массы тела на его ускорение.  Очевидно, что здесь 

масса служит коэффициентом пропорциональности меду силой и ускорением, и 

по этой причине вектора  3⃗  и  N⃗ будут направлены одинаково. 

2-й частный случай  
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имеет место, когда в процессе движения остаётся постоянной сила:    N⃗ = /012�. Тогда из уравнения (3.10) следует, что 

  N⃗+� = +_⃗ 

Интегрируя по времени левую и правую части этого уравнения, получим 

  N⃗∆� = ∆_⃗         (3.12) 

 Величина, стоящая в левой части уравнения (3.12), а именно N⃗∆� 

Называется импульсом силы. 

 То есть в случае, когда сила в процессе движения остаётся постоянной, 

импульс силы равняется изменению импульса тела 

5.3.3 Третий закон Ньютона 

 Силы, возникающие при взаимодействии двух тел,  равны по величине 

и противоположны по направлению (рис. 3.4), то есть 

  N⃗�,� = −N⃗�,�        (3.13) 

Здесь использовано следующее обозначение N⃗v,w, которое следует пони-

мать как силу, c которой тело  i  действует на тело j . 

1,2F
r

2,1F
r

 

Рис. 3.4 

Этот закон  говорит о том, что силы всегда возникают попарно, и никогда 

не возникают поодиночке.  Следует также заметить, что силы взаимодействия 

приложены к разным телам. 

 

3.4  Закон сохранения импульса. 

 Множество материальных объектов, находящихся в рассмотрении в рам-

ках решаемой задачи, образуют механическую систему. Все силы, действую-

щие на материальные точки и тела рассматриваемой механической системы 

можно поделить на две группы: 



27 

 

• Внутренние силы – силы взаимодействия между объектами входящими в 

данную систему. 

• Внешние силы – силы, которые действуют на объекты данной механиче-

ской системы со стороны тел, которые в неё не входят. 

Если внешние силы на систему не действуют или не учитываются, то та-

кая система называется замкнутой. В замкнутой механической системе при-

сутствуют только попарно возникающие силы взаимодействия между телами 

данной системы. 

Если система является замкнутой, то по второму закону Ньютона 

  
#u⃗# = 0,         (3.14) 

и, следовательно,  _⃗ = /012�. 
То есть импульс замкнутой системы материальных точек 

(тел) является величиной постоянной, и можно записать что 

 _⃗ = ∑ _⃗y:yz� = _⃗� + _⃗� + _⃗� + ⋯ + _⃗: = /012�, (3.15) 

или  _⃗ = ∑ �"�⃗y:yz� = /012�.      (3.16) 

 

§4  Динамика вращательного движения 

 

4.1  Величины, влияющие на динамику вращательного движения 

4.1.1 Моменты инерции 

 Известно, что мерой инертности материальных точек и тел является мас-

са. Мерой инертности при вращательном движении является другая величина, 

которая называется моментом инерции. 

 Начнём с рассмотрения одной материальной точки. Пусть материальная 

точка  массой  �  находится на расстоянии  �  от неподвижной оси �  (рис. 4.1). 
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Рис. 4.1 

 Моментом инерции  материальной точки относительно оси называется 

скалярная физическая величина, равная произведению массы точки на квадрат 

её расстояния до оси: 

  |} = � ��.        (4.1) 

 Моментом инерции системы материальных точек будет сумма моментов 

инерции всех точек: 

  |} = ∑ �y:yz� �y.�        (4.2) 

 При вычислении моментов инерции твёрдых тел, объём которых запол-

нен бесконечным множеством бесконечно малых масс +�, суммирование 

необходимо проводить с помощью вычисления интегральной суммы  по объёму 

тела: 

  |} = , ��] +�.       (4.3) 

 Вычисление интеграла (4.3), позволило получить  значения моментов 

инерции для тел, имеющих различную форму. Некоторые из полученных ре-

зультатов приведены на рис. 4.2. 

 Следует обратить внимание на то, что моменты инерции, приведённые на 

рис. 4.2 вычислены относительно осей, проходящих через центр масс. Рассмот-

рев рис. 4.1, легко понять, что величина момента инерции будет зависеть от 

расположения оси. 
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Рис. 4.2 

 Моменты инерции относительно осей вращения не проходящих через 

центр массы определяются с помощью теоремы Штейнера: 

 Момент инерции относительно произвольной оси равен сумме мо-

мента инерции относительно оси, проходящей через центр масс парал-

лельно заданной оси, и произведения массы тела на квадрат расстояния 

между осями: 

  |} = |}5 + �+�        (4.4) 

C

Cz z

2

l
d =

 

Рис. 6.3 

 В качестве примера вычислим момент инерции стержня, относительно 

оси, проходящей через конец стержня (рис. 4.3): 
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  |} = |}5 + �+� = \ ~-
�� + � �~��� = \ ~-

�  

 Если вращающаяся система состоит из нескольких частей, то моменты 

инерции частей можно складывать при условии, что они вычислены относи-

тельно одной и той же оси.    

4.1.2 Моменты импульса 

 Момент импульса может быть вычислен либо относительно некоторой 

точки пространства, либо относительно некоторой оси.  

• Моментом импульса материальной точки М относительно некото-

рой точки О  называется векторная физическая величина  ��⃗ , равная век-

торному произведению радиус-вектора  �⃗ , проведенного из точки О к 

точке М, на величину импульса этой точки (рис.4.4): 

��⃗ = �⃗ × _�⃗          (4.5) 

Модуль момента импульса материальной точки будет равен 

  � = �_ 2�1 �       (4.6) 

α
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r

M
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r

L
r

 

Рис. 4.4 

  Направлен вектор  ��⃗   перпендикулярно плоскости, в которой распо-

ложены перемножаемые вектора, в ту сторону, с которой кратчайший по-

ворот от  �⃗ к  _⃗   происходит против часовой стрелки. 

• Моментом импульса тела, вращающегося относительно некоторой 

оси z , называется проекция вектора ��⃗  на эту ось  (рис. 4.5). Эту проек-

цию обозначим  �}. 
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Пусть некоторое тело вращается вокруг неподвижной оси z. 

Для определения момента импульса тела относительно этой оси рассмот-

рим сначала движение бесконечно малой массы +�. В процессе враще-

ния тела эта частица массы будет двигаться по окружности радиуса r. 

Скорость массы будет равна � = >� и направлена по касательной к 

окружности в сторону вращения тела. 

Модуль момента импульса бесконечно малой частицы массы отно-

сительно центра окружности будет равен 

  +�} = �� +� = >�� +�.     (4.7) 
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Рис. 4.5 

  Суммируя моменты импульса бесконечно малых частей массы по 

всему объёму тела, с учётом формулы (4.7) получим момент импульса 

всего тела относительно оси вращения: 

   �} = > , +�}] = > , �� +�]  

  Поскольку интеграл представляет собой момент инерции тела отно-

сительно оси вращения, окончательно получим, что 

   �} =  |} >        (4.8) 

  И вектор угловой скорости  >��⃗ ,  и  вектор  ��⃗   направлены по оси 

вращения, и по этой причине (4.8) можно записать в векторном виде: 

   ��⃗ = | >��⃗         (4.9) 
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4.1.3 Моменты силы 

Момент силы может быть вычислен либо относительно некоторой точки 

пространства, либо относительно некоторой оси.  

Моментом силы относительно некоторой точки О называется век-

торная физическая величина  j��⃗ , равная векторному произведению ради-

ус-вектора   �⃗, проведенного из точки О к точке М, на вектор силы 

(рис.4.6).  Направлен вектор  j��⃗   в соответствии с правилом правого вин-

та. 
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2

π

αsinrd =

M
 

Рис. 4.6 

Модуль момента силы будет равен 

  j = N � 2�1 � = N +,     (4.10) 

 где  d =  � 2�1 �  – кратчайшее расстояние от точки О  до линии дей-

ствия силы называется плечом силы. Плечо силы равняется длине пер-

пендикуляра, опущенного из точки О на линию действия силы. 

 Единица измерения модуля момента: &j' = Н ∙ м. 

• Вращающим эффектом относительно некоторой оси обладают силы, рас-

положенные в плоскости перпендикулярной к этой оси. Пример такой си-

лы показан на рис. 4.7. Вращающий эффект этой силы оценивается вели-

чиной, которая называется моментом силы относительно оси. 

Моментом силы относительно некоторой оси z  называется скалярная 

физическая величина  j}, равная произведению модуля силы на плечо 

силы (рис. 4.7): 
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 j} = ±N +,       (4.11)  

где  d =  � 2�1 �  – плечо силы. 
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Рис. 4.7 

4.1.4 Пары сил. Момент пары сил 

Две равные по модулю противоположно направленные силы, лежащие 

параллельных прямых, называются парой сил (рис. 4.8). 

 

Рис. 4.8 

 Кратчайшее расстояние между прямыми, на которых лежат силы пары, 

называется плечом пары. Модуль момента пары равен произведению мо-

дуля силы на плечо пары: 

   j = Nℎ        (4.12) 

 Вектор момента пары сил j��⃗  перпендикулярен к плоскости действия сил 

пары и направлен в соответствии с правилом правого винта. 
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4.2 Уравнение динамики вращательного движения 

 Основное уравнение динамики вращательного движения  имеет следую-

щий вид: 

  
#��⃗# = ∑ j��⃗ внешн.        (4.13) 

 Скорость изменения момента импульса тела равна суммарному мо-

менту сил, действующих на тело. 

 Можно заметить, что по своей структуре основное уравнение динамики 

вращательного движения полностью аналогично второму закону Ньютона.  

Второй закон Ньютона устанавливает связь между импульсом и силами, а 

мерой инертности при этом служит масса. 

Уравнение динамики вращательного движения устанавливает связь меж-

ду моментом импульса и моментами сил, а мерой инертности при этом служит 

момент инерции. 

Возможна запись уравнения (4.13) в скалярном виде: 

  
#��# = j} ,  

где  �} = |}>. 

 В том случае, когда момент инерции  |} не меняется, можно записать 

  |} #F# = |}? = j}        (4.14) 

 Уравнение (4.14) представляет собой частный случай основного закона 

динамики тела, вращающегося вокруг неподвижной оси, при  |} = /012�. 
 

4.3. Закон сохранения момента импульса 

 Если предположить, что внешние силы или отсутствуют, или приложены 

таким образом, что величина момента j}  равна нулю, то из уравнения (4.14) 

будет следовать, что 

  |} #F# = 0, 
и тогда  |}> = /012�        (4.15) 
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Отсюда следует закон сохранения момента импульса:  

Если на тело не действуют внешние силы или действуют так, что они не 

создают вращающего момента относительно оси вращения, то момент импуль-

са тела относительно этой оси во времени не изменяется. 

Для двух различных моментов времени можно записать, что 

  |�>� = |�>� = /012�      (4.16) 

 

§5  Работа и мощность 

 

5.1 Мощность силы 

Мощностью силы называется величина, равная скалярному произведению си-

лы на скорость точки ее приложения: 

   n = N⃗ ∙ �⃗ = N� /02MN⃗, �⃗P     (5.1) 

Мощность может быть как положительной, так и отрицательной (рис. 5.1  ). 
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      Рис. 5.1 

Единица измерения мощности:  &n' = Н ∙ мс = Вт   �ватт�   

5.2    Работа силы 

Введём понятие элементарной работы. 

Элементарная работа есть скалярное произведение вектора силы на беско-

нечно малое приращение радиус-вектора (рис. 5.2):  

   +� = N⃗ ∙ +�⃗       (5.2) 

Работой силы называется интегральная сумма элементарных работ, вычислен-

ная на некотором конечном участке траектории  АВ (рис. 5.2):  
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   � = , +� = , N⃗ ∙ +�⃗"�"�
�r      (5.3) 

Учитывая, что �⃗ = #"⃗# , и, следовательно, +�⃗ = �⃗ +�, получим, что 

   +� = N⃗ ∙ +�⃗ = MN⃗ ∙ �⃗P +� 

или   +� = n +�       (5.4) 
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Рис. 5.2 

Из формул  (5.3) и (5.4)  видно, что работа силы за некоторый промежу-

ток времени  ∆� = �� − �r  может быть вычислена путём интегрирования 

мощности по времени: 

  � = , +��r = , n +� � �       (5.5) 

Если мощность постоянна, то  

� = n ∆�.         (5.6) 

Единицы измерения работы:   &�' = Вт ∙ с = Н∙м∙сс = Н ∙ м = Дж �джоуль�.. 
 Если движение прямолинейное (рис. 5.3), а сила не меняется                MN⃗ = /012�P,  то работа рассчитывается по формуле 

  � = N� cos �        (5.7) 
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Рис. 5.3 

 

5.3    Графические интерпретации мощности и работы 

Рассмотрим случай, когда сила постоянна и по величине и по направле-

нию (рис. 5.3). В этом случае работа определяется по формуле (5.7) и на графи-

ке, представленном на рис. 5.4 равняется площади заштрихованного прямо-

угольника. 

r

αcosF

S
 

Рис. 5.4 

 В случае переменной силы мощность силы постоянно меняется в соответ-

ствии с формулой (5.1), поскольку может меняться как модуль силы, так и ко-

синус угла. Тогда график зависимости мощности от времени будет нелинейным 

(рис. 5.5). 

