МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДЕТСКИЙ САД КОМБИНИРОВАННОГО ВИДА № 8 «АЛЁНУШКА» ГОРОДА ТИХОРЕЦКА МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ТИХОРЕЦКИЙ РАЙОН

Муниципальный образовательный конкурс «Инновационный поиск» для дошкольных образовательных организаций

Инновационный проект по теме:

«Развитие предпосылок научно-технического творчества детей дошкольного возраста в условиях реализации программы stem-образования»

Авторы проекта:

Булгакова Наталья Александровна

старший воспитатель МБДОУ № 8 «Алёнушка»

г. Тихорецка

Андреева Арина Валентиновна

учитель-дефектолог МБДОУ № 8 «Алёнушка» г. Тихорецка

Никитина Ирина Павловна

воспитатель МБДОУ № 8 «Алёнушка» г. Тихорецка

Токарева Мария Александровна

воспитатель МБДОУ № 8 «Алёнушка» г. Тихорецка

Боброва Марина Владимировна

педагог -психолог МБДОУ № 8 «Алёнушка» г. Тихорецка

352120, Россия, Краснодарский край, Тихорецкий район, город Тихорецк, улица Воровского 7а, тел. 8 (86196) 7-08-56, e-mail: mdoualenushka2010@mail.ru

- **,1. Наименование проекта организации-соискателя.** Развитие предпосылок научнотехнического творчества детей дошкольного возраста в условиях реализации программы stem-образования.
- **2.** Направление деятельности инновационной площадки, в рамках которого реализуется представленный проект. Ключевые аспекты направления:
 - 1. Ранняя инженерно-техническая подготовка
 - Развитие логики, конструирования, основ программирования через игровые формы (LEGO, робототехника, простейшие эксперименты).

2. Интеграция STEM-подходов

- о Совмещение науки (Science), технологий (Technology), инженерии (Engineering) и математики (Math) в рамках занятий и проектной деятельности.
- 3. Цифровизация образовательной среды
 - о Использование цифровых инструментов (интерактивные панели, образовательные приложения) для развития познавательной активности.

4. Подготовка педагогов

о Обучение воспитателей методикам STEM с акцентом на возрастные особенности дошкольников.

Инновационность: Проект сочетает классические методы дошкольной педагогики с современными технологиями, формируя у детей навыки критического мышления и изобретательности уже на раннем этапе развития.

3. Цель (цели) проекта. Формирование предпосылок научно-технического творчества у детей дошкольного возраста через внедрение STEM-образования, обеспечивающего развитие познавательной активности, инженерного мышления и навыков решения практических задач в условиях цифровой трансформации.

Конкретные цели:

- 1. Развитие ключевых компетенций
 - о Стимулирование интереса к науке, технике, конструированию и экспериментальной деятельности.

 Формирование основ логического, алгоритмического и проектного мышления.

2. Создание инновационной образовательной среды

- Внедрение современных STEM-методик и цифровых инструментов (робототехника, программируемые конструкторы, интерактивные лаборатории).
- Разработка игровых образовательных модулей, адаптированных для дошкольного возраста.

3. Повышение профессионального уровня педагогов

- о Обучение воспитателей современным технологиям STEM-образования.
- о Развитие навыков проектной деятельности и работы с цифровыми ресурсами.

4. Вовлечение родителей и социальных партнёров

- Организация совместных мероприятий (мастер-классы, конкурсы, фестивали технического творчества).
- о Сотрудничество с технопарками, вузами и предприятиями для реализации практико-ориентированных проектов.

5. Апробация и тиражирование опыта

- Разработка методических рекомендаций по интеграции STEM в дошкольное образование.
- о Создание открытой базы учебных кейсов для других образовательных учреждений.

Ожидаемый результат: Дети приобретают навыки, необходимые для будущего обучения в школе (анализ, гипотезирование, работа в команде), а педагоги и родители получают инструменты для поддержки технического творчества дошкольников.

4. Задача (задачи) проекта.

- 1. Разработка и внедрение STEM-программы для дошкольников
 - о Создать адаптированные образовательные модули (конструирование, простейшие эксперименты, основы робототехники).

 Внедрить игровые формы обучения, стимулирующие интерес к науке и технике.

2. Формирование развивающей предметно-пространственной среды

- о Оснастить группы современными STEM-материалами (конструкторы, цифровые лаборатории, интерактивные панели).
- о Организовать зоны для исследовательской и проектной деятельности.

3. Повышение квалификации педагогов

- о Провести обучение воспитателей по методикам STEM-образования.
- о Организовать мастер-классы и стажировки на базе инновационных площадок.

4. Вовлечение родителей и социума

- о Проводить открытые занятия, семейные STEM-фестивали и конкурсы.
- Разработать рекомендации для родителей по поддержке технического творчества дома.

5. Апробация и оценка эффективности

- о Внедрить систему мониторинга развития навыков у детей (наблюдение, портфолио, диагностические игры).
- о Проанализировать результаты и скорректировать программу по итогам пилотного этапа.

6. Тиражирование опыта

- о Подготовить методические пособия для других дошкольных учреждений.
- о Организовать вебинары и конференции для обмена лучшими практиками.
- **5. Предмет предлагаемого проекта.** Инновационная система формирования предпосылок научно-технического творчества у детей дошкольного возраста через интеграцию STEM-образования, включающая:

1. Содержательный компонент:

о Адаптированные STEM-программы и методики, ориентированные на возрастные особенности дошкольников.

 Игровые образовательные модули (конструирование, экспериментирование, основы алгоритмизации).

2. Технологический компонент:

- о Цифровые инструменты (робототехнические наборы, интерактивные лаборатории, образовательные приложения).
- о Среды для проектной деятельности (мини-технопарки, исследовательские зоны в группах).

3. Организационный компонент:

- Модель взаимодействия участников (дети педагоги родители социальные партнёры).
- о Система повышения квалификации педагогов в области STEM.

4. Диагностический компонент:

 Критерии и инструменты оценки развития навыков (наблюдение, портфолио, кейс-методы).

6. Обоснование значимости проекта для развития системы образования:

1) проблематика проекта (в частности, противоречие, на преодоление которого направлен проект);

Ключевая проблема: В условиях стремительного развития технологий и цифровизации общества система дошкольного образования сохраняет традиционный подход, недостаточно ориентированный на формирование у детей навыков научно-технического творчества, критического мышления и адаптивности к изменениям.

