Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 6 имени Л.И. Ошанина

Рассмотрено Заседание МО протокол №5 30.05.2023 г. Руководитель МО Строева Е.А.

Утверждена Приказ №01-02/70-2 от 31.05. 2023 г. Директор СОШ №6 _____ С.А. Шарова

РАБОЧАЯ ПРОГРАММА

внеурочной деятельности «Практикум по решению задач» на 2023-2024 учебный год

Класс 11кл (профиль)

Количество часов 34 ч.

Учитель Гузанова О.Ю.

Пояснительная записка

Особенность принятого подхода элективного курса «Избранные вопросы математики» состоит в том, что для занятий по математике предлагаются небольшие фрагменты, рассчитанные на 2-3 занятия, относящиеся к различным разделам школьной математики.

Каждое занятие, а также все они в целом направлены на то, чтобы развить интерес школьников к предмету, познакомить их с новыми идеями и методами, расширить представление об изучаемом в основном курсе материале, а главное, порешать интересные задачи.

Этот курс предлагает учащимся знакомство с математикой как с общекультурной ценностью, выработкой понимания ими того, что математика является инструментом познания окружающего мира и самого себя.

Если в изучении предметов естественнонаучного цикла очень важное место занимает эксперимент и именно в процессе эксперимента и обсуждения его организации и результатов формируются и развиваются интересы ученика к данному предмету, то в математике эквивалентом эксперимента является решение задач. Собственно, весь курс математики может быть построен и, как правило, строится на решении различных по степени важности и трудности задач.

Данный курс является базовым общеобразовательным, отражает обязательную для всех школьников инвариативную часть образования и направлен на завершение общеобразовательной подготовки обучающихся.

Элективный курс «Практикум по решению задач» рассчитан на 34 часа для работы с учащимися 11 классов и предусматривает повторное рассмотрение теоретического материала по математике, а кроме этого, нацелен на более глубокое рассмотрение отдельных тем, поэтому имеет большое общеобразовательное значение, способствует развитию логического мышления, намечает и использует целый ряд межпредметных связей (прежде всего с физикой и историей).

Цель данного курса: оказание индивидуальной и систематической помощи выпускнику при систематизации, обобщении и повторении курса алгебры, и подготовке к экзаменам.

Задачи курса:

- 1) подготовить учащихся к экзаменам;
- 2) дать ученику возможность проанализировать и раскрыть свои способности;

Для работы с учащимися безусловно применимы такие формы работы, как лекция и семинар. Помимо этих традиционных форм рекомендуется использовать также дискуссии, выступления с докладами, содержащими отчет о выполнении индивидуального или группового домашнего задания или с содокладами, дополняющими лекцию учителя.

Предлагаемый курс является развитием системы ранее приобретенных программных знаний, его цель - создать целостное представление о теме и значительно расширить спектр задач, посильных для учащихся. Все свойства, входящие в элективный курс, и их доказательства не вызовут трудности у учащихся, т.к. не содержат громоздких выкладок, а каждое предыдущее готовит последующее. При направляющей роли учителя школьники могут самостоятельно сформулировать новые для них свойства и даже доказать их. Все должно располагать к самостоятельному поиску и повышать интерес к изучению предмета. Представляя возможность осмыслить свойства и их доказательства, учитель развивает геометрическую интуицию, без которой немыслимо творчество.

Организация на занятиях должна несколько отличаться от урочной: ученику необходимо давать время на размышление, учить рассуждать, выдвигать гипотезы. В курсе заложена возможность дифференцированного обучения. При решении ряда задач необходимо рассмотреть несколько случаев. Одной группе учащихся полезно дать возможность самим открыть эти случаи. В другой - учитель может сузить требования и рассмотреть один из случаев.

Таким образом, программа применима для различных групп школьников.

Функции элективного курса:

- ориентация на совершенствование навыков познавательной, организационной деятельности;
- компенсация недостатков обучения по математике.

Основная функция учителя в данном курсе состоит в «сопровождении» учащегося в его познавательной деятельности, коррекции ранее полученных учащимися ЗУН.

Организация и проведение аттестации учащихся

Основными результатами освоения содержания элективного курса учащимися может быть определенный набор общеучебных умений, а также опыт внеурочной деятельности, содержательно связанной с предметным полем — математикой. При этом должна использоваться преимущественно качественная оценка выполнения заданий, а также итоговое тестирование учащихся.

Начинается курс с ознакомительной вводной лекции. Следующее за ней занятие посвящается входному тестированию, цели которого:

- > Составить представление учителя об уровне базовых знаний учащихся, выбравших курс.
- > Коррекция в связи с этим уровня подачи материала по данному курсу.

При прослушивании блоков лекционного материала и проведения семинара, закрепляющего знания учащихся, предусматривается индивидуальное или групповое домашнее задание, содержащее элементы исследовательской работы, задачи для самостоятельного решения. Защита решений и результатов исследований проводится на выделенном для этого занятии и оценивается по пятибалльной системе или системе «зачет-незачет», в зависимости от уровня подготовленности группы.

Возможная форма итоговой аттестации:

Итоговая контрольная работа (по заданиям ЕГЭ).

Ожидаемый результат изучения курса

учащийся должен знать

знать/понимать:

- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- значение математики как науки и значение математики в повседневной жизни, а также как прикладного инструмента в будущей профессиональной деятельности
- решать задания, по типу приближенных к заданиям ЕГЭ.

иметь опыт (в терминах компетентностей):

- работы в группе, как на занятиях, так и вне,
- работы с информацией, в том числе и получаемой посредством Интернет

Требования к уровню подготовленности учащихся.

В результате изучения курса учащиеся должны уметь:

- вычислять значения корня, степени, логарифма;
- находить значения тригонометрических выражений;
- выполнять тождественные преобразования тригонометрических, иррациональных, показательных, логарифмических выражений;
- решать тригонометрические, иррациональные, показательные, логарифмические уравнения, неравенства, системы, включая с параметром и модулем, а также комбинирование типов аналитическими и функционально-графическими методами,
- строить графики элементарных функций, проводить преобразования графиков, используя изученные методы описывать свойства функций и уметь применять их при решении задач,
- применять аппарат математического анализа к решению задач;
- решать различные типы текстовых задач с практическим содержанием на проценты, движение, работу, концентрацию, смеси, сплавы, десятичную запись числа, на использование арифметической и геометрической прогрессии;
- уметь соотносить процент с соответствующей дробью;
- -знать широту применения процентных вычислений в жизни, решать основные задачи на проценты, применять формулу сложных процентов;
- решать планиметрические задачи, связанные с нахождением площадей, линейных или угловых величин треугольников или четырехугольников;
- решать стереометрические задачи, содержащие разный уровень необходимых для решения обоснований и количество шагов в решении задач, включенных в часть I и часть II экзаменационной работы, часто требующие построения вспомогательных элементов и сечений, сопровождаемых необходимыми доказательствами;
- производить прикидку и оценку результатов вычислений;
- при вычислениях сочетать устные и письменные приемы, использовать приемы, рационализирующие вычисления.