 В соответствии с формулой (5.4) элементарная работа  dA будет численно 

равна площади вертикального заштрихованного прямоугольника. Полная рабо-

та в соответствии с  формулой (5.5) будет равна полной площади криволиней-

ной трапеции, расположенной под кривой,  от момента времени в точке А и до 

момента времени в точке В. 
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Рис. 5.5 

5.4    Работа и мощность при вращательном движении 

Рассмотрим твёрдое тело (рис.5.6), вращающееся вокруг неподвижной 

оси под действием силы, направленной по касательной к окружности.  
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Рис. 5.6 

При повороте тела на бесконечно малый угол  +=, будет совершена эле-

ментарная работа равная 

 +� = j +=        (5.8) 

С помощью интегрирования найдем работу, совершаемую при повороте 

тела на угол   

 ∆= = =� − =�. 

Получим: 



39 

 

  ��� = , j +=@-@.        (5.9) 

Если  j = /012�, то 

  � = j ∙ ∆=        (5.10) 

 Мощность, развиваемая силой  N, получим путём деления элементарной 

работы (5.8) на время, за которое тело повернулось на угол  +=: 

  n = #r# = j #@#  

или  n = j >         (5.11) 

где  > – угловая скорость. 

 

§6  Энергия. Закон сохранения энергии 

 

Энергия – это единая универсальная мера, позволяющая с единых пози-

ций оценивать все, известные на сегодняшний день, формы движения материи. 

С помощью энергии можно связать воедино механические, тепловые, электро-

магнитные, химические процессы, изучать их и описывать их взаимные преоб-

разования. Остановимся подробнее на механической энергии. 

Механическая энергия бывает двух видов: кинетическая и потенциаль-

ная. 

6.1 Кинетическая энергия 

 Кинетическую энергию можно назвать энергий движения («cinema» пере-

водится как «движение»). При движении материальной точки или при поступа-

тельном движении тела кинетическая энергия равна половине произведения 

массы на квадрат скорости: 

  �� = �� ���        (6.1) 

В соответствии с теоремой об изменении кинетической энергии, кото-

рая доказывается в курсе теоретической механики,  её изменение равно работе 

всех действующих на тело сил: 

  � = ∆�� = �� ���� - 
�� ����     (6.2) 
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Кинетическая энергия обладает следующими свойствами: 

• Кинетическая энергия  – величина скалярная. 

• Кинетическая энергия  – величина положительная. 

• Кинетическая энергия  – величина относительная, поскольку скорость за-

висит от выбора системы координат. 

• Кинетическая энергия механической системы равна сумме кинетических 

энергий материальных точек или тел в неё входящих. 

 Тело, вращающееся вокруг неподвижной оси, которая проходит через 

цент масс тела, обладает кинетической энергией равной 

  ��вр = ��  |>�        (6.3) 

Эта энергия называется кинетической энергией вращательного движе-

ния.   В этом случае также справедлива теорема об изменении кинетической 

энергии: 

  � = ∆��вр = �� |>�� - 
�� |>��      (6.4) 

 В случае, когда тело совершает одновременно как поступательное, так и 

вращательное движение, полная кинетическая энергия равняется сумме кине-

тических энергий поступательного и вращательного движений и определяется 

по формуле: 

  �� = ��пост + ��вр = �� ���  + 
�� |>�   (6.5) 

где � − скорость центра масс в поступательном движении,  

 > − угловая скорость относительно оси проходящей через центр масс. 

6.2 Потенциальная энергия 

 Потенциальная энергия это часть механической энергии, которая оце-

нивает работу, которая может быть совершена. Она зависит от взаимного рас-

положения тел, а также от природы действующих между телами сил. 

6.2.1  Консервативные и неконсервативные силы 

 Консервативными силами называются силы, работа которых определя-

ется только начальным и конечным положением тела, и не зависит от вида тра-

ектории, по которой движение происходит. Так, например, гравитационные, 
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кулоновские, а также силы упругости являются силами консервативными.  

Поля таких сил называются потенциальными. 

 Силы, работа которых зависит от формы траектории, называют неконсер-

вативными, а их поля – непотенциальными. К таким силам в частности отно-

сятся: силы давления газа, силы вихревого электрического поля, силы сухого и 

вязкого трения. 

 

6.2.2  Потенциальная энергия и работа 

 Потенциальная энергия обладает следующими свойствами: 

• Потенциальная энергия характеризует оба взаимодействующих тела. Она 

всегда взаимна. Однако при решении задач из соображений удобства эту 

энергию часто приписывают только одному из тел. 

• Значение потенциальной энергии зависит от выбора точки отсчёта. 

• Потенциальная энергия может быть как положительной, так и отрица-

тельной, поскольку начало отсчёта выбирается произвольно. 

• Использовать потенциальную энергию для описания состояния системы 

тел можно лишь в том случае, когда силы взаимодействия являются кон-

сервативными. 

Приведём ряд примеров: 

• Потенциальная энергия деформированной упругой пружины (стержня) 

равна 

  �П = y �-
� ,        (6.6) 

где    � −  жёсткость пружины, 

� − величина абсолютной деформации (изменение длины пружи-

ны). 

Работа, которая совершается при упругой деформации пружины (стерж-

ня), равна 

  � = − �y �--� − y �.-� �       (6.7) 
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• Потенциальная энергия материальной точки массой �, которая находится 
на высоте ℎ в поле силы тяжести в поле силы тяжести Земли, обладает 

потенциальной энергией 

  �П = �kℎ        (6.8)  

В процессе перемещения точки из точки 1 в точку 2 (рис. 6.1) совершает-

ся работа, которая, как это видно из формулы, не зависит от траектории, 

по которой двигается точка. Работа зависит только от разницы высот ко-

нечной и начальной точек движения. 

  � = − �k �ℎ� − ℎ��       (6.9) 
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Рис. 6.1 

6.3 Закон сохранения механической энергии 

 Материальная точка или тело могут одновременно обладать и кинетиче-

ской, и потенциальной энергией. Сумма кинетической и потенциальной энер-

гий называется полной механической энергией W. 

  � = �К + �П        (6.10) 

 Сформулируем закон сохранения механической энергии: 

 Полная механическая энергия замкнутой системы материальных то-

чек и/или тел, между которыми действуют только консервативные силы, 

остаётся постоянной.   
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То есть: 

  �К + �П = /012�.       (6.11) 

 Под действием неконсервативных сил механическая энергия системы 

уменьшается. Уменьшение механической энергии называется диссипацией 

(«dissipation» переводится как «рассеивание»). Силы, приводящие к рассеива-

нию энергии, называются диссипативными силами.  Энергия при уменьшении 

механической энергии на самом деле не исчезает, а преобразуется в другие ви-

ды энергии, например в тепловую энергию. 

 Преобразование энергии происходит в соответствии с более общим зако-

ном природы  – законом сохранения энергии. Закон сохранения энергии при-

меним ко всем без исключения процессам, происходящим в природе. Сформу-

лируем его следующим образом: 

 Полная энергия изолированной системы всегда остаётся постоянной, 

энергия лишь переходит из одной формы в другую. 

 

§7  Соударение тел 

 Идеальными вариантами соударения являются два крайних случая: со-

ударение абсолютно упругих тел, и соударение абсолютно неупругих тел. 

Реальные тела, как правило, проявляют как упругие, так и неупругие свойства. 

 При абсолютно упругом ударе полная механическая энергия тел сохра-

няется. В процессе удара кинетическая энергия полностью или частично пере-

ходит в энергию упругой деформации. Затем тела возвращаются к первона-

чальной форме и отталкивают друг друга. Потенциальная энергия упругой де-

формации снова переходит в энергию кинетическую и тела разлетаются. Закон 

сохранения импульса и закон сохранения механической энергии при абсолютно 

упругом ударе выполняются 

 При абсолютно неупругом ударе потенциальная энергия упругой дефор-

мации не возникает. Кинетическая энергия тел полностью или частично пере-

ходит во внутреннюю энергию. После удара тела начинают двигаться как одно 

тело с одинаковой скоростью или переходят в состояние покоя. При абсолютно 

неупругом ударе выполняется только закон сохранения импульса. Механиче-

ская энергия не сохраняется, частично или полностью переходя в энергию 

внутреннюю. 
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 Удар, при котором шары до момента удара двигаются по прямой, прохо-

дящей через их центры (рис. 7.1), называется центральным ударом. 

Приведём примеры абсолютно упругого и абсолютно неупругого цен-

тральных ударов двух однородных шаров. 

Пусть два шара двигаются поступательно (без вращения)  и при этом об-

разуют замкнутую систему. Примем следующие обозначения: 

��, �� – массы шаров, �⃗�, �⃗� – скорости шаров до удара, ��⃗ �, ��⃗ � – скорости шаров после удара. 
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Рис. 7.1 

• Рассмотрим случай абсолютно упругого удара. 

В случае движения двух тел закон сохранения импульса и закон сохране-

ния механической энергии примут следующий вид: 

 ���⃗� + ���⃗� = ����⃗ � + ����⃗ �     (7.1) 

 
\.4.-� + \-4--� = \.�.-� + \-�--�      (7.2) 

Решив полученную систему уравнений, найдём скорости шаров после со-

ударения: 

 ��⃗ � = �\-4�⃗ -��\.*\-�4�⃗ .\.�\-       (7.4) 

 ��⃗ � = �\.4�⃗ .��\-*\.�4�⃗ -\.�\-       (7.5) 
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• Рассмотрим случай абсолютно неупругого удара.  

Обозначив как  ��⃗   общую скорость шаров после удара, запишем закон со-

хранения импульса для случая взаимодействия двух тел: 

 ���⃗� + ���⃗� = ��� + ��� ��⃗        (7.6) 

Решая полученное уравнение, получим: 

 ��⃗ = \.4�⃗ .�\-4�⃗ -\.�\-        (7.7) 
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ТЕМА 2: МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИ-

НАМИКА 

 МОЛЕКУЛЯРНАЯ ФИЗИКА 

Молекулярная физика – раздел физики, изучающий свойства тел в 

различных агрегатных состояниях на основе рассмотрения их молекулярного 

строения. Задачи молекулярной физики решаются методами статистиче-

ской физики и физической кинетики. 
 

§1 Статистический и термодинамический методы исследования 

 
Поведение отдельного атома (молекулы) не может быть изучено мето-

дами классической механики, так как число атомов (молекул) в любом теле 

огромно. 

Материальный объект (тело), состоящее из большого количества ча-

стиц, называется макроскопической системой или просто макросистемой. 

В термодинамике макросистему называют термодинамической системой, в 

статистической физике – статистической системой. Для описания процессов, 

происходящих в макросистемах, используют два метода статистический и 

термодинамический. 

При применении статистического метода учитывается внутреннее 

строение системы. В системе, состоящей из большого количества частиц, су-

ществуют некоторые средние значения физических величин, характеризу-

ющих всю совокупность частиц в целом. В газе существуют средние значе-

ния скоростей теплового движения молекул и их энергий, в твердом теле − 

средняя энергия, приходящаяся на одну степень свободы колебательного 

движения частицы. Свойства тел, непосредственно наблюдаемые на опыте 

(такие как давление и температура) рассматриваются как суммарный, усред-

ненный результат действия отдельных молекул. 

Нахождение средних и наиболее вероятных величин, характеризую-

щих движение частиц системы, является важной задачей, так как между этими 

величинами и макроскопическими свойствами системы имеется прямая связь. 

С помощью термодинамического метода изучаются свойства систе-

мы, без учета ее внутреннего строения. Раздел физики, изучающий физиче-

ские свойства макросистем с помощью термодинамического метода, называ-

ется термодинамикой. Термодинамика основана на трех началах, которые не 

выводятся, а получены на основе экспериментальных данных. 

 

§2 Характеристики атомов и молекул 
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1. Относительная атомная масса (Аr) химического элемента –  отноше-

ние массы атома этого элемента к 1/12 массы атома изотопа углерода ���� . 

2. Относительная молекулярная масса (Мr) вещества –  отношение 

массы молекулы этого вещества к 1/12 массы атома изотопа углерода ���� . 

Относительные атомная и молекулярная массы являются величинами 

безразмерными. Масса, равная 1/12 массы изотопа углерода ���� , называется 

атомной единицей массы (а.е.м.). 1 а. е. м. = 1,66 ∙ 10*�� кг.  

3. Моль – количество вещества, в котором содержится число частиц (атомов, 

молекул, ионов, электронов или других структурных единиц), равное числу 

атомов в 0,012 кг изотопа углерода ���� . 

Число частиц, содержащихся в 1 моле вещества, называется постоянной 

Авогадро nr. Численное значение постоянной Авогадро – nr = 6,02 ∙10�� моль*�.  