Противоречия, на преодоление которых направлен проект:

1. Социально-педагогическое противоречие:

о Между возрастающей потребностью общества в специалистах с инженернотехническими и цифровыми компетенциями (STEM-навыками) и недостаточной подготовкой дошкольников к их освоению в рамках классических программ ДОУ.

2. Методическое противоречие:

 Между потенциалом STEM-образования для развития познавательной активности, креативности и логики у детей 3–7 лет и отсутствием системных методик его интеграции в дошкольную практику с учётом возрастных особенностей.

3. Ресурсное противоречие:

 Между необходимостью использования современных технологий (робототехника, цифровые лаборатории) и дефицитом материально-технической базы (включая ИКТ-инструменты) и кадровых компетенций в большинстве ДОУ.

4. Мотивационное противоречие:

о Между естественной любознательностью дошкольников (интересом к экспериментированию и конструированию) и ограниченными возможностями для её реализации в стандартной образовательной среде.

Как проект решает эти противоречия?

- Разрабатывает адаптированные STEM-модули для дошкольников (игровые формы, простые эксперименты).
- Создаёт доступную цифровую среду (использование бюджетных конструкторов, open-source программ).
- Включает подготовку педагогов и вовлечение родителей через мастер-классы и проектные мероприятия.
- 2) инновационный потенциал проекта (какие новые нормы (институты) появятся в результате реализации проекта, какие новые отношения будут регулировать новые нормы);

Проект направлен на создание новых норм, институтов и отношений в системе дошкольного образования, связанных с внедрением STEM-подходов.

1. Новые нормы (институты):

- STEM-стандарт для дошкольного образования
 - Разработка и апробация методических рекомендаций по интеграции STEM в программу ДОУ (включая ФГОС ДО).
 - о Критерии оценки развития инженерного мышления и технического творчества у детей 3–7 лет.

- Центры раннего научно-технического творчества
 - Создание на базе ДОУ инновационных площадок с зонами конструирования, цифровыми лабораториями и мини-технопарками.

2. Новые регулируемые отношения:

- Педагог ребенок
 - Переход от традиционного «обучения» к роли наставника-фасилитатора, поддерживающего исследовательскую активность детей.
- ДОУ родители
 - о Формирование системы семейных STEM-проектов, где родители становятся соучастниками образовательного процесса (например, через квесты или домашние эксперименты).
- ДОУ внешние партнёры
 - Договоры с ДОУ района на создание стажировочных площадок для детей и педагогов.

Эффект:

Проект создаёт прецедент системных изменений, где STEM становится не дополнительным направлением, а ядром образовательной программы, формируя новую культуру раннего развития.

3) практическая значимость проекта (результаты проекта, имеющие практическую значимость);

Для системы образования:

- Создание модели STEM-образования для ДОУ.
- Разработка методических рекомендаций для педагогов.
- Организация стажировочной площадки на базе МБДОУ.

Для детей:

- Развитие инженерного мышления (анализ, конструирование, тестирование).
- Подготовка к школе (математика, логика, речь).

Для родителей:

- Возможность ранней профориентации ребенка.
- Участие в семейных STEM-проектах (например, «Домашняя лаборатория»).

Для педагогов:

- Повышение квалификации в области STEM-технологий.
- Внедрение современных образовательных практик.

Проект «Развитие предпосылок научно-технического творчества детей дошкольного возраста в условиях STEM-образования» отвечает:

- ♦ Государственным приоритетам (нацпроект «Образование», ФГОС ДО).
- ♦ Потребностям экономики Краснодарского края (подготовка будущих инженеров).
- ♦ Психолого-педагогическим требованиям (развитие мышления в дошкольном возрасте).

Реализация проекта позволит создать инновационную образовательную среду, способствующую формированию у детей ключевых компетенций XXI века.

4) реализуемость проекта (реальность достижения целей и результатов проекта и пр.);

Проект обладает высокой степенью реализуемости благодаря комплексному учету следующих факторов:

- 1. Наличие необходимых ресурсов
 - Кадровые ресурсы:
 - о Воспитатели, желающие пройти обучение по STEM-методикам.
 - Материально-техническая база:
 - о Использование доступных STEM-конструкторов (LEGO, Cuboro, Matatalab).
 - о Создание STEM-лабораторий на базе существующих помещений ДОУ.
 - Финансовые ресурсы:
 - о Бюджетные средства (гранты, субсидии).
 - о Внебюджетные источники (спонсорская поддержка, краудфандинг).
- 2. Поддержка со стороны участников образовательного процесса
 - Администрация ДОУ:
 - о Закрепление STEM-направления в образовательной программе.

- Педагоги:
 - о Готовность к освоению новых методик (подтверждено анкетированием).
- Родители:
 - о Высокий уровень заинтересованности в развитии технического творчества у летей.

3. Отработанные механизмы внедрения

- Поэтапная реализация:
 - о Пилотный этап (апробация в отдельных группах).
 - о Корректировка программы по итогам мониторинга.
 - о Масштабирование на весь ДОУ.
- Методическое сопровождение:
 - о Разработка пошаговых рекомендаций для педагогов.
 - о Проведение супервизий и мастер-классов.
- 4. Опыт аналогичных проектов
 - Успешные кейсы внедрения STEM в дошкольное образование России.
- 5. Система оценки и корректировки
 - Мониторинг результатов:
 - о Диагностика уровня развития навыков у детей.
 - о Оценка удовлетворенности родителей и педагогов.
 - Гибкость управления:
 - о Возможность оперативно вносить изменения в программу.
- 5) корреляция проекта с национальными целями и стратегическими задачами, предусмотренными Указами Президента Российской Федерации от 7 мая 2018 г. № 204 и от 21 июля 2020 г. № 474;

Актуальность для развития системы образования, соответствие ведущим инновационным направлениям развития образования Краснодарского края.

Современное общество стремительно развивается в условиях цифровизации и технологического прогресса. В связи с этим возрастает потребность в специалистах, обладающих не только фундаментальными знаниями, но и инженерным мышлением, креативностью, способностью к инновациям. Формирование этих качеств необходимо начинать уже в дошкольном возрасте, когда закладываются основы познавательной активности, логического мышления и интереса к исследовательской деятельности.

Реализация STEM-образования (Science, Technology, Engineering, Mathematics) в дошкольных учреждениях является одним из ключевых направлений модернизации системы образования, что соответствует стратегическим задачам Российской Федерации и Краснодарского края в области подготовки будущих инженерно-технических кадров.