Календарно-тематическое планирование курса

№/П	Тема урока	Кол-	Планир. дата	Фактич. дата
	1.Текстовые задачи	4		
1	Задачи практического содержания (дроби и проценты) Задачи практического содержания (смеси и сплавы).	1		
2	Задачи на работу Задачи на совместную работу	1		
3	Задачи на движение.	1		
4	Задачи на движение по круговой траектории	1		
	2.Уравнения, неравенства и их системы	4		
5	Рациональные уравнения Системы рациональных уравнений	1		
6	Рациональные неравенства Системы рациональных неравенств	1		
7	Иррациональные уравнения Системы иррациональных уравнений	1		
8	Тригонометрические уравнения Системы тригонометрических уравнений	1		
	3. Планиметрия	4		
9	Треугольники.	1		
10	Четырехугольники.	1		
11	Окружности, вписанные в треугольник и четырехугольник.	1		
12	Окружности, описанные около треугольника и четырехугольника.	1		
	4.Преобразование выражений	2		
13	* * * * *			
14	Преобразования иррациональных выражений. Нахождение значений иррациональных выражений.	1		
	5.Функции и их свойства	4		
15	Исследование функций элементарными методами.	1		
16	Производная, ее геометрический и физический смысл.	1		
17	Исследование функции с помощью производной.	1		

18	График функции и график производной	1	
	6. Уравнения, неравенства, их системы	5	
19	Показательные уравнения	1	
	Системы показательных уравнений		
20	Показательные неравенства	1	
	Системы показательных неравенств		
21	Логарифмические уравнения	1	
	Системы логарифмических уравнений		
22	Логарифмические неравенства	1	
	Системы логарифмических неравенств		
23	Комбинированные уравнения	1	
	Смешанные системы		
	Практикум по решению уравнений		
	7.Преобразование выражений	3	
24	Тождественные преобразования степенных	1	
	выражений		
25	Тождественные преобразования показательных	1	
	выражений		
26	Тождественные преобразования	1	
	логарифмических выражений. Нахождение		
	значений логарифмических выражений		
	8. Задания с параметром	4	
27	Уравнения с параметром	1	
28	Неравенства с параметром	1	
29	Уравнения с модулем	1	
30	Неравенства с модулем.	1	
	9. Стереометрия	3	
31	Углы между прямыми, прямой и плоскостью,	1	
	плоскостями.		
	Расстояния между прямыми, прямой и		
	плоскостью, плоскостями.		
32	Площади поверхностей многогранников	1	
	Площади поверхностей тел вращения		
33	Объемы многогранников	1	
	Объемы тел вращения		
0.4			
34	Итоговое занятие	1	

Проверочные тесты

Тест №1

	1 вариант		2 вариант
1	Упростите выражение: (sinα-2cosα)²+4sinαcosα 1) 4cos²α 2) 1+3cos²α 3) 1 4) (sinα+cosα)²	1	Упростите выражение: (3sinα+2cosα)²-12sinαcosα 1) 2+sin²α 2) 4+5sin²α 3) 5+4cos²α 4) 9
2	Вычислите: $\cos 405^{\circ} - \sin 330^{\circ} + tg225^{\circ}$ $1) \frac{\sqrt{2} + 3}{2}$ $2) \frac{\sqrt{2} + 1}{2}$ $3) \frac{\sqrt{2} - 3}{2}$ $4) \frac{\sqrt{2} - 1}{2}$	2	Вычислите: $\cos 210^{\circ} + \sin 150^{\circ} - tg240^{\circ}$ $1) - \frac{1 + \sqrt{3}}{2}$ $2) \frac{1 - \sqrt{3}}{2}$ $3) \frac{1 - 3\sqrt{3}}{2}$ $4) - \frac{1 + 3\sqrt{3}}{2}$
3	Найдите значение выражения $3\cos\alpha$ - 2, если известно, что $\sin\alpha = \frac{\sqrt{5}}{3}$ и $\frac{\pi}{2} < \alpha < \pi$ 1) 0 2) 2 3) -6 4) -4	3	Найдите значение выражения 2- 5 со s α, если известно, что $\sin \alpha = \frac{3}{5}$ и $0 < \alpha < \frac{\pi}{2}$ 1) -2 2) -1,2 3) 6 4) 1,2
4	Преобразуйте выражение $\sin(\frac{\pi}{2}-x) + \sin x$ 1) $\sqrt{2}\sin(\frac{\pi}{4}+x)$ 2) $\sqrt{2}\cos(\frac{\pi}{4}+x)$ 3) $\sqrt{2}\cos(\frac{\pi}{4}-x)$ 4) $\sqrt{2}\sin(\frac{\pi}{4}-x)$	4	Преобразуйте выражение $\sin(\frac{\pi}{3} + x) - \sin x$ 1) $\cos(\frac{\pi}{6} + x)$ 2) $\sqrt{3}\sin(\frac{\pi}{6} + x)$ 3) $-\sin(\frac{\pi}{4} - x)$

			4) $-\sqrt{3}\cos(\frac{\pi}{6}+x)$
5	Найдите значение выражения $\sin\alpha \cdot \sin(\frac{3\pi}{2} + \alpha)$ при $\alpha = \frac{\pi}{12}$ 1) -0,25 2) 0,5 3) $\sqrt{3}$ 4) $-\frac{\sqrt{3}}{4}$	5	Найдите значение выражения $\sin\alpha\cdot\sin(\frac{\pi}{2}-\alpha)$ при $\alpha=-\frac{\pi}{8}$ 1) $\frac{1}{4}$ 2) $-\frac{1}{4}$ 3) $\frac{\sqrt{2}}{4}$ 4) $-\frac{\sqrt{2}}{4}$
6	Вычислите: $\sqrt{6} \cdot \frac{\sin 20^{\circ} \cdot \cos 40^{\circ} + \sin 110^{\circ} \cdot \sin 40^{\circ}}{\sin 10^{\circ} \cdot \sin 35^{\circ} - \sin 100^{\circ} \cdot \cos 35^{\circ}}$	6	Вычислите: $\sqrt{2} \cdot \frac{\sin 40^{\circ} \cdot \cos 5^{\circ} - \sin 230^{\circ} \cdot \sin 5^{\circ}}{\sin 25^{\circ} \cdot \sin 35^{\circ} - \sin 115^{\circ} \cdot \cos 35^{\circ}}$
7	Вычислите: 2 sin 10°· cos 10°· cos 20° cos 50°	7	Вычислите: <u>sin7°·cos7°·cos14°</u> <u>cos62°</u>
8	Найдите значение выражения 2 cos²62° − 1 10 ctg17° · sin²197°	8	Найдите значение выражения 1 − 2sin² 54° 8tg9° · cos² 189°