4. Молярная масса (М) – масса одного моля. М измеряется в кг/моль. 

Молярная масса и относительная молекулярная масса связаны соотноше-

нием: 

j = j" ∙ 10*� кгмоль  
Число молей, содержащихся в массе m вещества, определяется формулой: G = \i.        (2.1) 

5. Размеры атомов и молекул принято характеризовать эффективным диамет-

ром +эф, зависящим от химической природы вещества (+эф ≈ 10*�! м). 

Эффективный диаметр – это наименьшее расстояние, на которое сбли-

жаются центры двух молекул при столкновении. Его наличие говорит о 

том, что между молекулами действуют силы взаимного отталкивания. 

 

§3 Параметры состояния термодинамических систем 
 

Для описания поведения макросистем вводят физические величины, ко-

торые называют параметрами состояния системы. Основными параметрами 

являются давление (_), объем (t), температура (D). 

Давление – скалярная физическая величина, равная отношению нор-

мальной составляющей силы давления N£ 
к площади поверхности S. 

   _ = ¤¥%         (3.1) 

&_' = Нм- = Па (Паскаль). 
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В технике широко используется внесистемная единица измерения давле-

ния – техническая атмосфера (ат): 1 ат. =  98066,5 Па ≈  9,81 ⋅ 10¨ Па.  
Для практических целей (измерение атмосферного давления, в меди-

цине) используют миллиметры ртутного столба (мм рт. ст.): 1 мм рт. ст. =  133,322 Па,  
а также физическую атмосферу (атм): 1 атм =  760 мм рт. ст. =  1,01325 ⋅ 10ª Па. 

Давление измеряют манометрами, барометрами, вакуумметрами, а также 

различными датчиками давления. 

Объем – область пространства, занимаемая системой. 

 &t' = м�. 
Понятие температуры имеет смысл для равновесных состояний системы. 

Равновесным состоянием (состоянием термодинамического равновесия) назы-

вается состояние системы, не изменяющееся с течением времени. 

Температура равновесного состояния – это мера интенсивности тепло-

вого движения ее молекул (атомов, ионов). В термодинамике температура – 

это физическая величина, характеризующая состояние термодинамического 

равновесия макроскопической системы. 

Температурные шкалы устанавливаются опытным путем. В междуна-

родной стоградусной шкале температура измеряется в градусах Цельсия (°С) и 

обозначается �. Считается, что при нормальном атмосферном давлении в 1,01325 ⋅ 10ªПа   температура плавления льда равна 0°С, а температура кипе-

ния воды – 100°С. 

В термодинамической шкале температур температура измеряется в кель-

винах (K) и обозначается D. 

Абсолютная температура D и температура � по стоградусной шкале свя-

заны соотношением: D = � + 273,15.      (3.2) 

Температура D = 0 (� = −273,15℃) называется абсолютным нулем тем-

пературы. За абсолютный нуль температуры принимается температура, при 

которой прекращается тепловое движение молекул. 

 

Простейшей макроскопической системой является идеальный газ. Иде-
альный газ – это физическая модель. Чем более разрежен газ, тем он ближе по 

своим свойствам к идеальному газу. 

В идеальном газе отсутствует взаимодействие между молекулами, поэто-
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му они движутся равномерно и прямолинейно до тех пор, пока не произойдет 

столкновения между данной и какой-либо другой молекулой или соударения 

со стенкой сосуда. При столкновениях молекулы можно считать недеформи-

руемыми. Это означает, что столкновения между молекулами происходят по 

законам упругих соударений. В процессе столкновений между молекулами га-

за, а также между молекулами газа и молекулами стенок сосуда происходит 

обмен кинетической энергией и импульсом. 

Таким образом, с точки зрения молекулярно-кинетической теории иде-

альный газ – это система молекул, которые можно считать материаль-

ными точками, взаимодействующими друг с другом только в процессе 

столкновений. 
 

§4  Основное уравнение молекулярно-кинетической теории га-

зов 

Основное уравнение молекулярно-кинетической теории газов связывает 

макроскопический параметр системы – давление, с характеристиками частиц. 

При выводе этого уравнения предполагается, что массы всех молекул 

одинаковы, скорости всех молекул одинаковы по модулю, а все направления 

движения молекул равновероятны. В результате получается уравнение следу-

ющего вида, которое называют основным уравнением молекулярно-

кинетической теории: _ = �� 1�!¬кв� ,       (4.1) 

где �! 
– масса одной молекулы; 1 = ­] – концентрация молекул; ¬кв�

 – квадрат 

средней скорости движения молекул (средняя квадратичная скорость). 

Понятие средней квадратичной скорости вводится в связи с тем, что ре-

ально все частицы обладают разными скоростями. Величина средней квадра-

тичной скорости будет найдена в следующем параграфе. 

Запишем среднюю кинетическую энергию теплового движения одной 

молекулы: 

®� = \¯°±-
� .       (4.2) 

С учетом этого основное уравнение молекулярно-кинетической теории 

можно переписать в виде: _ = �� 1®К.        (4.3) 

 

Давление, производимое идеальным газом, равно двум третьим сред-

ней кинетической энергии поступательного теплового движения всех мо-

лекул, содержащихся в единице объема. 
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§5  Распределение Максвелла 

 

При столкновении молекулы газа изменяют свои скорости. Изменение 

скорости молекул происходит случайным образом. Нельзя заранее предска-

зать, какой численно скоростью будет обладать данная молекула: эта скорость 

случайна. 

Распределение молекул по модулям скоростей описывают с помощью 

функции распределения ²�¬�: #­³­ #° = ²�¬�,      (5.1) 

где отношение 
#­³­  равно доле молекул, скорости которых лежат в интервале 

от ¬ до ¬ + +¬, где  +¬ – ширина интервала (рис. 5.1). 

 

v dvv +
v

dv

 

Рис. 5.1 

 

Зная вид ²�¬�, можно найти число молекул (´n°) из числа данных мо-

лекул N, скорости которых попадают внутрь интервала скоростей от ¬ до ¬ ++¬. Отношение #­³­ = ²�¬� +¬       (5.2) 

дает вероятность того, что скорость молекулы будет иметь значение в преде-

лах данного интервала скоростей +¬. 

Функция ²�¬� должна удовлетворять условию нормировки, то есть 

должно выполняться условие: , ²�¬� +¬µ! = 1.      (5.3) 

Левая часть выражения в условии нормировки дает вероятность того, 

что молекула обладает скоростью в интервале от 0 до ∞. Поскольку скорость 

молекулы обязательно имеет какое-то значение, то указанная вероятность есть 
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вероятность достоверного события и, следовательно, равна 1. 

Функция распределения была найдена теоретически Максвеллом. Она 

имеет следующий вид: 

²�¬� = 4J � \¯�EyH�-̂ ·*¸¯³--¹º ¬�.    (5.4)  

где  �! – масса молекулы. 

Данное выражение называется функцией распределения Максвелла. 

Из него следует, что вид распределения молекул по скоростям зависит от при-

роды газа (массы молекулы) и температуры Т. Давление и объем на распреде-

ление молекул по скоростям не влияют. 

Схематичный график функции распределения Максвелла дан на рис. 5.2. 

 

)(vf

O
v

Bv
 

Рис. 5.2 

 

Проведем анализ графика. 

1. При скоростях, стремящихся к нулю (¬ → 0) и к бесконечности (¬ →∞) функция распределения также стремится к нулю. Это означает, 

что очень большие и очень маленькие скорости молекул маловероят-

ны. 

2. Скорость ¬В, отвечающая максимуму функции распределения, будет 

наиболее вероятной. Это означает, что основная часть молекул обла-

дает скоростями близкими к вероятной. Можно получить формулу 

для расчета наиболее вероятной скорости: ¬� = ¼�yH\¯ ,      (5.5) 

где � = 1,38 ∙ 10*�� Дж/К – постоянная Больцмана. 

3. В соответствии с условием нормировки, площадь, ограниченная кри-

вой ²�¬� и осью абсцисс равна единице.  
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4. Кривая распределения имеет асимметричный характер. Это означает, 

что доля молекул, имеющих скорости больше наиболее вероятной, 

больше доли молекул, имеющих скорости меньше наиболее вероят-

ной. 

5. Вид кривой зависит от температуры и природы газа. На рис. 3 приве-

дена функция распределения для одного и того же газа, находящегося 

при разных температурах. При нагревании максимум кривой понижа-

ется и смещается вправо, так как доля «быстрых» молекул возрастает, 

а доля «медленных» – уменьшается. Площадь под обеими кривыми 

остается постоянной и равной единице. 

 

)(vf

O
v

1Bv
2Bv

1T

2T 12 TT >
0201 mm =

 
Рис. 5.3 

 

Установленный Максвеллом закон распределения молекул по скоростям 

и вытекающие из него следствия справедливы только для газа, находящегося в 

равновесном состоянии. Закон Максвелла – статистический, применять его 

можно только к большому числу частиц. 
 

§6 Средние скорости 

Пользуясь функцией распределения Максвелла ²�¬�, можно найти ряд 

средних величин, характеризующих состояние молекул. 

Средняя арифметическая скорость – сумма скоростей всех молекул, 

деленная на число молекул: ¬ = °.�°-�⋯�°¾­ .        (6.1) 

Средняя квадратичная скорость, определяющая среднюю кинетиче-

скую энергию молекул, по определению равна: 

¬̅кв = ¼°.-�°--�⋯�°¾-­ .      (6.2) 

Расчет с использованием распределения Максвелла дает следующие 
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формулы для расчета: 

  ¬ = ¼ ÀyHE\¯ ,        ¬̅кв = ¼�yH\¯ .     (6.3) 

 Если учесть, что масса одной молекулы равна �! = i­�,  

где  М – молярная масса, nr – число Авогадро,  

а также то, что � ⋅ nr = L, то выражения для наиболее вероятной, средней 

арифметической и средней квадратичной скоростей можно переписать следу-

ющим образом: 

  ¬� = ¼�<Hi ,          ¬ = ¼À<HEi ,          ¬̅кв = ¼�<Hi . (6.4) 

Сопоставляя полученные выражения для скоростей, можно заметить, что ¬�, ¬  и ¬̅кв одинаково зависят от температуры газа и молярной массы, 

отличаясь только множителем. 

 

§7  Молекулярно-кинетическая трактовка 

термодинамической температуры 
 

В §4 было получено основное уравнение молекулярно-кинетической 

теории: _ = �� 1�!¬кв� ,        (7.1) 

где средняя квадратичная скорость движения молекул: 

 ¬̅кв = ¼�yH\¯ .        (7.2) 

Подставляя выражение для средней квадратичной скорости в выражение 

для давления, получим: _ = 1�D.        (7.3) 

Из полученного следует, что давление идеального газа пропорционально 

его абсолютной температуре и концентрации молекул. 

Если имеется несколько газов, то давление, производимое газом, будет 

равно: _ = _� + _� + ⋯ + _:,     (7.4) 

где  _� - давление, которое было бы в сосуде, если бы в нем находились толь-
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ко молекулы первого газа; _� –давление, которое было бы при наличии в сосуде только молекул вто-

рого газа и т.д. 

Давление, которое производил бы газ, при условии, что он один присут-

ствует в сосуде в том количестве, в каком он содержится в смеси, называется 

парциальным. 

Уравнение для давления смеси газов представляет собой закон Дальто-

на:   Давление смеси идеальных газов равно сумме парциальных давлений 

газов, образующих смесь. 

Приравняем правые части уравнений   _ = 1�D  и    _ = �� 1®К: 

�� 1®К = 1�D,        (7.5) 

и выразим среднюю энергию теплового движения молекулы: 

   ®К = �� �D.        (7.6) 

Отсюда следует: термодинамическая температура – это величина, 

пропорциональная средней кинетической энергии поступательного дви-

жения молекул идеального газа. 

Средняя энергия ®К зависит только от температуры и не зависит от мас-

сы молекулы. Если ®К = 0, то D = 0. Температура, при которой прекращает-

ся тепловое движение частиц вещества, называется абсолютным нулем. 

 

 ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ 

Термодинамика опирается на основные законы (начала), установленные 

экспериментально.  

Первое начало термодинамики является законом сохранения энергии, 

примененным к тепловым процессам, То есть оно устанавливает количествен-

ные соотношения между превращениями энергии из одних видов в другие.  

Второе начало термодинамики определяет условия, при которых эти 

превращения возможны, т.е. определяет возможные направления этого про-

цесса. 

 

 

§8  Состояние термодинамической системы.  

Термодинамический процесс 
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Термодинамическая система – это совокупность макроскопических тел, 

которые могут обмениваться энергией между собой и с другими телами. При-

мером системы является жидкость и находящийся с ней в соприкосновении 

пар или газ. 

Состояние системы характеризуют параметрами состояния (давлением _, объемом t, температурой D и т.д.). Состояние, в котором все параметры со-

стояния имеют определенные значения, не изменяющиеся с течением времени, 

называется равновесным. 

