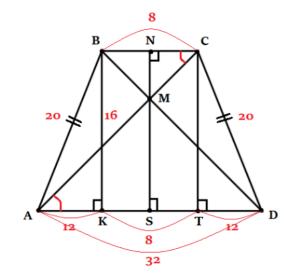
В равнобедренную трапецию, периметр которой равен 80, а площадь равна 320, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.



Дано:

ABCD - равнобедренная трапеция

$$P(ABCD) = 80 \; ; \; S(ABCD) = 320 \; ;$$

В трапецию АВСО можно вписать окружность

$$AC \cap BD = M ; MN \perp BC ; MS \perp AD ;$$

Найти: MN

Решение:

- AB + CD = BC + AD (свойство 4х угольника описанного около окружности) .
- $\boxed{2} \qquad P(ABCD) = (AB+CD) + (BC+AD) = 2(AB+CD) = 80 \quad \rightarrow \quad AB+CD = 40 \quad \rightarrow$ $\rightarrow \quad BC+AD = 40 \; .$

$$AB+CD=40$$
 $AB=CD$ (по условию) $AB=CD=20$

- Построим высоты $BK \perp AD$; $CT \perp AD$; BK = NS = CT (высоты).
- $S(ABCD) = rac{BC + AD}{2} \cdot BK = rac{40}{2} \cdot BK = 20BK = 320
 ightarrow BK = 320 : 20 = 16 \; ; \; NS = 16.$

$$riangle BKA$$
 : $\angle B$ = 90 0 ; BK = 16 ; AB = 20 ; $AK = \sqrt{AB^{2} - BK^{2}} = \sqrt{20^{2} - 16^{2}} = \sqrt{400 - 256} = \sqrt{144} = 12$.

$$AB=CD$$
 (по условию) $ightarrow \Delta \,ABK=\Delta \,DCT$ (по катету и гип.) $ightarrow$ $BK=CT$ (высоты) $ightarrow AK=TD=12.$

$$BC+AD=40$$
 (док) $o BC+AK+KT+TD=40 o BC+12+KT+12=40 o$ $o BC+KT=16 o$ так как $BC=KT o BC=KT=8$

$$ightarrow k = rac{BC}{AD} = rac{8}{32} = rac{1}{4}
ightarrow rac{NM}{MS} = rac{1}{4}$$

Пусть
$$NM=x$$
 , тогда $MS=16-x \ o \ rac{x}{16-x}=rac{1}{4} \ o \ o \ 4x=16-x$ $5x=16$

x=3, 2=NM

OTBET: 3.2