Ответы к тесту№1:

	1 вариант		2 вариант
1	2	1	2
2	1	2	3
3	4	3	1
4	3	4	1
5	1	5	4
6	- 3	6	- 2
7	0,5	7	0,25 -0,25
8	-0,2	8	-0,25

Тест №2

1 вариант	2 вариант
-----------	-----------

1	Укажите область определения функции $y = \frac{9}{3 - \sqrt{x}}$ 1) $[0;\infty)$ 2) $[0;9)U(9;\infty)$ 3) $(-\infty;9)U(9;\infty)$ 4) $[0;3)U(3;\infty)$	1	Укажите область определения функции $y = \frac{13}{6\sqrt{x} - \sqrt[3]{6}}$ 1) $[0;\sqrt{6})U(\sqrt{6};\infty)$ 2) $[0;\sqrt[3]{6})U(\sqrt[3]{6};\infty)$ 3) $[0;\infty)$ 4) $[0;36)U(36;\infty)$
2	Найти сумму всех целых чисел, принадлежащих области значений функции y=1,2cos2x - 2 1) -5 2) -6 3) 5 4) 6	2	Найти сумму всех целых чисел, принадлежащих области значений функции y=0,2 - 2,3cos(-2x) 1) -6 2) 7 3) 6 4) -7
3	На рисунке изображен график функции, заданной на промежутке [-4;5). Укажите множество значений этой функции. 1) [-2;1) 2) [-2;1)U(1;3] 3) [-4;5) 4) [-2;3]	3	На рисунке изображен график функции, заданной на промежутке [-4;3). Укажите множество значений этой функции. 1) [-4;3] 2) [-2;3] 3) [-2; 2] 4) [-1;0)
4	Укажите множество значений функции y=5-2sin2x 1) [3;7] 2) [-1;1] 3) [5;7] 4) [3;5]	4	Укажите множество значений функции y=2cos3x-4 1) [-1;1] 2) [-6;-4] 3) [-6;-2] 4) [-4;-2]

5	Укажите множество значений функции y=7-3sin ² 2x 1) [4;10] 2) [4;7] 3) [1;7] 4) [1;10]	5	Укажите множество значений функции y=9cos ² 3x-2 1) [-11;7] 2) [-11;-2] 3) [-2;7] 4) [-2;11]
6	Найдите наибольшее целое значение функции $Y = \sqrt{7 - 6sin3xcosx + 6cos3xsinx}$ на отрезке $\left[-\frac{\pi}{12}; \frac{\pi}{6}\right]$	6	Найдите наименьшее целое значение функции $Y = \sqrt{5 + 4\cos 3x \cos x + 4\sin 3x \sin x}$ на отрезке $\left[-\frac{\pi}{6}; \frac{\pi}{3}\right]$
7	Укажите множество значений функции $y=3+\frac{1}{2-x}$	7	Укажите множество значений ϕ ункции $y = \frac{5}{x+4}$ -7
8	Укажите множество значений функции y=7+tg ² 2x	8	Укажите множество значений функции y=-1-ctg ² 2x

Ответы к тесту№2:

	1 вариант		2 вариант
1	2	1	4
2	2	2	2
3	4	3	2
4	1	4	3
5	2	5	3
6	3	6	2
7	(-∞;3) U (3; ∞)	7	$(-\infty;-7)$ U $(-7;\infty)$
8	(-∞;3) U (3; ∞) (7; ∞)	8	(-∞;-7) U (-7; ∞) (-∞;-1)

Тест №3 «Уравнения и неравенства»

	1 вариант		2 вариант
1	Укажите промежуток, содержащий положительный корень уравнения	1	Укажите промежуток, содержащий положительный корень уравнения
	$\frac{2}{x-3} - \frac{2}{x+3} = 1$		$\frac{13}{x+3} - \frac{6}{x+2} = 1$
	1) (1;2) 2) (2;3) 3) (3;4)		1) (1;2)

	4) (4;5)		2) (2;3)
			3) (3;5)
			4) (5;8)
			., (=,=)
2	Найдите количество целых	2	Найдите количество целых
	неположительных решений		неположительных решений
	неравенства		неравенства
	$x^2 + 3x$		$x^2 + 2x + 1$
	$\frac{x^2 + 3x}{x + 24} \ge 0$		$\frac{x^2 + 2x + 1}{x^2 + 31x} < 0$
	1) 19		1) 27
	2) 20		2) 28
	3) 21 4) 22		3) 29 4) 30
	4) 22		4) 30
3	Найдите количество целых	3	Найдите количество целых
	неотрицательных корней уравнения		отрицательных корней уравнения
	I x-5 I = 5-x		I x+7 I = 7+x
	1) 4 2) 5		1) 6 2) 7
	3) 6		3) 8
	4) 0		4) 0
4	Решите неравенство	4	Решите неравенство
	I x-3 I < 7		$I 3x-7 I \leq 0$
	1) (-∞;10)		1) $(-\infty; \frac{7}{3}]$ 2) $[0; \frac{7}{3}]$
	2) (-∞;-4)		2) [0.7]
	3) (-10;10) 4) (-4;10)		_
	4) (-4,10)		3) $\frac{7}{3}$
			4) $[\frac{7}{3}; \infty)$
5	Упростите выражение	5	Упростите выражение
	I $2-\sqrt{3}$ I· $(2-\sqrt{3})$		$\mathbf{I} 3 - \sqrt{11} \mathbf{I} \cdot (3 - \sqrt{11})$
	1) -1		1) -2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2) 2 3) $20-6\sqrt{11}$
	4) 7+4√3		4) $6\sqrt{11}-20$
6	Найдите сумму корней уравнения	6	Найдите сумму корней уравнения
	$X^2 \sqrt{3 - x} - 25 \sqrt{3 - x} = 0$		$64\sqrt{x+2}-X^2\sqrt{x+2}=0$
	1) -2		1) 10
	2) 3		2) 8
	3) 5		3) 6
			-1) -10
	4) 8		4) -10