Состояние системы называется неравновесным, если оно без всякого 

воздействия извне самопроизвольно меняется со временем. В неравновесном 

состоянии всем или некоторым параметрам нельзя приписать определенные 

значения. Система, находящаяся в неравновесном состоянии и предоставлен-

ная самой себе, постепенно переходит в равновесное состояние. 

Термодинамический процесс – это переход системы из одного состоя-

ния в другое. Процесс, состоящий из последовательности равновесных состоя-

ний, называют равновесным. Равновесный процесс – это физическая модель. 

Процессы будут равновесными, если они протекают бесконечно медленно и 

при этом внешние воздействия изменяются непрерывно, без скачков. 

Равновесный процесс, который допускает возможность возвращения си-

стемы в первоначальное состояние через ту же последовательность промежу-

точных состояний, что и в прямом процессе, называется обратимым. При 

этом в окружающих телах не должно оставаться никаких изменений (не изме-

няется взаимное расположение тел, окружающих систему, их термодинамиче-

ское состояние и т.д.). 

Процесс называется необратимым, если по его завершении систему 

нельзя вернуть в исходное состояние так, чтобы в окружающих телах не оста-

лось каких-либо изменений. Все реальные процессы необратимы. Необратимы 

смешение жидкостей, газов; передача тепла от нагретого тела к холодному; 

диффузия и некоторые другие процессы. 

 

§9  Изопроцессы. Уравнение состояния идеального газа 
 

Состояние некоторой массы газа определяется значениями трех пара-

метров: давлением _, объемом t, температурой D. Эти параметры закономерно 

связаны друг с другом, так что изменение одного из них влечет за собой изме-

нение других. Указанная связь может быть задана аналитически в виде функ-

ции: N�_, t, D� = 0.       (9.1) 

Это общий вид уравнения состояния для данной массы газа.  
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Изобарный процесс: процесс, протекающий при постоянном давлении �_ = /012��. Экспериментально для постоянной массы газа �� = /012�� был 

получен закон Гей-Люссака, который связывает изменение объема с измене-

нием температуры: при неизменном давлении объем данной массы газа меня-

ется линейно с температурой. t = t!�1 + ���       (9.2) 

где  � - температура по шкале Цельсия, 

 t! - объем при 0°С, 

 � = ���� град*� – температурный коэффициент, значение которого 

определено экспериментально.  

Если записать выражение для изменения объема от температуры, выра-

женной по шкале Кельвина, оно примет вид: t = �t!D,        (9.3) 

  

или      
]H = /012�.       (9.4) 

В осях �t, D� графики изобарных процессов будут иметь вид, представ-

ленный на рис. 9.1, а сами прямые называют изобарами. 

 

 

Рис. 9.1 

 

Изохорный процесс: процесс, протекающий при постоянном объеме �t = /012��. Для постоянной массы газа �� = /012�� изохорный процесс опи-

сывается законом Шарля: 
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 _ = _!�1 + ���,      (9.5) 

где  _! - давление при 0°С,  � = ���� град*�. 

Если температура выражена по шкале Кельвина, изменение давления от 

температуры может быть записано как: 

  
 _ = �_!D,       (9.6) 

или   
uH = /012�.        (9.7) 

В осях �_, t� графики изохорных процессов будут иметь вид, представ-

ленный на рис. 9.2, а сами прямые называют изохорами. 
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Рис. 9.2 

 

 Изотермический процесс: процесс, протекающий при постоянной тем-

пературе �D = /012��. Для изотермических процессов экспериментальным 

путём был получен закон Бойля — Мариотта: для данной массы газа �� =/012�� при постоянной температуре давление газа изменяется обратно про-

порционально его объему. _t = /012�.       (9.8) 

 В осях �_, t� вид графиков изотермического процесса для двух постоян-

ных значений температуры изображён на рис. 9.3. Сами графики в этом случае 

называются изотермами. 
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Рис.9.3 

Законы Бойля — Мариотта и Гей-Люссака являются приближенными. 

Всякий реальный газ тем точнее следует законам, чем меньше его плотность, 

т. е. чем больший объем он занимает. Законы Бойля — Мариотта и Гей-

Люссака справедливы при не слишком низких температурах и невысоких дав-

лениях. Газ, который точно следует  этим законам, называется идеальным.  

Идеальный газ является абстрактным понятием. Некоторые газы, такие, 

как воздух, азот, кислород, при комнатной температуре и атмосферном давле-

нии весьма близки к идеальному газу. Наиболее близки по своим свойствам к 

идеальному газу гелий и водород.  

Объединив уравнения Бойля-Мариотта и Гей-Люссака, можно найти 

уравнение состояния идеального газа: _t = \i LD,       (9.9) 

где  
\i = G – количество вещества, выраженное в киломолях, 

 � – масса газа,  j – молярная масса газа,  

L = 8,31 Джкмоль∙К – универсальная газовая постоянная. 

 

§10  Работа, совершаемая системой  

при изменении объема 
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Рассмотрим газ, находящийся в цилиндрическом сосуде, закрытом плотно 

пригнанным поршнем. Допустим, что газ начал медленно расширяться и пе-

реместил поршень на расстояние +ℎ (рис. 10.1).  

 

газ

dh

 

Рис. 10.1 

 

Элементарная работа, совершаемая газом при перемещении поршня на вели-

чину +ℎ равна Á� = N+ℎ,       (10.1) 

где F – сила, с которой газ давит на поршень. Заменив силу произведением 

давления р на площадь S поршня, получим: Á� = _+t.       (10.2) 

Если газ расширяется, то +t > 0 и работа будет положительной. Если газ 

сжимается, то +t < 0 и работа будет отрицательной. 

Если давление газа при изменении объема не остается постоянным, то работа, 

совершаемая при изменении объема от t�  
до t�, вычисляется интегрировани-

ем: ��� = , _+t.]-].       (10.3) 

Процесс изменения объема можно представить на диаграмме �_, t�. Элемен-

тарной работе Á� = _+t соответствует площадь узкой заштрихованной полос-

ки (рис. 10.2).  
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Рис. 10.2 

Площадь фигуры, ограниченной осью t, кривой _ = ²�t� и ордината-

ми t�  
и t�, численно равна работе, совершаемой газом при изменении его 

объема от t�  
до t�. 

Запишем выражения для работы газа в изопроцессах: 

1. Изобарный процесс �_ = /012��. ��� = , _+t]-]. = _�t� − t��.         (10.4) 

2. Изотермический процесс �D = /012��. ��� = , _+t]-]. = , Ä<H] +t]-]. = GLD �1 ]-]. = GLD �1 u.u-    (10.5) 

3. Изохорный процесс �t = /012��. ��� = , _+t]-]. = 0.           (10.6) 

 

§11  Внутренняя энергия термодинамической системы 
 

Внутренняя энергия �Å� тела определяется как энергия этого тела за 

вычетом кинетической энергии тела как целого и потенциальной энергии этого 

тела в различных силовых полях. Следовательно, внутренняя энергия склады-

вается из: 

1) кинетической энергии хаотического движения молекул; 

2) потенциальной энергии взаимодействия между молекулами; 

3) внутримолекулярной энергии (т.е. энергии электронных оболочек атомов и 

внутриядерной энергии). 
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Внутренняя энергия является функцией состояния системы. Это означает, 

что энергия в данном состоянии имеет присущее этому состоянию значение.  

Приращение внутренней энергии при переходе системы из одного состо-

яния в другое всегда равно разности значений внутренней энергии в конечном 

и начальном состояниях и не зависит от процесса, которым осуществляется пе-

реход.  

Для получения формулы внутренней энергии идеального газа рассмотрим 

понятие степени свободы молекулы. 

Числом степеней свободы ��� механической системы называется коли-

чество независимых величин, с помощью которых может быть задано положе-

ние системы в пространстве. 

Экспериментально установлено, что при определении числа степеней 

свободы молекул, атомы нужно рассматривать как материальные точки. 

1. Одноатомная молекула (He, Ne, Ar и т.д.). � = 3. 
Положение одноатомной молекулы задается тремя пространственными 

координатами ��, 	, ��. Степени свободы одноатомной молекулы называют по-

ступательными степенями свободы. 

2. Двухатомная молекула с жесткой связью (Q�, Æ�, n�, и т.д.). � = 5. 
Такая молекула кроме трех степеней свободы поступательного движения 

имеет еще две степени свободы вращательного движения вокруг взаимно пер-

пендикулярных осей Æ� − Æ� и Æ� − Æ� (рис. 11.1).  

 

O O

1O

1O

2O

2O
 

Рис. 11.1 

Вращение вокруг третьей оси Æ − Æ рассматривать не надо, так как мо-

мент инерции атомов относительно этой оси ничтожно мал. Следовательно, ни-

чтожно мала и кинетическая энергия молекулы, связанная с этим вращением. 



62 

 

Таким образом, для двухатомной молекулы � = 3 + 2 = 5 (3 – поступательные 

степени свободы; 2 – вращательные степени свободы). 

3. Если число атомов в молекуле с жесткой связью три и больше трех (nQ�, �Q¨), то число степеней свободы � = 6. � = 3 + 3 = 6 (3 – поступательные сте-

пени свободы; 3 – вращательные степени свободы). 

 

Средняя кинетическая энергия поступательного движения молекулы вы-

числяется формуле (см. §7): 

®К = �� �D.        (11.1) 

Так как поступательных степеней свободы три, то в соответствии с зако-

ном равнораспределения энергии хаотического движения молекул по степеням 

свободы на одну степень свободы приходится энергия 

®� = �� �D.        (11.2) 
 

На каждую степень свободы (поступательную, вращательную) в 

среднем приходится одинаковая кинетическая энергия, равная 
bc ÇÈ. 

Из закона равнораспределения энергии по степеням свободы вытекает, 

что средняя кинетическая энергия молекулы определяется формулой: 

®К = v� �D.        (11.3) 

Воспользуемся полученным выражением и запишем формулу для расчета 

внутренней энергии идеального газа. Поскольку молекулы идеального газа не 

взаимодействуют друг с другом, его внутренняя энергия складывается из кине-

тических энергий отдельных молекул: 

Å = n ∙ ®К,       (11.4) 

где n – число молекул, ®К – средняя кинетическая энергия одной молекулы. 

Число молекул можно выразить как 

 n = \i nr,        (11.5) 

где nr – число Авогадро. 

Тогда получим: 

Å = \i nr ∙ v� �D.      (11.6) 
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Произведение постоянной Больцмана на число Авогадро даст молярную газо-

вую постоянную: � ∙ nr = L. Тогда 

Å = v� \i LD.       (11.7) 

Из полученного выражения следует, что внутренняя энергия идеального газа 

не зависит от давления и объема, а определяется природой газа и его темпера-

турой. На практике важно знать изменение внутренней энергии 

ΔÅ = Å� − Å� = v� \i L�D� − D��.   (11.8) 

 

§12  Первое начало термодинамики 

 

Изменить внутреннюю энергию системы можно за счет совершения над телом 

работы �′ и передачи ему тепла Ë. 

Тепло (Ë) – количество энергии, переданное от одного тела к другому по-

средством теплопередачи. Количество тепла измеряется в джоулях. 

Из закона сохранения энергии следует, что   Ë = ΔÅ + �,       (12.1) 

где � = −�′ – работа, которую совершает система над внешними телами. Этот 

закон в термодинамике называется первым началом термодинамики. Форму-

лируется он следующим образом: 

Количество тепла, сообщенное системе, идет на приращение внут-

ренней энергии системы и на совершение системой работы над внешними 

телами.  

Первое начало можно также формулировать следующим образом:  

Невозможен вечный двигатель первого рода, то есть такой периоди-

чески действующий двигатель, который совершал бы работу в большем 

количестве, чем полученная им извне энергия. 

Для элементарного процесса первое начало термодинамики записывается 

в виде: ÁË = +Å + Á�,       (12.2) 

где +Å – элементарно малое приращение внутренней энергии, ÁË – элементар-

ное количество тепла, Á� – элементарная работа. 
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Сформулируем первое начало термодинамики для изопроцессов. 

1. Изохорный процесс. Так как t = /012�, то изменение объема равно ну-

лю. Работа по расширению газа также будет равной нулю. В этом случае 

 Ë = ΔÅ.       (12.3) 

 
Количество тепла, сообщенное системе, идет на приращение внут-

ренней энергии. 

 

2. Изобарный процесс. Запишем первое начало термодинамики для изобар-

ного процесса: 

 Ë = ΔÅ + �.      (12.4) 

 
Количество тепла, сообщенное системе, идет на приращение внут-

ренней энергии и совершение системой работы над внешними тела-

ми. 

 

3. Изотермический процесс. Так как D = /012�, то изменение температуры 

и, следовательно, внутренней энергии равно нулю. Следовательно, первое 

начало термодинамики для изотермического процесса: 

 Ë = �.      (12.5) 

 
Количество тепла, сообщенное системе, идет на совершение систе-

мой работы над внешними телами. 