Соответствие государственным приоритетам

- Национальный проект «Образование» (2019–2030) ставит задачу формирования у детей гибких компетенций (soft skills), включая критическое мышление, креативность и умение работать в команде.
- Стратегия научно-технологического развития РФ (Указ Президента №642 от 01.12.2016) подчеркивает необходимость ранней профориентации в сфере инженерии и высоких технологий.
- ФГОС ДО (Приказ Минобрнауки №1155 от 17.10.2013) предусматривает развитие познавательно-исследовательской деятельности дошкольников через экспериментирование и конструирование.

Запрос экономики Краснодарского края

Краснодарский край — один из лидеров в агропромышленном, транспортном и ІТ-секторах. Региону требуются специалисты, способные работать с робототехникой, автоматизированными системами, биотехнологиями. Однако, по данным Министерства образования Краснодарского края (2023), лишь 15% выпускников выбирают технические специальности.

Причины:

- Недостаточная ранняя профориентация.
- Отсутствие системного подхода к развитию инженерного мышления в ДОУ.

Решение:

Внедрение STEM-образования в детских садах позволит:

- Сформировать у детей интерес к техническим дисциплинам.
- Развить пространственное мышление, логику, навыки проектной деятельности.

7. Исходные теоретические положения, на которых строится проект.

Современные вызовы цифровой эпохи требуют формирования у детей уже в дошкольном возрасте предпосылок научно-технического творчества. Однако анализ текущей ситуации в системе дошкольного образования выявил ряд существенных проблем: Отсутствие системного подхода к развитию инженерного мышления у дошкольников.

Дефицит современных образовательных технологий в ДОУ, ориентированных на STEMнаправление (наука, технологии, инженерия, математика).

Недостаточная материально-техническая база для реализации технического творчества (робототехника, конструирование, экспериментирование).

Низкий уровень вовлеченности педагогов в инновационные практики STEM-образования.

Теоретическая база проблемы Исследования в области педагогики и психологии (Л.С. Выготский, А.В. Запорожец, Н.Н. Поддьяков) подтверждают, что дошкольный возраст является сензитивным периодом для развития:

Познавательной активности (экспериментирование, исследовательская деятельность).

Пространственного и логического мышления (конструирование, моделирование).

Творческого потенциала (решение нестандартных задач).

Однако традиционные методы дошкольного образования не учитывают современных требований к формированию инженерного мышления, что создает разрыв между потребностями общества и возможностями системы образования.

Практическая проработанность проблемы

<u>Анализ существующих практик в РФ</u>В последние годы в России наблюдается рост интереса к STEM-образованию в ДОУ. Реализуются следующие проекты:

Федеральные инициативы:

Программа «Инженерные кадры России» (ИКаР) – включает конкурсы по робототехнике для дошкольников.

Сеть «Кванториумов» – адаптация программ для старших дошкольников.

Региональные практики:

Московская область: проект «STEM-образование для дошкольников» (апробация в 50 ДОУ).

Татарстан: внедрение LEGO-конструирования и основ программирования в детских садах. Частные инициативы: Сеть детских садов «Инженерные дети» (Москва, Санкт-Петербург) – акцент на техническое творчество.

Вывод: Несмотря на отдельные успешные кейсы, отсутствует единая система внедрения STEM в дошкольное образование. Большинство программ ориентированы на школьников, а для ДОУ носят фрагментарный характер.

<u>Опыт Краснодарского края</u> В Краснодарском крае STEM-образование в ДОУ только начинает развиваться:

Положительные примеры:

Детский сад № 100 (Краснодар): внедрение робототехники (наборы LEGO WeDo).

Проект «Маленький инженер» (Новороссийск): занятия по конструированию для детей 5—7 лет.

Проблемы: Нет единой методической базы для педагогов.

Ограниченное финансирование (большинство инициатив – за счет родителей).

Отсутствие преемственности между ДОУ и школами.

Вывод: Краснодарский край отстает от лидеров (Москва, Татарстан) в массовом внедрении STEM в ДОУ.

Преимущества нашего проекта:

- У Уникальные методики (авторские разработки).
- У Интеграция с учреждениями разных уровней.

Инновационность предлагаемого решения:

Разработка модели STEM-образования, включающей:

Образовательные модули (наука, технологии, инженерия, математика).

Диагностику развития инженерного мышления.

Программы для детей с OB3.

Создание стажировочной площадки для педагогов Краснодарского края.

Внедрение цифровых технологий (мультстудия).

Ожидаемый вклад в развитие системы образования

Для ДОУ: Методические рекомендации по STEM-образованию; модель сетевого взаимодействия.

Для педагогов: Повышение квалификации; Банк готовых конспектов занятий.

Для детей: Формирование инженерного мышления; Подготовка к школе.

Для региона: Тиражирование опыта на другие ДОУ, снижение дефицита технических кадров в долгосрочной перспективе.

Проект «Развитие предпосылок научно-технического творчества в условиях STEM-образования» направлен на решение актуальной проблемы отсутствия системного подхода к формированию инженерного мышления у дошкольников.

Инновационность проекта подтверждается:

- ♦ Анализом неудач аналогов в Краснодарском крае.
- ♦ Уникальной методикой (вовлечение детей 3–7 лет).
- ♦ Практической ориентированностью (стажировочная площадка).

Реализация проекта позволит ликвидировать отставание региона в области STEMобразования и создать модель для тиражирования в других ДОУ РФ.

8. Программа – календарный план реализации проекта

Этап 1: Подготовительный (Дата начала: 01.09.2024 — Дата окончания: 31.12.2024)

№ п/п	Перечень действий	Содержание и методы деятельности	Необходимые условия	Прогнозируемые результаты
1.	Анализ нормативно- правовой базы	Изучение ФГОС ДО, региональных требований к STEM-образованию.	Доступ к документам, экспертные заключения.	Определены правовые рамки для внедрения проекта.
2.	Формирование рабочей группы	Назначение ответственных Проведение установочного совещания.	Приказ руководителя ДОУ.	Создана команда для реализации проекта.
3.	Разработка программы STEM- модулей	Адаптация существующих методик под возрастные группы.	Методические материалы, участие экспертов.	Утверждена программа занятий.
4.	Заключение договоров с партнёрами	Переговоры с ДОУ по реализации прокта	Готовность партнёров к сотрудничеству.	Подписаны соглашения о взаимодействии.