	$\sqrt{5x+6} \le 11$		$\sqrt{4x+5} \le 9$
	5) [-1,2;13]		1) [-1,25;19]
	6) [-1,2;23]		2) [-1,25;14]
	7) (-∞;23]		3) [-1,25;1]
	8) [-1,2;1]		4) (-∞;19]
8	Решите уравнение	8	Решите уравнение
	$\sqrt{x^2 + 8x + 27} - \sqrt{x^2 + 8x} = 3$		$\sqrt{5x^2 + x + 12} - \sqrt{5x^2 + x} = 2$

Ответы к тесту №3:

	1 вариант		2 вариант
1	4	1	2
2	3	2	3
3	2	3	2
4	4	4	3
5	3	5	4
6	1	6	3
7	2	7	1
8	{-9;1}	8	{-1;0,8}

Тест №4 «Геометрия (планиметрия)»

	1 вариант		2 вариант
1	В треугольнике ABC синус угла C равен $\frac{3}{5}$, AC=5, радиус вписанной в этот треугольник окружности равен 1. Найти сторону BC, если AB< AC. 1) 1 2) 2 3) 3 4) 4	1	Около равнобедренного треугольника ABC (AB=BC) с углом В, равным 30°, описана окружность радиуса 7√2. Ее диаметр AD пересекает сторону BC в точке Е. Найдите диаметр окружности, Описанной около треугольника AEC. 1) 11 2) 12 3) 13 4) 14
2	В прямоугольном треугольнике ABC с прямым углом В проведена биссектриса CD. Найдите площадь треугольника ACD, если CB=6, BD=3. 1) 5 2) 15 3) 14 4) 4	2	Площадь прямоугольного треугольника равна 24 см², а его периметр – 24 см. Найдите радиус окружности, описанной около этого треугольника. 1) 15 2) 5 3) 4 4) 14

3	На сторонах АВ и ВС треугольника АВС взяты соответственно точки М и N, так что АМ:МВ = 3:4 и ВN:NС = 3:5. Найдите площадь треугольника АВС, если площадь треугольника МNА равна 9. 1) 50 2) 55 3) 60 4) 65	3	На сторонах АВ и ВС треугольника АВС взяты соответственно точки М и N, так что АМ:МВ = 2:3 и ВN:NС = 4:9. Найдите площадь четырехугольника АМNС, если площадь треугольника АВС равна 130. 1) 103 2) 104 3) 105 4) 106
4	В параллелограмме ABCD биссектрисы углов В и С пересекаются в точке L, лежащей на стороне AD. Найдите периметр параллелограмма ABCD, если известно, что CL= 12, а площадь треугольника ABL равна 15. 1) 39 2) 40 3) 41 4) 42	4	В параллелограмме ABCD биссектрисы углов В и С пересекаются в точке L, лежащей на стороне AD. Найдите площадь параллелограмма ABCD, если известно, что BL= 6, а периметр треугольника CDL равна 18. 1) 48 2) 49 3) 50 4) 51
5	Определите синус острого угла параллелограмма, если его высоты равны 5 и 7, а периметр равен 48. 1) $\frac{\sqrt{2}}{2}$ 2) 0,3 3) 0,5 4) $\frac{\sqrt{3}}{2}$	5	Определите тангенс острого угла параллелограмма, если его высоты равны $3\sqrt{2}$ и $5\sqrt{2}$, а периметр равен 32. 1) $\frac{1}{\sqrt{3}}$ 2) $\sqrt{3}$ 3) 1 4) 0,2
6	Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите длину большего основания трапеции. 1) 10 2) 15 3) 20 4) 25	6	Основания трапеции равны 10 и 5, а диагонали 9 и 12. Найдите площадь трапеции. 1) 50 2) 54 3) 58 4) 62
7	Точка О является центром правильного восьмиугольника $A_1A_2A_8$, площадь треугольника $A_1A_3A_5$ равна 9. Точка В выбрана таким образом, что треугольник A_1A_7 В равновелик треугольнику A_2 О A_5 . Найдите высоту треугольника A_1A_7 В, проведенную из вершины В. 1) 0,5 2) 1	7	Точка О является центром правильного двенадцатиугольника $A_1A_2A_{12}$, площадь треугольника $A_1A_7A_9$ равна $6\sqrt{3}$. Найдите площадь треугольника A_6OA_9 .

	3) 1,5 4) 2		
8	Хорды АС и ВD окружности перпендикулярны и пересекаются в точке Р. РН – высота в треугольнике ADP. Угол ADP равен 30°, АН= 2, РС=6. Найдите отношение площади треугольника ADC к площади треугольника ABC.	8	Радиусы двух пересекающихся окружностей равны 3 и 4. Расстояние между их центрами равно 5. Определите длину их общей хорды.
	1) 2 2) 3 3) 4 4) 5		1) 4,8 2) 5,6 3) 6,8 4) 7,8

Ответы к тесту №4:

1 вариант			2 вариант		
1	4	1	4		
2	2	2	2		
3	4	3	4		
4	1	4	1		
5	3	5	3		
6	2	6	2		
7	3	7	3		
8	1	8	1		

Тест №5 «Задачи»

	1 вариант		2 вариант
1	Тетя Маша пошла на продуктовый рынок и купила там 1 кг черешни, после чего заметила в продаже еще черешню стоимостью 90 рублей за кг, что было на 10% дешевле той, что она уже купила, и взяла еще 1 кг этих ягод. Не меньше какой суммы в рублях было у тети Маши с собой изначально?	1	Эльдар на день рождения Эльвире купил флэш карту объемом 16Гб за 1200 рублей, после чего увидел флэш карту объемом 32Гб. И хотя она стоила на 60% дороже уже купленной, Эльдар взял в подарок ее, решив флэш карту меньшей емкости оставить себе. Не меньше какой суммы в рублях было у Эльдара с собой изначально?
	1) 180 2) 190 3) 200 4) 210		1) 3020 2) 3120 3) 3220 4) 3320
2	Есть два раствора щелочи суммарного объема 19 литров. Первый раствор содержит 5 литров щелочи, второй – 2 литра. Найдите объем в литрах первого раствора. Если процентное содержание щелочи	2	Есть два куска сплава металлов. Масса олова в первом – 5 кг, во втором – 7 кг. Найдите массу второго сплава. Если процентное содержание олова в нем в 3 раза больше, чем в первом, и если суммарный вес обоих