 

§13  Теплоемкость 

 

Теплоемкость тела – скалярная физическая величина, равная количеству теп-

ла, которое нужно сообщить телу, чтобы нагреть его на один кельвин: 

� = ÌÍ#H.        (13.1) 

&�' = ДжК . 
Удельная теплоемкость – скалярная физическая величина, равная количеству 

тепла, которое нужно сообщить 1 кг вещества, чтобы нагреть его на один кель-

вин: 
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 / = ÌÍ\#H.        (13.2) 

&/' = Джкг ∙ К. 
Молярная теплоемкость – скалярная физическая величина, равная количеству 

тепла, которое нужно сообщить одному молю вещества, чтобы нагреть его на 

один кельвин: 

�Ä = ÌÍ#H.        (13.3) 

&�Ä' = Джмоль ∙ К. 
Удельная и молярная теплоемкости связаны соотношением: 

/ = ÎÏi ,        (13.4) 

где М – молярная масса. 

Теплоемкость газов зависит от условий, при которых производилось 

нагревание тела. Если нагревание производилось при постоянном объеме, то 

теплоемкость называется теплоемкостью при постоянном объеме и обозначает-

ся �]. Если нагревание производилось при постоянном давлении, то теплоем-

кость называется теплоемкостью при постоянном давлении и обозначается �Ð.  

Получим выражения для молярных теплоёмкостей ÑÒ и ÑÓ. 

�] = ÌÍ#H = #Ô#H = Õ-<#H#H = v� L.      (13.5) 

�Ð = ÌÍ#H = #Ô�Ìr#H = Õ-<#H�u#]#H = Õ-<#H�<#H#H = v��� L. (13.6) 

Таким образом, молярные теплоёмкости �Ð и �] связаны соотношением: �Ð = �] + L.         (13.7) 

Полученное выражение называют уравнением Майера. 

Молярная теплоемкость для изотермического процесса: 

�H = ÌÍÄ#H = ∞.        (13.8) 

 



66 

 

§14  Адиабатный процесс 

 

Адиабатным называется процесс, происходящий без теплообмена с окру-

жающей средой. Это означает, что   ÁË = 0, то есть Ë = 0. 

Адиабатный процесс описывается следующим уравнением, которое назы-

вается уравнением Пуассона: _tÖ = /012�.       (14.1) 

Для двух состояний оно записывается в следующем виде: _�t�Ö = _�t�Ö.       (14.2) 

Буквой × обозначают величину, называемую показателем адиабаты. По-

казатель адиабаты равен отношению молярной теплоемкости при постоянном 

давлении к молярной теплоемкости при постоянном объеме: 

ÎØÎÙ = ×.        (14.3) 

Показатель адиабаты можно рассчитывать через число степеней свободы: 

× = ÎØÎÙ = v��v .       (14.4) 

Уравнение адиабаты также можно записывать в переменных Т и V: DtÖ*� = /012�,      (14.5) 

и для двух состояний: 

D�t�Ö*� = D�t�Ö*�.      (14.6) 

Сравнительные диаграммы изотермы и адиабаты приведены на рис. 14.1.  
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Рис. 14.1 

Количество тепла, которым обменивается тело с внешней средой, будет 

тем меньше, чем быстрее протекает процесс. Следовательно, близкими к адиа-

батному, могут быть достаточно быстро протекающие процессы. 

Первое начало для адиабатного процесса будет иметь вид: � = −ΔÅ.        (14.7) 

При адиабатном процессе работа совершается за счет убыли внут-

ренней энергии. 

Если газ расширяется, то внутренняя энергия уменьшается, при этом газ 

охлаждается. Если газ сжимается, то внутренняя энергия увеличивается, при 

этом газ нагревается. 

Молярная теплоемкость газа при адиабатном процессе равна нулю: 

�ад = ÌÍÄ#H = 0.      (14.8) 

Работа, совершаемая газом, при адиабатном процессе: � = −G�]�D� − D�� = G�]�D� − D��.  (14.9) 

Сделав замену с использованием уравнения Менделеева – Клапейрона, 

можно получить еще одну формулу для расчета работы: 

� = ÎÙ< �_�t� − _�t��.     (14.10) 

 



68 

 

§15  Тепловые машины 

 

Круговым процессом (или циклом) называется такой процесс, при кото-

ром система после ряда изменений возвращается в исходное состояние. На гра-

фике (рис. 15.1) цикл изображается замкнутой кривой. На участке 1–2 (расши-

рение от объема t� до объема t�) работа положительна и равна площади, отме-

ченной наклоненной вправо штриховкой. На участке 2–1 (сжатие от t� до t�) 

работа отрицательна и равна площади, отмеченной наклоненной влево штри-

ховкой. Следовательно, работа за цикл численно равна площади, охватываемой 

кривой. 

p
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Рис. 15.1 

 

После совершения цикла система возвращается в исходное состояние, по-

этому изменение внутренней энергии системы равно нулю. 

Тепловая машина – периодически действующий двигатель, совершаю-

щий работу за счет получаемого извне тепла. 

Принципиальная схема теплового двигателя дана на рис. 15.2. Рабочим 

телом называется термодинамическая система, совершающая круговой процесс 

и обменивающаяся энергией с другими телами. Обычно таким рабочим телом 

является газ. 



69 

 

2T

1T

1Q

21 QQA −=

2Q

 

Рис. 15.2 

 

Сначала газ приводят в контакт с нагревателем, т.е. телом, температура 

которого D� выше температуры газа. Газ получит от нагревателя тепло Ë� и 

расширится от объема t� до объема t�. Затем газ надо сжать до объема t�, т.е. 

вернуть его в исходное состояние. Для этого его приводят в контакт с холо-

дильником, т.е. телом, температура которого D� ниже температуры газа. При 

этом газ отдает холодильнику тепло Ë�.  

Совершаемая за цикл работа равна: � = Ë� − Ë�,       (15.1) 

так как изменение внутренней энергии в круговом процессе равно нулю. 

Коэффициент полезного действия (кпд) тепловой машины равен отноше-

нию совершаемой за один цикл работы � к получаемому от нагревателя за цикл 

количеству тепла Ë�: 

Ú = rÍ..        (15.2) 

С учетом формулы совершаемой за цикл работы, выражение для кпд 

можно записать в виде: 

Ú = Í.*Í-Í. = 1 − Í-Í..     (15.3) 

Из определения кпд следует, что он не может быть больше единицы. 

Из всех циклических процессов отдельно рассматривается цикл Карно – 

это обратимый цикл, состоящий из двух изотерм и двух адиабат. Изотермиче-
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ский процесс – это процесс, происходящий при постоянной температуре, адиа-

батный – это процесс, происходящий без теплообмена с окружающей средой. 

Цикл впервые введен в рассмотрение французским инженером Сади Карно. Ес-

ли рабочим телом является идеальный газ, то цикл Карно имеет вид, изобра-

женный на рис. 15.3.  

В процессе 1–2 газ находится в тепловом контакте и равновесии с нагре-

вателем (теплоотдатчиком). Температура нагревателя D�. От нагревателя газ 

получит тепло Ë� (Ë� > 0). Температура нагревателя при этом не изменится. В 

процессе 2–3 газ теплоизолируется, и работа по его расширению происходит за 

счет изменения внутренней энергии. В процессе 3–4 газ приводится в контакт с 

холодильником (теплоприемником), температура которого D� не меняется (D� <D�). При этом газ сжимается и передает холодильнику тепло Ë�. 
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Рис. 15.3 

В процессе 4–1 газ снова теплоизолируется и сжимается до первоначаль-

ного состояния 1. 

Кпд цикла Карно определяется следующим образом: 

Ú = H.*H-H. = 1 − H-H..      (15.4) 
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Теорема Карно: Кпд всех обратимых машин, работающих при одних и 

тех же температурах нагревателя и холодильника, одинаков и определя-

ется только температурами нагревателя и холодильника и не зависит от 

природы рабочего тела. 

Для увеличения кпд тепловой машины необходимо увеличивать темпера-

туру нагревателя и уменьшать температуру холодильника. Кпд необратимой 

машины всегда меньше, чем кпд обратимой машины, работающей с тем же 

нагревателем и холодильником. 

Í.*Í-Í. ≤ H.*H-H. .       (15.5) 

  

Знак равенства относится к обратимым машинам, знак неравенства – к 

необратимым. 

 

§16  Второе начало термодинамики 

 

Второе начало термодинамики определяет возможные направления про-

цессов превращения энергии из одного вида в другой. Также, как и первое 

начало, оно имеет несколько формулировок. 

Невозможен процесс, единственным конечным результатом которо-

го была бы передача тепла от менее нагретого тела к более нагретому. 

Это не означает, что второе начало вообще запрещает переход тепла от 

тела, менее нагретого, к телу, более нагретому. Такой переход возможен, но он 

не будет единственным результатом процесса. Это значит, что одновременно 

произойдут изменения в окружающих телах, так как для осуществления этого 

перехода над системой должна совершится работа. 

Невозможен такой процесс, единственным конечным результатом 

которого явилось бы отнятие от какого-то тела некоторого количества 

теплоты и превращение этой теплоты полностью в работу. 

Рассмотрим, например, расширение газа при постоянной температуре. По 

первому началу термодинамики Ë = ΔÅ + �. Температура газа не меняется, 
значит ΔD = 0. Из соотношения 

ΔÅ = Å� − Å� = v� \i L�D� − D��.   (16.1) 

следует, что изменение внутренней энергии ΔÅ = 0. Отсюда следует, что все 

полученное тепло перешло в работу: Ë = �. Но получение тепла и превращение 
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его в работу не единственный конечный результат процесса. Кроме того, в ре-

зультате изотермического процесса происходит изменение объема газа. 

Второе начало термодинамики, будучи статистическим законом, описы-

вает закономерности хаотического движения большого числа частиц, состав-

ляющих замкнутую систему. Если система состоит из небольшого числа ча-

стиц, то будут наблюдаться отклонения от второго начала. 
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Тема 3:  ЭЛЕКТРОСТАТИКА И ПОСТОЯННЫЙ ТОК 

 

ЭЛЕКТРОСТАТИКА 

Электростатикой называют раздел электродинамики, в котором рас-

сматривается взаимодействие неподвижных электрически заряженных матери-

альных объектов (материальных точек и тел). 

§1  Электрический заряд и закон Кулона 

Электрическим зарядом  Ü  называется физический параметр тела или 

материальной точки, определяющий их взаимодействие с внешним электромаг-

нитным полем. 

Единица измерения заряда:  &Ü' = Кл �кулон�,  причём 1 Кл = 1 А∙ с. 

1.1 Электрический заряд 

 Перечислим ниже ряд свойств электрического заряда: 

• Существует два вида электрических зарядов: положительный и отрица-

тельный. Заряды разных знаков притягиваются друг к другу, а заряды од-

ного знака – отталкиваются. 

• Существует мельчайший и неделимый электрический заряд ÜÝ, носите-

лем которого является электрон. Электрон имеет отрицательный заряд. 

Такой же по величине заряд противоположного знака имеет протон. Из-

вестно, что 

 ÜÝ = · = 1.6 ∙ 10*�Þ Кл.      (1.1) 

• Любой заряд представляет собой совокупность элементарных зарядов, Ü = ·n         (1.2) 

где N – число носителей элементарного заряда. 

• В электрически изолированной системе алгебраическая, то есть вычис-

ленная с учётом знаков, сумма зарядов является величиной постоянной. 

• Заряд инвариантен, то есть его величина не зависит от выбора системы 

отсчёта. 

 

 

 

1.2 Закон Кулона 
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 Закон Кулона  получен экспериментальным путём.  

Он позволяет определить силу, с которой взаимодействуют точечные за-

ряды. Точечными зарядами называются заряды тел, размеры которых малы по 

сравнению с расстояниями между заряженными телами. 

 Сила взаимодействия двух неподвижных точечных зарядов пропорци-

ональна величине этих зарядов, обратно пропорциональна квадрату рас-

стояния между ними и зависит от среды, в которой находятся заряды: 

  N = � ß.ß-K "- ,        (1.3) 

где  � = �¨E K¯ = 9 ∙ 10Þ  Н∙м-
Кл-  – коэффициент пропорциолнальности, 

 ?! = 8.85 ∙ 10*��  Фм  – электрическая постоянная, 
 ? – диэлектрическая проницаемость – характеристика среды. 
 Для вакуума ? = 1. 

Силы лежат на прямой, соединяющей точечные заряды  (рис. 1.1). 

12F
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Рис. 1.1 

§2  Электрическое поле 

 Электрическое поле  – это свойство пространства, расположенного во-

круг заряженных тел, которое проявляет себя силовым действием на заряды.   

 Если заряды неподвижны, то их взаимодействие обеспечивает электро-

статическое поле.  Оно не изменяется во времени, то есть является полем ста-

ционарным. 

 Рассмотрим ниже некоторые характеристики  электрического поля. 

2.1  Напряжённость электрического поля 
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Для исследования электрического поля используют точечный единичный 

(равный 1 Кл) положительный заряд  ÜПР, который называют пробным заря-

дом.  