Этап 2: Практический (Дата начала: 01.01.2025 – Дата окончания: 31.05.2026)

№ п/п	Перечень действий	Содержание и методы деятельности	Необходимые условия	Прогнозируемые результаты
1.	Оснащение STEM- среды	Закупка конструкторов, цифровых лабораторий. Организация зон для экспериментирования.	Финансирование, техническая поддержка.	Создана материально- техническая база.
2.	Обучение педагогов	Проведение тренингов по STEM-методикам.	Учебные программы	80% педагогов освоили новые технологии.

№ п/п	Перечень действий	Содержание и методы деятельности	Необходимые условия	Прогнозируемые результаты
3.	Старт пилотных занятий	Апробация модулей в 2–3 группах. Фиксация результатов наблюдений.	Утверждённое расписание, инструменты диагностики.	Выявлены успешные практики и зоны роста.
4.	Вовлечение родителей	Родительские собрания, мастер-классы «STEM дома».	Анкетирование, обратная связь.	70% семей участвуют в проекте.

Этап 3: Аналитико-внедренческий (Дата начала: 01.06.2025 — Дата окончания: 31.08.2027)

№ п/п	Перечень действий	Содержание и методы деятельности	Необходимые условия	Прогнозируемые результаты
1.	Оценка эффективности	Анализ диагностических данных, опросы педагогов и родителей.	Методики оценки, статистические инструменты.	Отчёт с рекомендациями по корректировке.
2.	Корректировка программы	Доработка модулей на основе обратной связи.	Экспертный совет, обсуждение в рабочей группе.	Оптимизированная версия программы.
3.	Подготовка методических материалов	Создание пособий для педагогов, видеокурсов для родителей.	Редакторская и техническая поддержка.	Готовый пакет документов для тиражирования.
4.	Презентация результатов	Проведение итоговой конференции с участием партнёров.	Площадка, PR- сопровождение.	Проект рекомендован к масштабированию.

9. Кадровое обеспечение реализации проекта

Π/Π	ФИО	Место работы,	Опыт работы специалиста в	Функции специалиста
	специалиста	должность,	международных, федеральных	в рамках реализации
		ученая степень	и региональных проектах в	проекта
			сфере образования и науки за	
			последние 3 года	
1	Булгакова Н.А	МБДОУ № 8	Участие в федеральном проекте	Руководство
		«Алёнушка» г.	«Цифровая образовательная	проектом,
		Тихорецка,	среда» (2023), разработчик	координация работы
		старший	методик STEM для	группы, мониторинг
		воспитатель	дошкольников	результатов

2	Андреева А.В.	МБДОУ № 8 «Алёнушка» г. Тихорецка, учитель - дефектолог	Внедрение STEM технологии с детьми, проведение мастер-классов	Обучение педагогов, разработка STEM-модулей по техническому творчеству
3	Боброва М.В.	МБДОУ № 8 «Алёнушка» г. Тихорецка, педагог - психолог	Внедрение STEM технологии с детьми, проведение мастер- классов	Обучение педагогов, разработка STEM-модулей по техническому творчеству
4	Никитина И.П	МБДОУ № 8 «Алёнушка» г. Тихорецка, воспитатель	Внедрение STEM технологии с детьми, проведение мастер- классов	Внедрение цифровых инструментов, техническая поддержка
5	Токарева М.А.	МБДОУ № 8 «Алёнушка» г. Тихорецка, воспитатель	Внедрение STEM технологии с детьми, проведение мастер- классов	Диагностика детей, адаптация программ для детей с OB3

10. Нормативное правовое обеспечение при реализации проекта

п/	Наименование норма- тивного	Краткое обоснование применения нормативного	
П	правового акта	правового акта в рамках реализации проекта	
		организации-соискателя	
1	Федеральный закон "Об образовании в Российской Федерации" от 29.12.2012 № 273-Ф3	Определяет правовые основы образовательной деятельности, включая дошкольное образование и инновационные проекты	
2	ФГОС дошкольного образования (Приказ Минобрнауки РФ от 17.10.2013 № 1155)	Регламентирует требования к структуре и содержанию образовательных программ ДОУ	
3	Профессиональный стандарт "Педагог" (Приказ Минтруда РФ от 18.10.2013 № 544н)	Определяет компетенции педагогов при реализации STEM-подхода	
4	СанПиН 2.4.1.3049-13 "Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы дошкольных образовательных организаций"	Регламентирует требования к организации образовательной среды и технике безопасности	
5	Стратегия развития воспитания в РФ на период до 2025 года (Распоряжение Правительства РФ от 29.05.2015 № 996-р)	Обосновывает развитие научно-технического творчества как приоритетного направления	
6	Концепция развития дополнительного образования	Подтверждает значимость STEM-образования в системе общего развития ребенка	

	детей (Распоряжение Правительства РФ от 04.09.2014 № 1726-р)	
7	Региональная программа "Развитие образования" (на примере конкретного субъекта РФ)	Определяет приоритеты и механизмы поддержки инновационных проектов в регионе
8	Устав образовательной организации	Закрепляет право учреждения на реализацию инновационных образовательных программ

11. Возможные риски при реализации проекта и предложения организации-соискателя по способам их преодоления.

1) Категории рисков и система управления

Проект предусматривает четыре ключевые категории рисков, для каждой из которых разработаны конкретные меры минимизации:

Тип риска	Вероятность	Влияние	Стратегия преодоления	
Организационные	Средняя	Высокое	Четкое распределение зон ответственности	
Финансовые	Высокая	Критическое	Многоканальное финансирование	
Кадровые	Средняя	Высокое	Система мотивации и обучения	
Технические	Низкая	Среднее	Регулярный аудит оборудования	

2) Подробный анализ рисков и меры их минимизации

2.1. Организационные риски

- 1. Сопротивление изменениям со стороны педагогов:
 - o *Меры*:
 - Поэтапное внедрение инноваций
 - Проведение мотивационных тренингов
 - Система наставничества

2.2. Финансовые риски

- 1. Недофинансирование проекта:
 - o *Меры*:
 - Диверсификация источников (бюджет, гранты, спонсоры)
 - Поэтапное приобретение оборудования

- Программа софинансирования с родителями
- 2. Неэффективное использование средств:
 - o *Меры*:
 - Внешний финансовый аудит
 - Прозрачная система отчетности
 - Принцип "бережливого производства"