	в нем в 1,5 раза меньше, чем во		кусков сплава равен 44 кг.
	втором.		Ryckob cholaba paben 11 kt.
	- September 1		1) 10
	1) 10		2) 14
	2) 15		3) 18
	3) 20		4) 22
	4) 25		,, ==
3	Из 30 центнеров муки 40% было	3	Стоимость комплекта учебников по
	продано оптом, а остальное		математике составляет 420 рублей.
	расфасовано в пакеты по 2 кг. В один		Какое максимальное количество
	ящик вмещается 40 пакетов.		учебников по математике может
	Сколько ящиков потребуется, чтобы		приобрести библиотека на 5000
	разместить пакеты с мукой?		рублей, если комплект подорожает
	pasmeethib nakeibi e mykon.		на 15%?
	1) 21		на 13 /0:
	2) 22		1) 8
	3) 23		2) 9
	1		· ·
	4) 24		3) 10
	D	4	4) 11
4	Экзамен по математике ученики 11а,	4	На склад 3 машины привезли лук.
	116, 11в классов сдали без двоек. В		Картошку и капусту. Во второй
	116 классе 28 учеников. По		машине было 200 кг овощей, при
	сравнению с 11а ими было получено		этом, лука в 3 раза больше,
	на три пятерки меньше, четверок		картошки в 2 раза больше, а
	меньше в 2 раза, а троек в два раза		капусты в 6 раз больше, чем в
	больше. В 11в классе 30 учеников. По		первой машине. В третьей машине
	сравнению с 11б ими было получено:		было 260кг овощей, при этом, по
	пятерок – столько же, четверок – в 3		сравнению со второй машиной,лука
	раза больше, а троек на 16 меньше.		было столько же. Картошки в 2,5
	Сколько четверок было получено		раза больше, капусты на 9 кг
	учениками 11а класса?		меньше. Сколько килограммов
			картошки было в первой машине?
	1) 18		
	2) 19		1) 23
	3) 20		2) 24
	4) 21		3) 25
			4) 26
			, ·
5	Теплоход проходит от пристани А до	5	Катер прошел 10 км против течения
	пристани В по течению реки за 3	-	реки, а затем 45 км по течению,
	часа, а против течения за 4 часа. За		затратив на весь путь 2 часа.
	сколько часов проплывет это		Найдите собственную скорость
	расстояние плот?		катера, если скорость течения реки 5
	pacetonine intot.		км/ч.
	1) 20		
	2) 22		1) 21
	3) 24		2) 23
	4) 26		3) 25
	, , , , , , , , , , , , , , , , , , ,		4) 27
6	Сплав меди с цинком, содержащий 5	6	Сплав золота с серебром,

	кг цинка, сплавили с 15 кг цинка. В результате содержание меди в сплаве понизилось по сравнению с первоначальным на 30%. Какова была первоначальная масса сплава, если известно, что она была меньше 20 кг? 1) 19 2) 17 3) 15 4) 10		содержащий 80 г золота, сплавили со 100г чистого золота. В результате содержание золота в сплаве повысилось по сравнению с первоначальным на 20%.Сколько граммов серебра в сплаве? 1) 150 2) 140 3) 130 4) 120
7	Салон модной одежды выставил на продажу новую коллекцию, сделав наценку 80% от закупочной цены. После продажи 0,75 всей коллекции салон рапродал оставшуюся часть коллекции со скидкой 60% от продажной цены. Сколько процентов от закупочной цены коллекции составила прибыль салона? 1) 53 2) 56 3) 57 4) 58	7	Салон модной одежды выставил на продажу новую коллекцию, сделав наценку 140% от закупочной цены. После продажи 0,85 всей коллекции салон рапродал оставшуюся часть с одинаковой скидкой от продажной цены (в процентном отношении) на все элементы коллекции. Сколько процентов составила эта скидка, если прибыль салона от продажи всей коллекции составила 113% от закупочной цены? 1) 75 2) 76 3) 77 4) 78
8	Два каменщика могут выложить стену за 6 часов. Через три часа после начала работы второй каменщик получил травму и ушел, после чего первый закончил работу за 4 часа. Сколько часов потребовалось бы для того, чтобы выложить стену, второму каменщику, если бы он не получил травму и работал один? 1) 20 2) 22 3) 24 4) 26	8	Первый автопогрузчик работает вдвое быстрее второго, а вместе они загружают вагон за 10 часов. Известно, что сначала работал только первый, а потом они работали вместе, в результате чего вся погрузка заняла 11 часов. Сколько часов работал только первый автопогрузчик? 1) 1 2) 2 3) 3 4) 4

Ответы к тесту №5:

	1 вариант		2 вариант	
1	2	1	2	
2	2	2	2	
3	3	3	3	
4	1	4	1	

5	3	5	3
6	4	6	4
7	1	7	1
8	3	8	3

Проверочные тесты ТЕСТ № 1.

Вариант 1.

1. Найдите множество значений функции $y = \cos x + 5$.

- 1) [-4;6]; 2) [-1;1]; 3) $(-\infty;+\infty);$ 4) [5;6].
 - 2. Найдите угловой коэффициент касательной, проведенной к графику функции $y = 3x^2 5x + 1$ в его точке с абсциссой $x_0 = 2$.
 - 1) 3; 2) 8; 3) 1; 4) 7.
 - 3. В какой точке графика функции $y = 4\sqrt{x}$ 2x тангенс угла наклона касательной равен 0?
 - 1) (0;0); 2) (1;2); 3) (4;0); 4) (9;-6).
 - 4. Решите уравнение

$$| x^2 - 5x + 4 | = -3.$$

5. Решите уравнение | x - | x + 3 | | = 4.

Вариант 2.

1. Найдите множество значений функции $y = \sin x-5$.

1)
$$[-5;-4];$$
 2) $[-6;-4];$ 3) $[-1;1];$ 4) $(-\infty;\infty).$

- 2. Найдите угловой коэффициент касательной, проведенной к графику функции $y = 3x^3 2x + 1$ в его точке с абсциссой $x_0 = 1$.
- 1) 5; 2) 7; 3) 9; 4) 11.
- 3. В какой точке графика функции $y = 2\sqrt{x+3}$ касательная образует с положительным направлением оси абсцисс угол, равный 45° ?
- 1) 18; 2) 23; 3) 11; 4) 8.
- 4. Решите уравнение | x-4 | = x-4.
- 5. Решите уравнение | x + | x + 4 | | = 5.

TECT № 2.

Вариант 1.