Напряженность электрического поля ®�⃗  есть векторная величина, чис-

ленно равная силе, которая будет действовать на пробный заряд, если его поме-

стить в данную точку: 

 ®�⃗ = ¤⃗ßПР         (2.1) 

Вектор напряжённости направлен в ту же сторону, что и сила (рис. 2.1). 

Единица измерения напряженности поля:  &®' = НКл = Вм. 
Поле называется однородным, если его напряжённость во всех точках одинако-

ва. 

q
E
r

 

Рис. 2.1 

 Напряжённость электрического поля, которое будет создаваться точеч-

ным зарядом, в соответствии с законом Кулона будет равна: 

  ® = ¤ßПР = �¨E K¯ ∙ ßK "-      (2.2) 

 Напряжённость поля, которое создаётся несколькими зарядами, будет 

равняться векторной сумме напряжённостей  полей каждого из зарядов в от-

дельности (рис. 2.3). 
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Рис. 2.2 

  ®�⃗ = ∑ ®�⃗ y­yz� .        (2.3) 

 Когда действие полей суммируется подобным образом, говорят о супер-

позиции (наложении) полей. 

 Из рассмотренных формул следует, что на любой заряд  q, помещённый в 

электрическое поле, будет действовать электрическая сила, равная 

  N⃗ЭЛ = Ü ®�⃗          (2.4) 

2.2  Потенциал электростатического поля 

 Рассмотрим случай, когда пробный заряд, находясь под действием сил 

электрического поля, перемещается по некоторой траектории (рис. 2.3) из точ-

ки 1 в точку 2. Работа, которая при этом совершается, может быть вычислена 

по формуле: 

� = , N⃗ ∙ +�⃗"-". = , N ∙ +� ∙ cos � = , N ∙ +�"-".
"-".             (2.5) 

 Можно показать, что результат вычисления интеграла (2.5) не зависит от 

формы траектории  движения заряда   ÜПР  между точками 1 и 2,  а определяет-

ся только начальным и конечным положением заряда ÜПР   

А = ê � Ü ÜПР? ��  +� = −� ëÜ ÜПР? �� − Ü ÜПР? �� ì"-

".
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Значит, электростатическое поле является полем потенциальным, а  возникаю-

щие в соответствии с законом Кулона силы (кулоновские силы) являются кон-

сервативными. 
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Рис. 2.3 

Величина 

�П = � Ü ÜПР? �         (2.6) 

представляет собой потенциальную энергию заряда  ÜПР, находящегося в поле 

заряда  Ü. Отношение этой величины к величине пробного заряда для данной 

точки всегда будет одним и тем же: 

  = = íПßПР         (2.7) 

 Эта скалярная величина называется потенциалом электростатическо-

го поля. Она равна потенциальной энергии, которую положительный единич-

ный заряд имел бы в данной точке поля. 

Единица измерения потенциала: &=' = ДжКл = В (вольт). 

  = = � ßK " = 14J ?0 ∙ ßK "  ,     (2.8) 
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где  � = �¨E K¯  –  коэффициент пропорциолнальности, 

 r  –  расстояние от заряда до точки, в которой определяется потенциал, 

 q  –  величина заряда. 

Из формулы (2.8) видно, что по мере удаления точки в бесконечность 

(� → ∞) потенциал поля стремится к нулю (= → 0), и в бесконечно удалённой 

точке обращается в ноль. 

При перемещении заряда  Ü из точки 1 с потенциалом =� в точку 2 с по-

тенциалом =�, силы электростатического поля совершат работу, равную 

 � = −�Ü=� − Ü=�� = Ü�=� − =��    (2.9) 

Величина в скобках называется разностью потенциалов: 

 ∆= = M=1 − =2P, 

и тогда совершаемая работа будет равна 

  � = Ü ∆=         (2.10) 

 Если же из точки с потенциалом = заряд q переместить в бесконечность, 

где потенциал будет нулевым, то работа сил поля будет равна 

  �µ = Ü =  и, следовательно,   = = rîß . 

 Следовательно, потенциал численно равен работе, совершаемой сила-

ми электростатического поля при перемещении положительного единич-

ного заряда из этой точки в бесконечность. 

На практике, при решении задач считают, что нулевым потенциалом об-

ладает Земля. 

Если рассматривается система нескольких зарядов  (N), то в соответствии 

с принципом суперпозиции, потенциал поля в рассматриваемой точке будет ра-

вен алгебраической (потенциал отрицательных зарядов считается отрицатель-

ным) сумме потенциалов, создаваемых каждым из зарядов в отдельности, то 

есть 

 = = ∑ =y­yz� .        (2.11) 
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§3  Геометрические свойства электростатических полей 

 Для схематичного изображения внутренней пространственной геометрии 

электростатического поля, используют силовые линии и эквипотенциальные 

поверхности. 

 Эквипотенциальной поверхностью называют геометрическое место то-

чек, в которых потенциалы одинаковы. При перемещении заряда по эквипотен-

циальной поверхности работа сил электростатического поля будет нулевой. 

 Силовой линией называют линию, в каждой точке которой вектор напря-

жённости  ®�⃗   направлен к ней по касательной. 

E
r

E
r

 

Рис 3.1 

 Силовые линии обладают следующими свойствами: 

• Они никогда не пересекаются. 

• Они начинаются на положительных зарядах и заканчиваются на отрица-

тельных.  

• Они могут уходить в бесконечность, или приходить из бесконечности. 

• Силовые линии всегда перпендикулярны эквипотенциальным поверхно-

стям. 

• Чем гуще расположены силовые линии, тем больше напряжённость элек-

тростатического поля. 

 Приведём примеры расположения эквипотенциальных поверхностей: 

• Поле точечного заряда. 
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Рис. 3.2 

 

• Система двух точечных зарядов разного знака. 

 

Рис. 3.3 

 

• Поле равномерно заряженной бесконечной плоскости. 

 

Рис. 3.4 
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§4  Зависимость между потенциалом и напряжённостью 

 Рассмотрим точечный заряд. Поле точечного заряда является неоднород-

ным, поскольку напряжённость при переходе от одной точки к другой меняет 

своё направление и величину, и величина потенциала при этом также меняется. 

 Рассмотрим три эквипотенциальные поверхности (рис. 4.1), потенциалы 

которых отличаются на некоторую бесконечно малую величину:  

 = − +=,   =,  = + +=.  
 Расстояние между первой и второй поверхностью будет отличаться от 

расстояния меду второй и третьей. 

 Скорость изменения потенциала в некотором направлении  �⃗ определяет-

ся производной по этому направлению  
#@#" .   
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Рис. 4.1 

 Потенциал поля тем больше, чем меньше расстояние до заряда, и, следо-

вательно, значение производной будет увеличиваться в сторону, противопо-

ложную направлению вектора напряжённости  ®�⃗ . 

 Для исследования скалярных функций нескольких переменных в матема-

тике используют векторную функцию, которая называется градиентом. Гради-

ент, в частности, позволяет найти направление, по которому значение потенци-

ала увеличивается быстрее всего, а также скорость этого изменения. 
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 Градиентом потенциала называется вектор, направленный в сторону 

максимального возрастания функции и численно равный изменению функции, 

приходящемуся на единицу длины в этом направлении. 

 В пространственном случае для некоторой функции  =��, 	, �� градиент 

выражается следующей формулой: 

  k�3+ = = ï=ï� �⃗ + ï=ï	 ð⃗ + ï=ï� ���⃗ .     (4.1) 

 При рассмотрении изменения функции в одном заданном направлении �⃗ 

градиент численно будет равен   

  grad = =  ñ@ñ"  

 Рассмотрим пробный заряд  ÜПР, который находится в точке А, потенциал 

которой равен =. Если под действием поля этот заряд переместится в точку с 

потенциалом = − +=, то работа, которая при этом совершится будет равна 

  +� = N +� = ÜПР ® +�,      (4.2) 

где  +� − расстояние между поверхностями с потенциалами  =  и   = − +=. 

 Но эта работа также равна 

  +� = − ÜПР +=        (4.3) 

 Приравнивая правые части уравнений (4.2) и (4.3), получим, что 

  ® = − #@#"          (4.4) 

 Таким образом, напряжённость электрического поля численно равна ско-

рости изменения потенциала по заданному направлению, взятой с обратным 

знаком. В векторном виде это соотношение запишется как 

  ®�⃗ = −k�3+ =        (4.5) 

 «Минус» говорит о том, вектор напряжённости направлен в сторону убы-

вания потенциала. 

 В однородном электрическом поле  ®�⃗ = /012�  и по величине, и по 

направлению, и  в этом случае 
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  ® = Ô#         (4.6) 

где  + − расстояние между поверхностями с потенциалами   =�  и  =�, а  Å ==� − =� −  разность потенциалов, то есть напряжение. 

 

§5  Примеры электростатических полей 

5.1  Теорема Гаусса 

 Потоком вектора напряжённости электрического поля через элемен-

тарный участок поверхности  dS  называется величина (рис. 5.1) 

  +Ф = ®�⃗ ∙  +�⃗ = ® +� cos �,     (5.1) 

где    +���⃗ = 1��⃗  +�,   1�⃗ −единичный вектор, перпендикуляный площадке +�, 
 � − угол между 1�⃗  и ®�⃗ . 
 

dS

n
r E

rα

 
Рис. 5.1 

 Поток вектора напряжённости через поверхность  �, имеющую конечные 

размеры, определится как интегральная сумма потоков, проходящих черев все 

бесконечно малые площадки +�: 

  Ф = , ®�⃗  +�⃗%         (5.2) 

Единица измерения этой величины:  &ф' = Вм ∙ м� = В ∙ м. 
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 Для электростатического поля справедлива теорема Гаусса: 

 Поток вектора напряжённости электростатического поля сквозь 

произвольную замкнутую поверхность,  равен алгебраической сумме заря-

дов, заключённых внутри этой поверхности, делённой на произведение  ôõô. 

  ∮ ®�⃗% +�⃗ = �K¯K ∙ ∑ Üохв.­vz�      (5.3) 

 Если ввести величину  

  ÷��⃗ = ??! ®�⃗ .        (5.4) 

которую  называют вектором электростатической индукции  или  электри-

ческим смещением, то формулу (5.3) можно записать проще: 

  ∮ ÷��⃗% +�⃗ = ∑ Üохв.­vz�       (5.5) 

 

5.2 Виды электростатических полей 

 При расчёте рассмотренных ниже полей будем предполагать, что провод-

ники находятся в вакууме, то есть  ? = 1. 

• Поле равномерно заряженной бесконечно длинной нити 

Рассмотрим бесконечно длинную нить, которая заряжена равномерно. В 

этом случае заряд, приходящийся на единицу её длины, назовём линейной 

плотностью заряда. Она равна  

 ø = ß~          (5.6) 

и измеряется в  &ø' = Клм . 

 Рассмотрим множество точек равноудалённых от заряженной нити, и об-

разующих цилиндр радиуса  �  и высоты � (рис. 5.2). 
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Рис. 5.2 

Напряжённость поля в точках этого цилиндра направлена по радиальной 

прямой, которая перпендикулярна оси нити. Если заряд нити положительный, 

то напряжённость направлена в сторону увеличения радиуса. При отрицатель-

ном заряде  – в сторону уменьшения. 

Поскольку линии напряжённости перпендикулярны оси, то поток Ф через 

торцы цилиндра будет равен нулю.  Поток через боковую поверхность полу-

чится с помощью интегрирования по площади цилиндра: 

 ∮ ÷��⃗% +�⃗ = ® ∙ 2J��. 
С помощью теоремы Гаусса  (5.3)  получим: 

 ® ∙ 2J�� = Ü ∙ �K¯ = 9~K¯, 
и далее ® = ��EK¯ ∙ 9" .        (5.7) 

• Поле равномерно заряженной бесконечной плоскости 

Рассмотрим бесконечную плоскость (рис. 5.3) , которая заряжена равно-

мерно. В этом случае заряд, приходящийся на единицу её площади, назовём по-

верхностной плотностью заряда. Она равна  

  ù = ß%         (5.8) 

и измеряется в  &ø' = Клм-. 
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Рис. 5.3 

 Напряжённость поля в этом случае определится как 

  ® = ú�K¯,         (5.9) 

 То есть, напряжённость поля не зависит от расстояния до рассматривае-

мой плоскости. 

 Если рассмотреть две параллельные плоскости с одинаковой плотностью 

заряда, который отличается только знаком, то между плоскостями напряжён-

ность поля будет равна 

  ® = úK¯.          (5.10) 

• Поле равномерно заряженной сферической поверхности 

R

 

Рис. 5.4 

Рассмотрим сферическую поверхность (рис. 5.4) , которая заряжена рав-

номерно с поверхностной плотностью заряда  ù. Поле в этом случае будет 
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симметрично относительно центра сферы, и направление  вектора напряжённо-

сти в любой точке будет проходить также через центр сферы. Величина напря-

жённости будет зависеть только от расстояния � от центра сферы:  

  ® = �¨EK¯ ∙ ß"-        (5.11) 

 Внутри сферы, которая заряжена равномерно, то есть при  � < L, напря-

жённость будет равна нулю �® = 0�, что говорит об отсутствии поля. 