2.3. Кадровые риски

- 1. Недостаточная квалификация педагогов:
 - o *Меры*:
 - Обязательные курсы повышения квалификации
 - Сертификация STEM-педагогов
 - Бонусная система за инновации
- 2. Текучесть кадров:
 - o *Меры*:
 - Программа профессионального роста
 - Социальный пакет
 - Гибкий график работы

2.4. Технические риски

- 1. Поломка оборудования:
 - o *Меры*:
 - Гарантийное обслуживание
 - Обучение педагогов основам ремонта
 - Резервный фонд техники
- 2. Быстрое устаревание технологий:
 - o *Меры*:
 - Модульная система обновлений
 - Партнерство с производителями
 - Программа ежегодной модернизации

3.)Дополнительные превентивные меры

3.1. Система мониторинга рисков:

- "Карта рисков" с индикаторами
- Экспертные оценки

3.2. План действий в кризисных ситуациях:

- 1. Сценарий "Дефицит финансирования":
 - о Поиск альтернативных источников
 - о Пересмотр приоритетов закупок

- 2. Сценарий "Потеря ключевого специалиста":
 - о Система дублирования функций
 - о Банк внешних экспертов

4) Индикаторы раннего предупреждения

Риск	Индикатор	Пороговое значение
Финансовый	Остаток средств	< 20% от плана
Кадровый	Количество больничных	> 15% коллектива
Технический	Простои оборудования	> 10% времени

5) Ресурсное обеспечение управления рисками

1. Финансовое:

- о Резервный фонд (15% бюджета)
- о Страхование оборудования

2. Информационное:

- о Система электронного документооборота
- о База знаний по управлению рисками

3. Экспертное:

- о Консультант по риск-менеджменту
- о Юридическое сопровождение

6) Оценка эффективности мер

Критерии успеха:

- Снижение количества реализовавшихся рисков на 30% ежегодно
- Уменьшение финансовых потерь до 5% от бюджета
- Повышение индекса удовлетворенности участников

Методы оценки:

- Ежеквартальные опросы
- Анализ отклонений от плана
- Экспертные заключения

12. Средства контроля и обеспечения достоверности результатов (предполагаемые критерии результативности проекта и методики их отслеживания).

1. Критерии результативности

Группа критериев	Конкретные показатели	Методика оценки
		 Наблюдение по картам развития Диагностические игровые задания Анализ детских проектов
Профессиональное развитие педагогов	 Количество обученных педагогов Уровень владения STEM- методиками Количество разработанных авторских программ 	АнкетированиеАттестационные заданияЭкспертная оценка занятий
Развитие образовательной среды	 Оснащенность STEM- оборудованием Функциональность образовательных зон Частота использования ресурсов 	Чек-листы оснащенияФотофиксация средыЖурналы учета активности
Социальные эффекты	Удовлетворенность родителейУчастие в мероприятияхКоличество партнеров	Опросы родителейСтатистика посещаемостиБаза социальных партнеров

2. Методики отслеживания

- 1. Диагностический инструментарий:
 - о Карты наблюдения за детьми (ежемесячно)
 - о Критериальные шкалы оценки проектных работ
 - о Тестовые игровые задания (входная/промежуточная/итоговая диагностика)
- 2. Мониторинговые процедуры:
 - о Видеоанализ занятий (2 раза в год)
 - о Экспертные оценки независимых специалистов (ежеквартально)
 - о Электронное портфолио достижений детей
- 3. Социологические методы:
 - о Анкетирование родителей (до/после реализации этапов)
 - о Фокус-группы с педагогами
 - о Интервью с партнерами

4. Статистическая обработка:

- о Сравнительный анализ динамики показателей
- о Расчет коэффициентов эффективности
- о Построение диаграмм роста

3. Обеспечение достоверности

1. Валидность измерений:

- о Использование апробированных диагностических методик
- о Перекрестная проверка разными методами (триангуляция)
- о Калибровка оценочных шкал

2. Объективность данных:

- о Привлечение независимых экспертов
- о Слепой метод проверки результатов
- о Автоматизированная обработка количественных данных

3. Репрезентативность:

- о Достаточная выборка участников
- о Контрольные группы для сравнения
- о Длительный период наблюдений

4. Прозрачность:

- о Публичные отчеты о результатах
- о Открытые данные (без персональной информации)
- о Возможность верификации

4. Периодичность контроля

Вид контроля	Частота	Ответственные
Текущий мониторинг	Еженедельно	Воспитатели
Промежуточная диагностика	Ежеквартально	Методисты
Итоговая оценка	По завершении этапов	Экспертный совет
Внешний аудит	1 раз в год	Независимые эксперты

13. Организации-соисполнители проекта

Сетевое взаимодействие для реализации проекта представлено 17 организациями и учреждениями:

- 11 дошкольных образовательных организаций муниципального образования Тихорецкий

район:

МБДОУ № 3 «Ласточка» г. Тихорецка

МБДОУ № 4 «Росинка» г. Тихорецка

МБДОУ № 5 «Аленький цветочек» г. Тихорецка

МБДОУ № 9 «Золотой петушок» г. Тихорецка

МБДОУ № 10 «Сказка» г. Тихорецка

МБДОУ № 12 «Ладушка» г. Тихорецка

МБДОУ № 14 «Колобок» г. Тихорецка

МБДОУ № 17 «Журавушка» г. Тихорецка

МБДОУ № 18 «Радуга» г. Тихорецка

МБДОУ № 16 «Ласточка» ст. Новорождественской

МБДОУ № 38 «Ромашка» ст. Алексеевскаой

2 дошкольных образовательных организации Краснодарского края:

МБДОУ № 1 станицы Ленинградской,

МАДОУ комбинированного вида «Детский сад № 8 Динской район»

-1 учреждение дополнительного образования детей:

МБУ ДО ЦВР «Гармония» г.Тихорецка;

Для более успешной реализации инновационного проекта планируется приглашение к взаимодействию ЧДОУ детский сад № 93 ОАО «РЖД» .

14. Перечень научных и (или) учебно-методических разработок по теме проекта.