- 1. Объем цилиндра равен 1 см². Радиус основания цилиндра уменьшили в 2 раза, а высоту увеличили в 3 раза. Найдите объем получившегося цилиндра.
- 2. Кубик весит 10 г. Сколько граммов будет весить кубик, ребро которого в 3 раза больше, чем ребро первого кубика, если оба кубика сделаны из одинакового материала?
 - 3. Основание прямой треугольной призмы $ABCA_1B_1C_1$ треугольник

ABC, в котором AB = AC = 8, а один из углов равен 60° . На ребре AA_1 отмечена точка Р так, что АР:РА₁ = 2:1. Найдите тангенс угла между плоскостями АВС и СВР, если расстояние между прямыми AB и C_1B_1 равно $18\sqrt{3}$.

Вариант 2.

- 1. Объем цилиндра равен 1,5 см². Радиус основания цилиндра увеличили в 2 раза, а высоту уменьшили в 3 раза. Найдите объем получившегося цилиндра. Ответ дайте в cm^2 .
- 2. Кубик весит 800 г. Сколько граммов будет весить кубик, ребро которого в 2 раза меньше, чем ребро первого кубика, если оба кубика сделаны из одинакового материала?
- 3. Основание прямой треугольной призмы $ABCA_1B_1C_1$ треугольник ABC, в котором AB = AC = 6, а один из углов равен 60° . На ребре CC₁ отмечена точка Р так, что $CP:PC_1 = 2:1$. Найдите тангенс угла между плоскостями ABC и ABP, если расстояние между прямыми AC и A_1B_1 равно $18\sqrt{3}$.

TECT № 3. Вариант 1.

Найдите значение выражения:

1. $\sqrt[3]{27*125*8}$;

$$2. \frac{3^{\frac{2}{3}}}{3^{\frac{1}{3}}} - 3^{\frac{1}{3}}.$$

1) 0, 2)
$$2*3^{\frac{2}{3}}$$
, 3) $3 - \sqrt[3]{3}$, 4) 6.

3. Упростить: $(a^{\frac{1}{2}} + 7)^2 - (a^{\frac{1}{2}} - 7)^2$

1)
$$28a^{\frac{1}{2}}$$
, 2) 0, 3) 98, 4) $a + 49$.

4. Укажите наибольший корень уравнения:

$$5x - 7 = \sqrt{8x - 7}$$
.

5. Пусть $(x_0; y_0)$ – решение данной системы $y - 3 = \sqrt{x^2 - 12x + 36}$,

$$3x - y = -1$$
. Найдите $x_0 + y_0$.

6. Пусть $(x_0; y_0)$ – решение данной системы $y+2=\sqrt{x+4}$, y+x-5=1. Найдите x_0/y_0 .

$$y + x - 5 = 1.$$
 Найдите x_0/y_0

7. Решите уравнение $\sqrt{x^2 + 8x + 27} - \sqrt{x^2 + 8x} = 3$.

Вариант 2.

Найдите значение выражения:

1.
$$\sqrt[3]{\frac{343*27}{8*125}}$$
.

1) 21, 2) 3,5, 3) 13, 4) 2,1.
2.
$$(27*4)^{\frac{1}{6}} - 3^{\frac{1}{2}}*2^{\frac{1}{3}}$$
.
1) $2\sqrt{6}$, 2) 12, 3) $-\sqrt{12}$, 4) 0.
3. Упростить $(e^{\frac{1}{3}} - 3)^3 + (e^{\frac{1}{3}} + 3)^3$.
1) $2e^{\frac{1}{3}}$, 2) $2e + 54e^{\frac{1}{3}}$, 3) -18 , 4) $e^{\frac{2}{3}} - 9$.
4. Укажите наибольший корень уравнения: $\sqrt{14 - 5x} = x + 2$.
5. Пусть $(x_0; y_0)$ – решение данной системы $y + 1 = \sqrt{x^2 + 4x + 4}$, $2x - y + 6 = 0$. Найдите x_0*y_0 .
6. Пусть $(x_0; y_0)$ – решение данной системы $\sqrt{x - 3} = y$, $y + x - 2 = 3$. Найдите $x_0 - y_0$.
7. Решите уравнение $\sqrt{5x^2 + x + 12} - \sqrt{5x^2 + x} = 2$.

$$TECT № 4.$$

$$Bapuaht 1.$$
1. Найдите значение выражения: $\log_7(3^3 7^5) - 2\log_7 3 - 5$.
1) $\log_7 3$, 2) -4 , 3) 0, 4) $-2\log_{21} 25$.
2. Укажите промежуток, которому принадлежит корень уравнения: $\log_3(x - 1) - \log_3(x + 4) = -2$.
1) $[-6; -4]$, 2) $(-4; -3)$, 3) $(-4; 4)$, 4) $[4;6]$.
3. Решите неравенство: $\log_4(0,25x + 2) < -1$.
1) $(-\infty; -5]$, 2) $(-8; -5]$, 3) $[-5; \infty)$, 4) $(-\infty; \infty)$.
4. Найдите значение выражения: $\frac{1}{4}\log_3\sqrt[3]{b}$, если $\log_3 b = -6$.
5. Укажите наименьший корень уравнения: $\log_{x^2 + 4}(2x^2 - 5x - 10) = 1$.
6. Решите систему уравнений: $\frac{1}{3}\log_3(x + y - 2/5) + \log_{27}(5x) = 0$, $\log_3(2x - y + 5) = 1$.
7. Решите уравнение

Вариант 2.

1. Найдите значение выражения: $log_65 log_58 + log_627$.

 $2\log_6(x + \frac{12}{x+7}) = \log_6(\frac{4}{x+3} - \frac{3}{x+4}) + 3.$

```
1) 1, 2) \log_{30}48, 3) 2 \log_7 23, 4) 3.
```

2. Укажите промежуток, которому принадлежит корень уравнения: 1- $\log_5(x+3) = \log_5 2$.

1)
$$(-\infty; -4)$$
, 2) $[-4;0)$, 3) $(0;3]$, 4) $(3; \infty)$.

3. Решите неравенство:

$$\log_{1/3}(7-0.5x) > -3.$$

1)
$$(-40; \infty)$$
 , 2) $(-40;14)$, 3) $(-\infty;-40)$, 4) $(14; \infty)$.

4. Найдите значение выражения: $0.75 \log_9(m)^{-1/3}$, если $\log_9 m = -4$.

5. Укажите наибольший целый отрицательный корень уравнения: $(x^2-1)^{\log_{(x^2-1)}^2}=2$.