§6  Электрический диполь 

 Два одинаковых по величине точечных заряда  +Ü  и −Ü, имеющих раз-

ные знаки и находящихся друг от друга на расстоянии  �, которое значительно 

меньше расстояния до точек, в которых определяется поле, образуют электри-

ческий диполь (рис. 6.1). 

l
r

p
r

q− q+
 

Рис. 6.1 

 Осью диполя называется прямая, проходящая через оба заряда.  

Плечом диполя называется вектор �⃗, который проходит от отрицательно-

го заряда к положительному. 

Помножив модуль заряда  |Ü|  на плечо �⃗, получим величину, которую 

называют электрическим моментом диполя или дипольным моментом: 

 _⃗ = |Ü|�⃗.           (6.1) 

Единица измерения дипольного момента:  &_' = Кл ∙ м. 
 Поместив диполь во внешнее электрическое поле, напряжённость которо-

го равна  ®�⃗  (рис. 6.2), увидим, что на заряды будут действовать противополож-

но направленные, но равные по величине силы  N⃗�  и  N⃗�.  
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Рис. 6.2 

Модули этих сил будут одинаковы и равны 

  N = N� = N� = Ü®. 

 Как видно из рисунка, плечо пары сил  будет равно � sin �. 

 Момент этой пары сил будет равен 

  j = N� sin � = Ü®� sin �. 

Поскольку Ü� = _, то формулу можно упростить:  

  j = _® sin �.        (6.2) 

Формулу (6.2) можно записать и в векторном виде: 

  j��⃗ = _⃗ × ®�⃗ .         (6.3)  

 Из всего сказанного следует, что поведение диполя, помещённого в 

электрическое поле, определяется его дипольным моментом. 

 

§7  Диэлектрики, и их поведение в электрическом поле 

 Все встречающиеся в природе материалы способны проводить электри-

ческий ток.  Электрическим током называют направленное упорядоченное 

движение электрических зарядов. Условно все вещества можно разделить на 

проводники и диэлектрики. Диэлектрики проводят ток в 1015–1020 раз хуже, 

чем проводники. 
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 Как известно, все вещества состоят из молекул, а те в свою очередь из 

атомов. Атомы состоят из ядер, имеющих положительный заряд, и отрицатель-

но заряженных электронов. Следовательно, можно рассматривать атомы и мо-

лекулы как диполи, плечи которых имеет микроскопические размеры (порядка 

10-10 м). 

7.1 Поляризация  диэлектриков 

 При отсутствии внешнего электрического поля дипольные моменты мик-

роскопических элементов вещества, таких как атомы или молекулы, или равны 

нулю, или атомы и молекулы распределены в пространстве хаотично. Суммар-

ный дипольный момент в обоих случаях будет нулевым. 

 Под действием внешнего электрического поля электронная структура 

атомов или молекул деформируется таким образом, что в диэлектрике появля-

ются так называемые поляризационные заряды. Проявление этого эффекта на 

макроуровне называется поляризацией диэлектрика. 

 Дипольный момент, который диэлектрик приобретает в процессе поляри-

зации, равен сумме дипольных моментов всех молекул или атомов: 

  _⃗ = ∑ _⃗y­yz� ,        (7.1) 

где  _⃗y − дипольный момент одной молекулы. 

 Для оценки степени поляризации материала используют величину, кото-

рая называется поляризованностью: 

  _⃗] = �∆] ∑ _⃗y­yz� ,       (7.2) 

где  ∆t −  очень малый (представительный) объём, взятый вблизи рассматри-

ваемой точки. 

E

VP

 

Рис. 7.1 
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 При достаточно слабых полях поляризованность пропорциональна 

напряжённости электрического поля (рис. 7.1): 

  _⃗] = χ ?! ®�⃗ ,        (7.3) 

где χ – безразмерная величина, называемая диэлектрической восприимчиво-

стью среды. 

 

7.2 Электрическое поле в диэлектриках 

 Возьмём две бесконечные параллельные плоскости, заряды которых бу-

дут отличаться только знаком (рис. 7.2). 

σ+ σ−

0E
r

iE
r

σ ′− σ′+

 

Рис. 7.2 

В вакууме между пластинами возникнет однородное электрическое поле 

напряжённостью  ® = úK¯,  которая определяется поверхностной плотностью 

заряда на пластинах ù. 

Если в это поле поставить пластину из диэлектрика (рис. 7.2), то на пра-

вой грани диэлектрика появится избыток поляризационных зарядов с поверх-

ностной плотностью  +ù′, а на левой – избыток отрицательных зарядов с по-

верхностной плотностью −ù′ .  Эти заряды в дополнение к существующему 

полю  создадут дополнительное электрическое поле напряжённостью ®�⃗ v. 
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Результирующее поле внутри диэлектрика будет иметь напряжённость 

  ® = ®! − ®v        (7.4) 

 Окончательно напряжённость поля внутри диэлектрика можно привести к 

следующему виду: 

  ® = þK̄ ,         (7.5) 

где  безразмерная величина  

  ? = 1 + χ         (7.6) 

называется диэлектрической проницаемостью среды. 

§8  Проводники в электрическом поле 

 Вещества, которые содержат заряды способные перемещаться под дей-

ствием электрического поля, называются проводниками. 

 Если расположить проводник внутри электрического поля, носители за-

ряда в проводнике станут перемещаться, и края проводника приобретут заряды 

противоположного знака (рис. 8.1). Эти заряды называют индуцированными за-

рядами. 

 

0E
r

iE
r

 

Рис. 8.1 
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 Поле, вызываемое индуцированными зарядами, по направлению проти-

воположно внешнему полю. Движение зарядов в проводника будет продол-

жаться до тех пор, пока напряженность в проводнике не исчезнет (станет рав-

ной нулю): 

  ®�⃗ = ®�⃗ ! + ®�⃗ v        (8.1) 

  ® = ®! − ®v = 0        (8.2) 

 При равновесии зарядов потенциал  =  во всех точках проводника будет 

иметь одинаковое значение, а линии напряжённости поля вне проводника рас-

положатся перпендикулярно к поверхности проводника. 

 

§9  Электроёмкость. Энергия электрического поля 

9.1 Электроёмкость проводника 

 Когда уединённому проводнику сообщается заряд  +Ü, его потенциал из-

меняется. Это изменение потенциала  += пропорционально заряду: 

  += = �Î +Ü,        (9.1) 

где  С – коэффициент, который называют электрической ёмкостью. 

 Электрическая ёмкость или электроёмкость – это скалярная величина, 

с помощью которой оценивается способность проводника накапливать элек-

трический заряд.  Электроёмкость равна заряду, который нужно сообщить про-

воднику, чтобы увеличить его потенциал на один вольт: 

  � = ß@         (9.2) 

Единица измерения:  &С' = КлВ = Ф   (фарад). 

Фарад  – величина очень неудобная для практических расчётов. Такой 

огромной ёмкостью обладал бы шар, радиус которого в 1500 раз  больше ради-

уса Земли. Поэтому при практических расчётах для измерения ёмкости исполь-

зуют мельчайшие доли фарада: микрофарады, нанофарады и пикофарады. 

В качестве примера приведём формулу, по которой можно вычислить 

электроёмкость уединённой сферы: 
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  � = 4J??!L       (9.3) 

R

r

O

 

Рис. 9.1 

9.2 Конденсаторы 

 Как было показано в предыдущем параграфе, одиночные проводники 

имеют очень незначительную электроёмкость.  Для увеличения электроёмкости 

в технике применяют следующий приём: между слоями проводника ставится 

тонкий слой диэлектрика. Устройства, построенные по такому принципу, назы-

вают конденсаторами. 

 Конденсатор  – это система из двух проводников, заряженных разно-

имённо, равными по величине зарядами. Проводники расположены близко 

друг к другу и разделены диэлектриком. 

 Проводники конденсатора называют обкладками, и придают им такое 

расположение, чтобы поле находилось внутри конденсатора. 

 Этому требованию могут соответствовать конденсаторы трёх видов: 

• Плоские, в которых две пластины расположены близко друг к другу и 

разделены диэлектриком (рис. 9.2); 

• Цилиндрические, состоящие из двух коаксиальных цилиндров, разделён-

ных слоем диэлектрика (рис. 9.3); 

• Сферические, состоящие из двух концентрических сфер, разделённых 

слоем диэлектрика. 
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Рис. 9.2 

 Характеристикой конденсатора является его электроёмкость �. Она равна 

отношению заряда на конденсаторе к разности потенциалов между обкладками: 

  � = ß@.*@- = ßÔ       (9.4) 

где   =� − =� = Å  – напряжение между обкладками. 

l

1R
2R

 

Рис. 9.3 

Электроёмкость конденсатора зависит от: 

• формы конденсатора; 

• размеров обкладок; 

• величины зазора между обкладками; 

• диэлектрических свойств среды, находящейся между обкладками. 

 Так для плоского конденсатора (рис. 9.2)  электроёмкость можно опреде-

лить по следующей формуле: 
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  � = KK¯%#          (9.5) 

где  � − площадь обкладки; 

 + − расстояние между обкладками; 

 ? − диэлектрическая проницаемость среды между обкладками. 

 Аналогичная формула для цилиндрического конденсатора (рис. 9.3) вы-

глядит так: 

  � = �EKK¯~
��
�-
�.

        (9.6) 

где  � − длина конденсатора; 
 L�, L� − радиусы внутренней и внешней обкладок; 

 ? − диэлектрическая проницаемость среды между обкладками. 

 Другой характеристикой конденсатора является предельное напряжение Å\8�. При превышении этого напряжения между обкладками проскакивает ис-

кра. Слой диэлектрика нарушается, и конденсатор выходит из строя. 

На электрических схемах конденсаторы обозначают следующим симво-

лом:  

    

 Возможно как последовательное, так и параллельное соединение кон-

денсаторов. 

 При последовательном соединении (рис. 9.4) конденсаторы соединяются 

разноимённо заряженными обкладками. При этом результирующая ёмкость 

всегда меньше минимальной электроёмкости, включённой в батарею. При та-

ком соединении уменьшается возможность пробоя конденсатора, так как на 

каждом отдельном конденсаторе есть только часть общей разности потенциа-

лов батареи. 

1C 2C
nC

 

Рис. 9.4 
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 При последовательном соединении конденсаторов выполняются следую-

щие соотношения: 

  Üобщ = Ü� = Ü� = ⋯ = Ü:,     (9.7) 

  Å = Å� + Å� + ⋯ + Å:,      (9.8) 

  
�Î = �Î. + �Î- + ⋯ + �Î�.      (9.9) 

 При параллельном соединении (рис. 9.5)  соединяются одноимённо заря-

женные обкладки. Такой способ соединения конденсаторов используют для по-

лучения большей электроёмкости. При этом выполняются следующие соотно-

шения: 

1C

2C

nC

 

Рис. 9.5 

  Üобщ = Ü� + Ü� + ⋯ + Ü:,      (9.10) 

  Å = Å� = Å� = ⋯ = Å:,      (9.11) 

  С = С� + С� + ⋯ + С:,      (9.12) 

9.3 Энергия электрического поля 

• Энергия заряженного уединённого проводника 

Если заряд Ü перенести из бесконечности на уединённый незаряженный 

проводник, то энергия, которую он приобретёт, будет равна 
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 � = Î@-
� = ß-

�Î = ß@� ,      (9.13) 

 

где q – заряд проводника, 

 C – электроёмкость, 

 = − потенциал. 

 

• Энергия заряженного конденсатора 

Энергия заряженного конденсатора определяется следующим образом: 

 

 � = ÎÔ-
� = ß-

�Î = ßÔ� ,      (9.14) 

 Используя характеристики электрического поля, можно дать формулу для 

определения энергии поля конденсатора: 

  � = KK¯þ-
� t,        (9.15) 

где V=Sd  – объём конденсатора. 

В плоском конденсаторе поле является однородным, и поэтому его энер-

гия распределяется в пространстве тоже равномерно. Объёмной плотностью 

энергии в этом случае называется отношение энергии поля к занимаемому объ-

ёму: 

 � = í]           (9.16) 

Объёмная плотность энергии электрического поля определится следую-

щим образом: 

  �эл = KK¯þ-
� .        (9.17) 
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ЭЛЕКТРИЧЕСКИЙ ТОК 

§10  Электрический ток и его характеристики 

 Электрическим током называется  упорядоченное движение электриче-

ских зарядов. 

 Электрический ток возможен только в том случае, когда в проводнике 

или в среде существуют частицы, которые могут перемещаться в пределах все-

го проводника.  Их называют носителями заряда. Это могут быть электроны, 

ионы, или просто мелкие частицы материи, обладающие зарядом. Ток возника-

ет, когда внутри проводника появляется электрическое поле, в результате чего 

носители заряда приходят в движение. 