Разработанные программы и методики

В МБДОУ № 8 «Алёнушка» реализуются следующие авторские и адаптированные программы:

- 1. «Юные инженеры» (программа по LEGO-конструированию для детей 4–7 лет).
 - о Включает тематические модули («Город будущего», «Транспорт», «Космос»).
 - Содержит диагностические карты для оценки развития пространственного мышления.
- 2. «Маленький исследователь» (программа по экспериментированию с живой и неживой природой).
 - о Разработаны конспекты занятий (опыты с водой, воздухом, магнитами).
 - о Используется дидактический комплект «Окружающий мир в опытах».
- 3. Методические рекомендации для педагогов «STEM-образование в ДОУ: от теории к практике».
 - о Описаны этапы внедрения STEM в образовательный процесс.

Публикации и методические материалы

Название работы	Выходные данные	Авторы
Статья «Развитие творческого мышления у дошкольников через LEGO-конструирование»	Сборник «Инновации в дошкольном образовании», 2023	Андреева А.В. Токарева М.А
Методическое пособие «Опыты и эксперименты для дошкольников»	Издательство «Детство- Пресс», 2022	Никитина И.П
Конспект занятия «Построй свою ферму» (LEGO-проект)	Сайт «Воспитатель.ру», 2023	Токарева М.А.
Буклет для родителей «STEM- образование: что это и зачем?»	Сайт МБДОУ № 8 «Алёнушка» г. Тихорецка, 2023	Рабочая группа педагогов

15. Обоснование возможности реализации проекта в соответствии с законодательством Российской Федерации об образовании или предложения по его (ее) совершенствованию.

Проект «Развитие предпосылок научно-технического творчества детей дошкольного возраста в условиях реализации программы STEM-образования» полностью соответствует действующему законодательству Российской Федерации в сфере образования и опирается на следующие нормативно-правовые акты:

- 1. Соответствие Федеральному закону "Об образовании в РФ" (№ 273-ФЗ)
 - Статья 11 проект реализует право на доступность и вариативность образования через внедрение STEM-методик.
 - Статья 20 инновационная деятельность в образовании (включение STEM соответствует принципам обновления содержания образования).
 - Статья 64 ориентирован на развитие индивидуальных способностей дошкольников, что соответствует целям дошкольного образования.

Вывод: Проект не противоречит базовым принципам закона и способствует выполнению его ключевых положений.

- 2. Соответствие ФГОС дошкольного образования (Приказ № 1155)
 - П. 2.6 ФГОС ДО STEM-подход реализует требования к развитию познавательноисследовательской деятельности детей.
 - П. 3.3.4 использование интерактивного оборудования соответствует принципам организации развивающей среды.
 - П. 4.6 проект способствует формированию предпосылок учебной деятельности (логика, экспериментирование, работа в команде).

Вывод: Проект усиливает выполнение требований ФГОС ДО через инновационные методы.

- 3. Соответствие инициативам государственной политики
 - Стратегия научно-технологического развития РФ (Указ Президента № 642) ранняя подготовка кадров для технологического прорыва.
 - Национальный проект "Образование" развитие цифровых компетенций с дошкольного возраста.
 - Концепция развития дополнительного образования детей STEM-направление соответствует приоритетам развития технического творчества.

Вывод: Проект поддерживает стратегические цели России в образовании и технологиях.

- 4. Локальное регулирование
 - Устав ДОУ проект соответствует миссии учреждения по внедрению инноваций.
 - Лицензия на образовательную деятельность STEM-модули являются частью основной/дополнительной программы.

Вывод: Реализация проекта возможна без изменения лицензионных требований.

- 16. Предложения по распространению и внедрению результатов проекта и по внесению изменений в законодательство Российской Федерации об образовании, Краснодарского края.
- 1. Механизмы распространения результатов

На федеральном уровне:

- Включение STEM-модулей в примерные программы ДОУ через Министерство просвещения РФ.
- Создание федеральной сети STEM-площадок на базе инновационных ДОУ (по аналогии с «Кванториумами»).

На региональном уровне (Краснодарский край):

- Краевая целевая программа «STEM-старт»:
 - о Финансирование оснащения ДОУ оборудованием (гранты до 1 млн руб. на учреждение).
 - о Проведение ежегодного фестиваля «Технодети Кубани».

- Методические центры при ИРО Краснодарского края:
 - о Курсы для педагогов с выдачей удостоверений.
 - о База готовых STEM-кейсов для разных возрастных групп.

На муниципальном уровне:

- Создание ресурсных центров в каждом районе края (на базе опорных ДОУ).
- Проведение сетевых проектов (например, «Инженерные каникулы» с участием школ и технопарков).

2. Внесение изменений в законодательство

Предложения для федерального уровня:

- 1. Дополнение ФГОС ДО (Приказ Минпросвещения № 1155):
 - о Ввести критерии оценки STEM-компетенций (наблюдение, игровые задания).
 - Разрешить использование цифровых инструментов (робототехника, планшеты) в ДОУ при соблюдении СанПиН.
- 2. Изменение 44-ФЗ «О контрактной системе»:
 - о Упростить закупки STEM-оборудования для ДОУ (включить в перечень «социально значимых товаров»).

Для Краснодарского края:

- 1. Принятие краевого закона «О поддержке STEM-образования в ДОУ»:
 - о Ввести статус «STEM-сад» с дополнительным финансированием.
 - о Утвердить региональный стандарт оснащения STEM-зон.
- 2. Корректировка программ повышения квалификации педагогов:
 - Обязательный модуль «Основы STEM-образования для дошкольников» (36 часов).

3. Партнерства для масштабирования

Партнер	Форма взаимодействия		
Минпросвещения РФ	Пилотное внедрение проекта в 10 регионах РФ (2025–2026 гг.).		
Кванториумы Краснодарского края	Совместные занятия для дошкольников, передача оборудования.		
Вузы (КубГУ, КубГТУ)	Научное сопровождение, стажировки педагогов.		
Бизнес (ІТ-компании, «Ростех»)	Спонсорская поддержка, разработка детских образовательных приложений.		

4. Показатели эффективности внедрения

- К 2026 году:
 - о 30% ДОУ Краснодарского края внедрили STEM-модули.
 - о 1000 педагогов прошли переподготовку.
 - о 5 методических пособий включены в федеральный реестр.

5. Рекомендации по продвижению

- 1. Пиар-кампания:
 - о Социальные ролики «Как растут юные инженеры».
 - о Публикация кейсов в журнале «Дошкольное образование».

2. Экспертные площадки:

о Всероссийская конференция «STEM-дошколка» на базе Краснодарского края.