6. Решите систему уравнений:

$$\log_3 (5y - 3x + 9) = 2,$$

$$\log_2 (7x - 5y + 1/5) + 3\log_8 (5x) = 0.$$

7. Решите уравнение $2\log_2(x + \frac{30}{x+11}) = \log_2(\frac{6}{x+5} - \frac{5}{x+6}) + 3.$

TECT №5. Вариант 1.

- В1. Шариковая ручка стоит 40 руб. Какое наибольшее число таких ручек можно купить на 300 рублей после повышения цены на 10%?
- В3. Найдите корень уравнения $7^{x-2} = 49$.
- В4. В треугольнике ABC угол C равен 90° , угол A равен 30° , AB = $\sqrt{3}$. Найдите AC.
- В5. Для строительства дачи можно использовать один из трех вариантов фундамента: каменный, бетонный и фундамент из пеноблоков. Для каменного фундамента необходимо 9 тонн камня и 9 мешков цемента. Для фундамента из пеноблоков необходимо 5 кубометров пеноблоков. Для бетонного фундамента необходимо 12 тонн щебня и 34 мешка цемента. Тонна камня стоит 2100 рублей, кубометр пеноблоков стоит 2500 рублей, щебень стоит 630 рублей за тонну, а мешок цемента стоит 200 рублей. Сколько рублей придется заплатить за самый дешевый фундамент? В7. Найдите значение выражения $\log_5 135 \log_5 135$.
- В8. На рисунке 1 изображен график функции y = f(x) и касательная к этому графику, проведенная в точке с абсциссой 4. Найдите значение производной функции y = f(x) в точке $x_0 = 4$.
- В9. Объем цилиндра равен 1 см³. Радиус основания уменьшили в 2 раза, а высоту увеличили в 3 раза. Найдите объем получившегося цилиндра. Ответ дайте в см³.
- В10. Высота, на которой находится камень, брошенный с земли вертикально вверх, меняется по закону $h(t) = 2+14t 5t^2$ (м). Сколько секунд камень будет находиться на высоте более 10 метров?
- В11. Найдите наибольшее значение функции $y = 9x 8\sin x + 7$ на отрезке

$$[-\frac{\pi}{2};0].$$

- B12. Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 15 часов. Через 5 ч. после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. За сколько часов был выполнен заказ?
- С1. Решите систему уравнений:

$$16^{\cos x} - 10 *4^{\cos x} + 16 = 0,$$

$$\sqrt{y} + 2\sin x = 0.$$

Вариант 2.

- В1.Летом килограмм клубники стоил 90 рублей. Мама купила 1 кг 400 г клубники. Сколько рублей сдачи она должна получить с 1000 рубле1?
- В3. Найдите корень уравнения $8^{7-x} = 64$.
- B4. В треугольнике \overrightarrow{ABC} угол C равен 90° , BC = 8, $\sin A = 0.8$. Найдите AB.
- В5. Для строительства дачи можно использовать один из трех вариантов фундамента: каменный, бетонный и фундамент из пеноблоков. Для каменного фундамента необходимо 8 тонн камня и 8 мешков цемента. Для фундамента из пеноблоков необходимо 6 кубометров пеноблоков. Для бетонного фундамента необходимо 9 тонн щебня и 25 мешка цемента. Тонна камня стоит 1600 рублей, кубометр пеноблоков стоит 2200 рублей, щебень стоит 690 рублей за тонну, а мешок цемента стоит 270 рублей. Сколько рублей придется заплатить за самый дешевый фундамент?
- В7. Найдите значение выражения log₄ 104- log₄ 6,5.
- В8. На рисунке 2 изображен график функции y = f(x) и касательная к этому графику, проведенная в точке с абсциссой 2. Найдите значение производной функции y = f(x) в точке $x_0 = 2$.
- В9. Объем цилиндра равен 1,5 см³. Радиус основания увеличили в 2 раза, а высоту уменьшили в 3 раза. Найдите объем получившегося цилиндра. Ответ дайте в см³.
- В10. Высота, на которой находится камень, брошенный с земли вертикально вверх, меняется по закону $h(t) = 1+13t-5t^2$ (м). Сколько секунд камень будет находиться на высоте более 7 метров?
- В11. Найдите наименьшее значение функции $y = 7\sin x 8x + 9$ на отрезке $\left[-\frac{3\pi}{2}; 0 \right]$.
- В12. Объем ежемесячной добычи газа на первом, втором и третьем месторождениях относятся как 7:6:14. Планируется уменьшить месячную добычу газа на первом месторождении на 14% и на втором на 145. На сколько процентов нужно увеличить добычу газа на третьем месторождении, чтобы объем добываемого за месяц газа не изменился?
- С1. Решите систему уравнений

$$3^{y+1} = 2\cos x$$
, $3^{-y} = 4\cos x + 1$.

C2. Ребра AD и BC пирамиды DABC равны 24 см и 10 см. Расстояние между серединами ребер BD и AC равно 13 см. Найдите угол между прямыми AD и BC.

Литература и интернет ресурсы

- 1. Единый государственный экзамен: математика: контр. Измерит. материалы: 2005 2006/ под общ. Ред. Л.О.Денищевой; М-во образования и науки Рос. Федерации, Федерал. Служба по надзору в сфере образования и науки, Федерал. Ин-т пед. Измерений.- М.:Просвещение, 2006.-96 с.
- 2. Л.О.Денищева, Ю.А.Глазков, Краснянская К.А. и др. Единый государственный экзамен 2007. Математика. Учебно тренировачные материалы для подготовки учащихся/ФИПИ М.: Интеллект центр, 2012.-272 с.
- 3. Тематические тесты. Математика. ЕГЭ –2008. Часть І. Часть ІІ./ Под редакцией Ф.Ф.Лысенко. Ростов на Дону: Легион, 2007. 256 с.
- 4. Математика. Подготовка к ЕГЭ 2009. Вступительные испытания. Под редакцией Ф.Ф.Лысенко. Ростов на Дону: Легион, 2008. 400 с.
- 5. Алгебра. 10 11 классы. Промежуточная аттестация в форме ЕГЭ: Учебно методическое пособие / Под редакцией Д.А.Мальцева. Ростов на Дону: издатель Мальцев Д.А.; М.:НИИ школьных технологий, 2008 г. 186 с.
- 6. Математика. Сборник тестов по плану ЕГЭ 2009 : Учебно методическое пособие / Под редакцией А.Г.Клове, Д.А.Мальцева. Ростов на Дону: издатель Мальцев Д.А.; М.:НИИ школьных технологий, 2009 г. 156 с.
- 7. Математика. Подготовка к ЕГЭ 2014./ Под редакцией Ф.Ф.Лысенко, С.Ю.Кулабухова. Ростов на Дону: Легион М, 2014. 480 с.
- 8. Самое полное издание типовых вариантов реальных заданий ЕГЭ: 2010: Математика/ авт. сост. И.Р.Высоцкий, Д.Д.Гущин, П.И.Захаров и др.; под редакцией А.Л.Семенова, И.В.Ященко. М.:АСТ:Астрель, 2010. 91 с.
- 9. Единый государственный экзамен 2014. Математика. Универсальные материалы для подготовки учащихся. Под редакцией А.Л.Семенова и И.В.Ященко. / ФИПИ М.:Интеллект-Центр,2014. 96 с.
- 10. Алгебра и начала анализа: Учеб. Для 10 11 кл. общеобразоват. учреждений/ А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницын и др.; Под ре. А.Н.Колмогорова.-11 е изд.-М.:Просвещение, 2001.-384 с.,ил.
- 11. Белошистая А.В. «Тематическое планирование уроков подготовки к экзамену», М.: «Экзамен», 2007
- 12. Гесева К.С., ЕГЭ. Математика: Раздаточный материал тренировочных тестов. СПб.: Тригон, 2006
- 13. Единый государственный экзамен по МАТЕМАТИКЕ (Демонстрационный вариант КИМ , подготовлен Федеральным государственным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