 Током проводимости называют ток, возникающий в проводящих средах. 

В частности, ток в металлах является током проводимости. Для его появления 

необходимо, чтобы выполнялся ряд  условий: 

• Должны присутствовать свободные носители заряда. 

• Необходимо присутствие внешнего электрического поля, для того, чтобы 

его энергия затрачивалась на перемещение зарядов. 

• Цепь постоянного тока проводимости должна быть замкнутой. 

Характеристикой электрического тока является сила тока. 

 Силой тока называют скалярную величину, численно равную заряду, пе-

реносимому через поперечное сечение проводника за единицу времени: 

  � = #ß#          (10.1) 

Единица измерения силы тока:  &�' = � �ампер�. 
 Направлением тока считается направление перемещения положительных 

зарядов. Ток называется постоянным, если сила тока и его направление не из-

меняются во времени.  В этом случае 

  � = ß          (10.2) 
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 Плотностью тока  
⃗ называется векторная величина, численно равная 

заряду, который за единицу времени проходит через единичную площадку пер-

пендикулярную направлению движения носителей заряда. 

  ð = #ß# #% = #	#%        (10.3) 

где S – площадь поперечного сечения проводника. 

Единица измерения плотности тока:  &ð' = �/м�. 
 Для постоянного тока  

  ð = 	%         (10.4) 

 Направление вектора плотности тока соответствует направлению движе-

ния положительных носителей заряда: 

  
⃗ = ð #4�⃗#4         (10.5) 

где �⃗ – скорость движения положительных носителей заряда. 

 Если вектор плотности тока известен в каждой точке пространства, то си-

лу тока проходящего через произвольное сечение S можно найти путём сумми-

рования  по площади сечения: 

  � = , 
⃗ +�⃗%         (10.6) 

§11  Напряжение и электродвижущая сила 

 При действии в цепи только сил электростатического поля, которые дей-

ствуют на носители заряда, потенциал всех точек поля будет выравниваться, и 

электростатическое поле внутри проводника исчезнет. Для поддержания тока в 

цепи должно присутствовать устройство, называемое источником тока. Его 

задача создавать и поддерживать разность потенциалов за счет работы сил не-

электрического происхождения. На это расходуется механическая, тепловая 

или химическая энергия. 

 Силы неэлектрического происхождения, с которыми источники тока дей-

ствуют на заряды, называют сторонними силами. 

 Тогда полная работа, совершаемая при перемещении заряда, будет равна 
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  � = �кул + �стор       (11.1) 

После деления членов уравнения на величину переносимого заряда получим: 

  
rß = rкулß + rсторß        (11.2) 

 Отношение полной работы к величине заряда называется напряжением 

на данном участке цепи: 

  Å = rß .        (11.3) 

 Отношение работы, совершаемой сторонними силами, к величине заряда 

называется электродвижущей силой (эдс): 

  ? = rсторß .         (11.4) 

 Кроме того 

  
rкулß = =� − =�       (11.5) 

 Подставив выражения (11.3), (11.4) и (11.5) в формулу (11.2), получим: 

  Å = =� − =� + ?       (11.6) 

 То есть, напряжение на участке цепи (рис.11.1) равно сумме разности по-

тенциалов  и электродвижущей силы. 

1ϕ 2ϕ
r,εR

 

Рис.11.1 

 Участки цепи, на которых на носители заряда действуют сторонние силы, 

называются неоднородными. И наоборот, если сторонние силы не действуют, 

то участок называется однородным. 
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 Для однородного участка  ? = 0, и тогда напряжение на однородном 

участке равняется разности потенциалов на краях участка: 

  Å = =� − =�        (11.7) 

 

§12  Закон Ома 

12.1 Закон Ома для однородного участка цепи 

 Экспериментальным способом установлен закон, согласно которому  

сила тока, проходящего по однородному металлическому проводнику, про-

порциональна напряжению на этом проводнике: 

  � = Ô<,         (12.1) 

где R – электрическое сопротивление. 

Единица измерения  &L' = Ом. 

 Выразив сопротивление из формулы (12.1) получим, что 

  L = Ô
	
,         (12.2) 

откуда становится ясен его физический смысл: электрическое сопротивление 

есть скалярная величина, определяющая свойство проводника противодейство-

вать прохождению электрического тока. Она равна отношению напряжения на 

концах проводника к силе тока, который по нему протекает. 

Сопротивление зависит от материала и размеров проводника, а также от 

температуры. Для однородного проводника, имеющего цилиндрическую фор-

му, сопротивление будет равно  

 L = [ ~% ,         (12.3) 

где l – длина проводника, 

S – площадь поперечного сечения проводника, [ − удельное электрическое сопротивление. 
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Удельное электрическое сопротивление характеризует материал про-

водника. Оно равно сопротивлению однородного цилиндрического проводника 

единичной длины и единичной площади поперечного сечения. 

Единица измерения &[' = Ом ∙ м. 
 Сопротивление металлов линейным образом зависит от температуры: 

  L = L!�1 + ���,       (12.4) 

где R – сопротивление при температуре  �!�, L! – сопротивление при  0!�, � − температурный коэффициент сопротивления. 

 

 Температурный коэффициент сопротивления  равен изменению со-

противления проводника при изменении температуры на один градус. 

 Величина, обратная сопротивлению, называется электрической прово-

димостью: 

  d = �<.         (12.5) 

 Используется также такое понятие как электропроводность (удельная 

электрическая проводимость), которая является величиной обратной по от-

ношению к удельному электрическому сопротивлению: 

  ù = �
�

.         (12.6) 

 Зависимость силы тока от напряжения называется вольт-амперной ха-

рактеристикой. В случае металлических проводников эта зависимость являет-

ся линейной (рис. 12.1). 

I

Uα
 

Рис. 12.1 
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 Рассмотрим два способа соединения проводников в цепи: 

Соединение, при котором конец предыдущего проводника соединяется с 

началом следующего, называется последовательным соединением (рис. 12.2). 

I 1R 2R
nR

 

Рис. 12.2 

 Если начала всех проводников соединены в одной точке (в одном узле), а 

концы соединены в другой (рис. 12.3)., то такой способ соединения называется 

параллельным  

1R

2R

nR

I

1I

2I

nI

 

 

Рис. 12.3 

 

 При последовательном соединении проводников (рис. 12.2) через все 

проводники протекает одинаковый ток, а напряжение на концах ветви равно 

сумме напряжений на отдельных проводниках. Выполняются следующие соот-

ношения: 

  � = �� = �� = ⋯ = �:, 

  Å = Å� + Å� + ⋯ + Å:,      (12.7) 

  L = L� + L� + ⋯ + L:. 

 При параллельном соединении проводников (рис. 12.3) общая сила тока 

равна сумме сил токов, текущих через каждый из проводников в отдельности, а 

напряжение на параллельно соединённых участках цепи одинаково. При этом 

выполняются следующие соотношения: 
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  � = �� + �� + ⋯ + �:, 

  Å = Å� = Å� = ⋯ = Å:,      (12.8) 

  
�< = �<. + �<- + ⋯ + �<�. 

12.2 Закон Ома для неоднородного участка цепи 

 Как было отмечено выше, напряжение на участке цепи (11.6) равно сумме 

разности потенциалов  и электродвижущей силы: 

  Å = =� − =� + ?. 

Тогда  � = Ô< = @.*@-�K< ,       (12.9) 

и далее �L = =� − =� + ?.       (12.10) 

Полученное соотношение (12.10)  является законом Ома для неоднород-

ного участка цепи. 

Если рассматривать участки цепи, не содержащие эдс, то из (11.6) видно, 

что напряжение и разность потенциалов совпадают. 

Если же цепь содержит источник тока с эдс  равным ?, и цепь при этом 

замкнута, то =� = =�, и формула (12.9) преобразуется к виду: 

 � = K<�" ,         (12.11) 

где R – сопротивление нагрузки, 

r – сопротивление источника тока, �L + �� − полное сопротивление цепи. 

 

12.3 Закон Ома в дифференциальной форме 

 Рассмотрим формулу (12.1), выражающую закон Ома для участка цепи: 

  � = Ô<. 

 Произведём в ней следующие допустимые замены: 
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� = ð�,Å = ®�,L = �~% , 
где j – плотность тока, 

E – напряжённость поля, �, � − геометрические размеры проводника, [ − удельное электрическое сопротивление. 

Получим: 

  ð� = þ~  %
�~ . 

После упрощения формула приобретёт следующий вид: 

  ð = þ
�
,         (12.12) 

а с учётом формулы (12.6): 

  ð = ù®.         (12.13) 

 Получили закон Ома в дифференциальной форме: плотность тока 

пропорциональна напряжённости поля в данной точке. 

 Закон может быть записан и в векторной форме: 

  
⃗ = ù®�⃗ .         (12.14) 

§13  Разветвлённые цепи 

 Расчёт разветвлённых цепей основан на применении двух правил, кото-

рые носят имя Кирхгофа  – учёного, который ввёл их  в расчётную практику. 

Одно правило касается узлов цепи, а второе – закономерности прохождения то-

ка по замкнутым контурам цепи. 

 Узлом цепи станем называть точку, в которой соединяется больше двух 

проводников (точка А на рис. 13.1). 

Первое правило Кирхгофа: 

алгебраическая сумма токов, сходящихся в узле, равна нулю: 
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   �� + �� + �� + ⋯ = ∑ �v = 0:vz�      (13.1) 

При суммировании токов нужно учитывать их знаки: токи входящие в 

узел принято считать положительными, а токи отходящие от узла – отрица-

тельными. 

1I

2I

4I

5I

A

3I
 

Рис. 13.1 

 Например, в применении к узлу А, показанному на рис. 13.1, первое пра-

вило Кирхгофа запишется следующим образом: 

   �� + �� + �� − �̈ − �ª = 0.     

Второе правило Кирхгофа: 

в любом произвольно выбранном в разветвлённой электрической цепи за-

мкнутом контуре алгебраическая сумма произведений сил токов на сопро-

тивления соответствующих участков контура  равна алгебраической сум-

ме имеющихся в этом контуре эдс: 

  ∑ �vLv = ∑ ?wiwz�­vz�       (13.2)  

где �v – сила тока на участке с номером i, Lv – активное сопротивление i–го участка, n − число участков, содержащих активное сопротивление, j − число источников тока. 

 На примере цепи, изображённой на рис. 13.2, покажем порядок расчёта 

разветвлённой электрической цепи. 
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Рис. 13.2 

1. На всех участках цепи произвольно выбираем направления токов. Произ-

вольно выбираем направление обхода контура (по ходу часовой стрелки 

или против). 

2. В соответствии с первым правилом Кирхгофа записываем для узлов цепи �1 − 1� независимое уравнение, где  n – число узлов в цепи. 

3. Выделяем произвольные замкнутые контуры цепи, следя за тем, чтобы 

каждый новый контур содержал хотя бы один участок цепи, который не 

был включён в ранее рассмотренные контуры. 

4. Учитывая знаки токов, применяем к каждому выделенному контуру вто-

рое правило Кирхгофа. Токи считаем положительными, если они по 

направлению совпадают с направлением обхода контура. Эдс считаем 

положительными, если они повышают потенциал в направлении обхода 

контура. 

В качестве примера запишем второе правило Кирхгофа для контура  � −L� − � − L� − �. При обходе контура по ходу часовой стрелки получим следу-

ющее уравнение: 

 ���L� + ��� − ���L� + ��� = �?� − ?��    (13.3) 

где  �v – сопротивление � − го источника. 
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§14  Работа и мощность тока. Закон Джоуля-Ленца 

 Работой тока называют работу электрического поля, совершаемую при 

упорядоченном перемещении заряженных частиц. 

 Пусть к концам некоторого участка цепи с постоянным током приложено 

напряжение U.  Заряд, проходящий через сечение проводника за некоторое 

время t, будет равен  Ü = ��. То есть можно представить, что за время t  заряд 

переносится из одного конца проводника в другой его конец. Действующие на 

данном участке силы электромагнитного поля, а также сторонние силы, при 

этом совершат следующую работу: 

  � = ÅÜ = Å� � .       (14.1) 

 Вычислим мощность, развиваемую током на данном участке цепи, поде-

лив работу � на время  �: 

  O = Å� .         (14.2) 

Данная мощность может расходоваться на самые разнообразные процес-

сы: нагревание, химические преобразования, работу над внешними телами. Од-

нако, если проводник неподвижен, и в нем не протекают химические реакции, 

то работа поля по перемещению зарядов идёт на изменение внутренней энергии 

проводника, то есть на его нагрев. Количество тепла, которое при этом выделя-

ется можно подсчитать: 

  Ë = � = �Å � .        (14.3) 

 В соответствии с законом Ома Å = �L. Сделав подстановку в (14.3), по-

лучим формулу, известную как закон Джоуля-Ленца. 

  Ë = ��L� .         (14.4) 

  