17. Обоснование устойчивости результатов проекта после окончания его реализации, включая механизмы его (ее) ресурсного обеспечения.

1. Механизмы обеспечения устойчивости

Аспект устойчивости	Конкретные механизмы	Ресурсное обеспечение	
Нормативно- правовое	- Закрепление STEM-модулей в ООП ДОУ - Присвоение статуса «STEM-сад» на региональном уровне	- Локальные акты учреждения - Поддержка Управления образования Краснодарского края	
Финансовое	- Включение STEM- оборудования в муниципальный заказ - Краудфандинг через родительские комитеты	- Бюджетные средства ДОУ - Гранты (например, «Навигаторы детства»)	
Кадровое	- Непрерывное обучение педагогов на базе ИРО - Наставничество опытных STEM-педагогов	- Программы повышения квалификации - Внутренний методический центр в ДОУ	
Материально-	- Создание фонда обмена	- Партнерство с технопарками	

Аспект устойчивости	Конкретные механизмы	Ресурсное обеспечение
техническое	оборудованием между ДОУ - Ремонтный бюджет для поддержки техники	- Спонсорская помощь предприятий
Методическое	Пополнение открытой базыSTEM-кейсовИздание методичек для тиражирования опыта	- Сайт проекта с бесплатными материалами - Гранты на публикации

2. Система ресурсного обеспечения

А. Финансы:

- Бюджетные источники:
 - о Включение STEM-направления в муниципальное задание ДОУ (до 15% от общего финансирования).
 - о Участие в краевой программе «Инновации в дошкольном образовании» (субсидии до 500 тыс. руб. в год).
- Внебюджетные источники:
 - Платные кружки для детей (робототехника, экспериментирование) до 30% самоокупаемости.
 - о Гранты от Фонда президентских грантов, «Сколково».

Б. Инфраструктура:

- Мини-технопарки на базе ДОУ:
 - о Использование модульного оборудования (LEGO Education, Matatalab).
 - о Аренда ресурсов у школ и «Кванториумов» в рамках сетевого взаимодействия.

В. Кадры:

- «STEM-команды» в составе:
 - о 1 ведущий педагог (доплата 25% за инновационную деятельность).
 - о ІТ-наставник из числа родителей-волонтеров.
- Аттестация педагогов с учетом STEM-компетенций.
- 3. Показатели долгосрочной эффективности

Критерий	2025	2026	2027
% ДОУ, внедривших программу	15% (пилот)	35%	50%+
Количество обученных педагогов	20	30	50
Средний срок использования оборудования	2 года	3 года	4 года

4. Управление рисками

Риск	Стратегия минимизации			
Сокращение финансирования	- Создание резервного фонда (10% от бюджета) - Развитие платных услуг			
Текучесть кадров	- Программа мотивации педагогов (гранты, публикации) - «Школа наставников»			
Устаревание оборудования	- Партнерство с органиациями для обновления техники - Фонд совместного использования			

Заключение

Проект сохранит устойчивость за счет:

- 1. Институционализации интеграции в образовательную программу ДОУ.
- 2. Многоуровневой ресурсной базы сочетания бюджетных и внебюджетных источников.
- 3. Сетевой модели взаимодействия с технопарками, вузами и бизнесом.

Рекомендация: Закрепить механизмы устойчивости в трехстороннем соглашении между ДОУ, Управлением образования и социальными партнерами.

18. Планируемая апробация и (или) внедрение результатов проекта, полученных после его (ее) реализации

1. Этапы апробации

Этап	Сроки	Мероприятия	Ожидаемые результаты
Пилотный	2025– 2026 гг.	- Апробация в 5 ДОУ Краснодарского края - Корректировка методик по	- Готовая адаптированная программа - Рекомендации по доработке

Этап	Сроки	Мероприятия	Ожидаемые результаты
		итогам обратной связи	оборудования
Расширенн ый	2026– 2027 гг.	- Внедрение в 30 ДОУ края - Создание междошкольных STEM-кластеров	- Методические кейсы для разных типов ДОУ - Модель сетевого взаимодействия
Системный	2027– 2030 гг.	- Тираж на 50% ДОУ региона - Выход на федеральный уровень (отбор в ФИП)	- Стандарт STEM-образования для ДОУ - Включение в федеральные реестры практик

2. Механизмы внедрения

А. Для ДОУ:

- «STEM-пакет» готовый комплект документов:
 - о Образовательная программа с модулями.
 - о Чек-листы оснащения (базовый/расширенный варианты).
 - о Шаблоны диагностических карт.
- Онлайн-платформа с видеоуроками и методическими материалами.

Б. Для педагогов:

- «STEM-интенсив» 3-месячная программа:
 - о Дистанционные курсы.
 - о Практикумы на базе кванториумов.
 - о Супервизии от экспертов.
- Гранты на лучшие авторские разработки (конкурс «STEM-педагог Кубани»).

В. Для управленцев:

- Дорожная карта внедрения с расчетом бюджета.
- Мониторинговый дашборд для отслеживания показателей.

3. Партнеры для масштабирования

Уровень	Партнеры	Форма поддержки
Федеральный	Минпросвещения РФ, ФИРО	Экспертиза программы, включение в реестр инновационных практик

Уровень	Партнеры	Форма поддержки
Региональный	Институт развития образования Краснодарского края	Обучение педагогов, проведение конференций
Муниципальный	Управления образования районов	Организация стажировочных площадок, закупка оборудования
Коммерческий	IT-компании, производители оборудования	Спонсорская помощь, разработка детских STEM-конструкторов

4. Критерии успешности внедрения

- К 2026 году:
 - о 100% пилотных ДОУ сохраняют STEM-направление после окончания проекта.
 - о 70% педагогов применяют методики без внешней поддержки.
- К 2030 году:
 - о STEМ-модули внедрены в 50% ДОУ края.
 - о Снижение стоимости оборудования на 20% за счет краевых закупок.

5. Управление рисками при внедрении

Риск	Решение
Недостаток финансирования	Создание фонда софинансирования (бюджет + спонсоры)
Сопротивление педагогов	Система грантов и доплат за инновационную деятельность
Низкий интерес родителей	Проведение открытых «STEM-фестивалей» с участием детей

Итоговые предложения

- 1. Закрепить статус «STEM-сад» на региональном уровне с дополнительным финансированием.
- 2. Создать межведомственную рабочую группу для координации внедрения.
- 3. Разработать систему грантов для ДОУ, активно тиражирующих практику.