- 14. Кочагин В.В. ЕГЭ-2014. Математика. Тематические тренировочные задания, М.: Эксмо, 2014
- 15. Пичурин Л.Ф. «За страницами алгебры», Москва: Просвещение, 1990.
- 16. Единый государственный экзамен 2009. Математика. универсальные материалы для подготовки учащихся / ФИПИ М.: Интеллект –центр, 2009
- 17. Математика: 50 типовых вариантов экзаменационных работ для подготовки к $E\Gamma \Im /$ авт. сост. А.П. Власова и др. М.: АСТ:, А
- 18. ФИПИ. Открытый банк заданий.
- 19. Сдам ЕГЭ.

20.

Приложения

Для примера приведем несколько карточек для занятий:

Пример 1. Тестирование «американское»

- 1. Гимнаст получил на соревнованиях:
- 9,5 балла за упражнения на брусьях;
- 8,7 балла за упражнение на перекладине;
- 8,8 балла за акробатику.

Каков средний результат гимнаста за все три упражнения?

- A 8,9
- B 9.0
- C 9,1 D 9.2

2. Корпорация имеет восемь отделений, в каждом из которых 10-16 отделов. В каждом отделе по меньшей мере сорок, не больше шестидесяти работников. Если десять процентов работников каждого отдела составляют машинистки, то какое наименьшее число машинисток може быть в отделении?

- A 40
- B 65
- C 96
- D 320
- E 768

3. Некто может проплыть на лодке 10 миль вниз по течению реки за 2 часа, а то же расстояние против течения за 5 часов. С какой средней скоростью (в милях в час) он проплывет туда и обратно?

A -
$$1\frac{3}{7}$$

- A $1\frac{3}{7}$ B $3\frac{1}{2}$ C $2\frac{6}{7}$ D 3 E 7

4. Если 2p маляров могут покрасить 2h зданий за 2w недель, то сколько маляров потребуется для покраски 4 h зданий за 4 w недель?

- A p
- B 2p-
- C 4p
- D 8p
- E-16p

Пример №2. Тождественные преобразования алгебраических выражений

Часть А (индивидуально-фронтальная работа)

На выполнение отводится 30 минут. Верно 9-10 заданий – «5», верно 7-8 – «4», 5-6 заданий – «3»

Разложите многочлен на множители:

- 1. $56a^2 40ab + 63ac 45bc$
- 2. $16p^2 81$
- 3. $8a^3 + b^6$.
- 4. $-a^2-4a-4$.
- 5. $11x 3x^2 + 70$.
- 6. $a^2 b^2 + x^2 y^2 + 2ax 2by$
- $7.x^{2}-y^{2}-z^{2}+2yz.$ $8 x^{3}+x-2$
- 9. $x^4 x^2 + 2x + 2$.
- 10. $x^4 + 4$

Часть 2. Фронтальная работа

- 1) Упростить выражение:
- 2) Упростить выражение:
- 3) Упростить выражение: $\frac{a^2 + 4ab + 4b^2}{a^2 + 6ab + 8b^2}$
- 4) Сократить дробь: $\frac{x-y}{\sqrt{x}-\sqrt{y}}$
- 5) Сократить дробь: $\frac{a-8}{2\sqrt{a-2}}$
- 6) Сократить дробь: $\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}$
- 7) Сократить дробь: $\frac{a+b}{\sqrt[3]{a}+\sqrt[3]{b}}$
- 8) Упростить выражение: $\frac{a+b}{\sqrt[3]{a^2} \sqrt[3]{b^2}} + \frac{\sqrt[3]{ab^2} \sqrt[3]{a^2}b}{\sqrt[3]{a^2} 2\sqrt[3]{ab} + \sqrt[3]{b^2}}$ 9) Упростить выражение: $\frac{(x-y)(\sqrt{x} + \sqrt{y}) x\sqrt{y} + y\sqrt{x}}{x+y+\sqrt{xy}}.$
- 10) Упростить выражение:

$$\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):(a-b)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}$$

Пример 3. Рациональные уравнения

Часть 1. Фронтальная работа

- 1. Не решая уравнения, найдите сумму корней уравнения $x^2 + 3x + 1 = 0$.
- 2. Найдите значение выражения $\frac{x_1}{x_2} + \frac{x_2}{x_1}$, где х1 и х2 корни квадратного трехчлена

$$2x^2 - \sqrt{4\sqrt{27} - 6\sqrt{8}} \cdot x + \sqrt{2} - \sqrt{3}$$
.

Часть 2. Индивидуальная работа

Во всех случаях требуется решить уравнение. 1) $x^4 - 10x^2 + 9 = 0$ 5) $x^3 + x - 2 = 0$ 2) $x^4 - 15x^2 - 16 = 0$ 6) $(x^2 - 4x + 5)^2 = (x^2 - 2x - 1)^2$ 3) $(x^2 + 2x)^2 - 2(x^2 + 2x) - 3 = 0$ 7) $x^4 - 4x^3 + 6x^2 - 4x + 1 = 0$ 4) $(x^2 + 3x - 3)(x^2 + 3x + 1) = 5$ Ответы: 1) -3; -1; 1; 3 2) -4; 4 3) -3; -1; 1; 4) -4; -2; -1; 7 5) 1 6) 1; 2; 3 7) 1