19. Финансовое обеспечение реализации проекта

Бюджет проекта (на 3 года)

Статья расходов	2025 год (руб.)	2026 год (руб.)	2027 год (руб.)	Итого (руб.)
1. Оборудование и материалы	100 000	100 000	100 000	300 000
- Конструкторы (LEGO, Matatalab)	50 000	50 000	50 000	150 000
- Цифровые лаборатории	50 000	50 000	50 000	150 000
2. Обучение педагогов	10 000	10 000	10 000	30 000
- Курсы повышения квалификации	10 000	10 000	10 000	30 000
ИТОГО	110 000	110 000	110 000	330 000

2. Источники финансирования

Источник	Сумма (руб.)	Условия привлечения	
Бюджетные средства	150 000	- Субсидия Минобразования Краснодарского края (грант «Инновации в ДОУ») - Муниципальный заказ	
Внебюджетные средства	150 000	- Спонсорская поддержка (компании «Ростех», IT-партнеры) - Краудфандинг среди родителей	
Собственные средства ДОУ	30 000	- Доходы от платных кружков - Экономия за счет сетевого взаимодействия	

3. Экономическая эффективность

- Снижение затрат после 2025 года на 35% за счет:
 - о Многоразового использования оборудования.

- о Обмена ресурсами между ДОУ-партнерами.
- Окупаемость к 2027 году:
 - 50% ДОУ края экономят до 300 тыс. руб./год на закупках за счет тиражирования практики.
 - 4. Контроль расходов
- Ежеквартальные отчеты перед грантодателями.
- Публичный финансовый дашборд с динамикой освоения средств.
- Аудит от независимых экспертов (1 раз в год).

Описание продуктов инновационной деятельности.

Наш инновационный проект создает комплекс взаимосвязанных продуктов, формирующих полноценную экосистему STEM-образования для дошкольных учреждений. Эти продукты разработаны с учетом:

- Возрастных особенностей детей 3-7 лет
- Требований ФГОС ДО
- Практических потребностей педагогов
- Современных образовательных трендов

Основные продукты проекта

2.4. Оборудование "ЅТЕМ-ЛАБОРАТОРИЯ"

Базовый комплект:

- 1. Наборы для экспериментирования:
 - о "Юный физик" (25 экспериментов)
 - о "Маленький химик" (15 безопасных опытов)
- 2. Конструкторы 4 уровней сложности

3.2. Комплект для родителей "STEM-CEMЬЯ"

Состав:

- 1. Набор домашних экспериментов
- 2. Серия познавательных мультфильмов
- 3. Игровые карточки для семейных занятий
- 4. Методическое руководство

3.3. Мобильное приложение "STEM-ИГРА"

Функции:

- 50 интерактивных заданий
- Система достижений
- Родительский кабинет

4. Уникальные характеристики продуктов

1. Комплексность - все компоненты взаимосвязаны

- 2. Адаптивность можно использовать в разных условиях
- 3. Масштабируемость поэтапное внедрение возможно
- 4. Научная обоснованность разработаны при участии экспертов
- 5. Практическая проверенность апробированы в пилотных ДОУ

5. Этапы разработки продуктов

- 1. Исследовательский этап (анализ потребностей)
- 2. Проектирование (создание прототипов)
- 3. Апробация (тестирование в реальных условиях)
- 4. Корректировка (учет обратной связи)
- 5. Тиражирование (массовое внедрение)

6. Ожидаемые эффекты от внедрения

Для образовательного процесса:

- Повышение мотивации детей
- Рост качества образовательных результатов
- Оптимизация работы педагогов

Для системы ДОУ:

- Создание инновационной образовательной среды
- Повышение конкурентоспособности учреждения
- Возможность сетевого взаимодействия

Для региона:

- Формирование нового качества дошкольного образования
- Создание реестра лучших практик
- Развитие кадрового потенциала

7. Перспективы развития продуктовой линейки

- 1. Расширение тематических линеек
- 2. Разработка специализированных модулей:
 - Для детей с OB3
 - о Для сельских детских садов
 - о Для частных ДОУ

Представленная продуктовая линейка:

- Полностью покрывает потребности в STEM-образовании ДОУ
- Соответствует современным образовательным трендам
- Имеет значительный потенциал развития
- Обеспечивает устойчивые образовательные результаты

Ожидаемые результаты

1. Образовательные результаты

1.1. Для воспитанников:

- Формирование ключевых STEM-компетенций у 85% детей:
 - о Базовые навыки алгоритмического мышления
 - о Способность к простейшему проектированию
 - о Навыки экспериментальной работы
- Повышение показателей:
 - о Познавательной активности (+40%)
 - о Креативного мышления (+35%)
 - о Командного взаимодействия (+30%)

1.2. Динамика развития (по возрастным группам):

Возраст	Когнитивные показатели	Технические навыки	Социальные компетенции
3-4 года	Различение форм/цветов	Простые конструкции	Совместная игра
4-5 лет	Причинно- следственные связи	Механические модели	Распределение ролей
5-7 лет	Решение логических задач	Программируемые конструкции	Защита проектов

2. Профессиональные результаты

2.1. Для педагогов:

- 100% участников освоят современные STEM-методики
- Создание банка из 120+ авторских разработок
- Повышение квалификационной категории у 40% педагогов

3. Материально-технические результаты

- Полностью укомплектованная STEM-лаборатория:
 - о 5 модулей оборудования
 - о 12 специализированных зон
 - о Автоматизированное рабочее место педагога
- Цифровая инфраструктура:
 - о Образовательный портал
 - о Система дистанционного обучения
 - о База данных достижений

4. Социальные эффекты

4.1. Для семей воспитанников:

- 70% родителей будут вовлечены в STEM-активности
- Создание 50+ семейных проектов ежегодно
- Повышение педагогической грамотности (на 25%)

4.2. Для территории:

- Формирование кадрового резерва для технических специальностей
- Повышение престижа дошкольного образования

5. Научно-методические продукты

1. Методический комплекс:

- о 5 учебных пособий
- о 30 видеоуроков
- о 15 диагностических карт

2. Цифровые ресурсы:

- о Мобильное приложение
- о Электронная библиотека
- о База данных кейсов

Заключение: Реализация проекта обеспечит качественный скачок в дошкольном образовании, создав систему:

- Непрерывного технического творчества
- Профессионального развития педагогов
- Эффективного социального партнерства