Государственное казенное учреждение специальная средняя общеобразовательная школа № 2 города Краснодара Краснодарского края Краснодарский край, г. Краснодар, ул. Калинина, д. 58

УТВЕРЖДЕНА

решением педагогического совета ГКУ ССОШ № 2 города Краснодара Краснодарского края от 30.08. 2022 года протокол № 1 Председатель ПС

/И.С.Калинин/

Рабочая программа

по ФИЗИКЕ

на 2022-2024 учебные годы

Уровень образования (класс) — основное среднее образование, (10-12 классы)

Количество часов: всего 105 часов

Уровень обучения – базовый

Учитель - Сидоров Николай Сергеевич

Программа разработана в соответствии с Федеральным государственным образовательным стандартом среднего общего образования, на основе: Примерной Рабочей программы по учебному предмету «Физика» для курса 10-11 классов

СОДЕРЖАНИЕ

Пояснительная записка.
Общая характеристика учебного предмета «Физика».
Цели изучения учебного предмета «Физика».
Место учебного предмета «Физика» в учебном плане.
Планируемые результаты освоения учебного предмета «Физика» на уровне среднего общего образования (базовый уровень).
Личностные результаты.
Метапредметные результаты.
Предметные результаты.
10 класс.
11 класс.
Содержание учебного предмета «Физика» (базовый уровень).
10 класс.
11 класс.
Тематическое планирование

Материально-техническое обеспечение

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа по физике на уровне среднего общего образования (базовый уровень изучения предмета) составлена на основе положений и требований к результатам освоения основной образовательной программы, представленных в Федеральном государственном образовательном стандарте среднего общего образования (ФГОС СОО), а также с учётом Примерной программы воспитания и Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы, Примерной рабочей программы.

Содержание Программы направлено на формирование естественнонаучной картины мира учащихся 10—12 классов при обучении их физике на базовом уровне на основе системно - деятельностного подхода. Программа соответствует требованиям ФГОС СОО к планируемым личностным, предметным и мета - предметным результатам обучения, а также учитывает необходимость реализации межпредметных связей физики с естественнонаучными учебными предметами. В ней определяются основные цели изучения физики на уровне среднего общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне).

Программа включает:

- планируемые результаты освоения курса физики на базовом уровне, в том числе предметные результаты по годам обучения;
 - содержание учебного предмета «Физика» по годам обучения;
- примерное тематическое планирование с указанием количества часов на изучение каждой темы и примерной характеристикой учебной деятельности учащихся, реализуемой при изучении этих тем.

При разработке рабочей программы в тематическом планировании учтены возможности использования электронных (цифровых) образовательных ресурсов, являющихся учебно-методическими материалами (мультимедийные программы, электронные учебники задачники, электронные библиотеки, виртуальные лаборатории, игровые программы, образовательных цифровых ресурсов), реализующими коллекции дидактические возможности ИКТ, содержание которых соответствует законодательству об образовании.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики —

системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, физической географией и астрономией. Использование и активное применение физических знаний определяет характер и развитие разнообразных технологий в сфере энергетики, транспорта, освоения космоса, получения новых материалов с заданными свойствами и др. Изучение физики вносит основной вклад в формирование естественно-научной картины мира учащихся, в формирование умений применять научный метод познания при выполнении ими учебных исследований. В основу курса физики средней школы положен ряд идей, которые можно рассматривать как принципы его построения.

Идея целостности. В соответствии с ней курс является логически завершённым, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики.

Идея генерализации. В соответствии с ней материал курса физики объединён вокруг физических теорий. Ведущим в курсе является формирование представлений о структурных уровнях материи, веществе и поле.

Идея гуманитаризации. Её реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, а также с мировоззренческими, нравственными и экологическими проблемами.

Идея прикладной направленности. Курс физики предполагает знакомство с широким кругом технических и технологических приложений изученных теорий и законов. Идея экологизации реализуется посредством введения элементов содержания, посвящённых экологическим проблемам современности, которые связаны с развитием техники и технологий, а также обсуждения проблем рационального природопользования и экологической безопасности. Стержневыми элементами курса физики средней школы являются физические теории (формирование представлений о структуре построения физической теории, роли фундаментальных законов и принципов в современных представлениях о природе, границах применимости теорий, для описания естественно-научных явлений и процессов).

Системно- деятельностный подход в курсе физики реализуется прежде всего за счёт организации экспериментальной деятельности обучающихся. Для базового уровня курса физики — это использование системы

фронтальных кратковременных экспериментов и лабораторных работ, которые в программе объединены в общий список ученических практических работ. Выделение в указанном перечне лабораторных работ, проводимых для контроля и оценки, осуществляется участниками образовательного процесса исходя из особенностей тематического планирования и оснащения кабинета физики. При этом обеспечивается овладение обучающимися умениями проводить косвенные измерения, исследования зависимостей физических величин и постановку опытов по проверке предложенных гипотез.

Большое внимание уделяется решению расчётных и качественных задач. При этом для расчётных задач приоритетом являются задачи с явно заданной физической моделью, позволяющие применять изученные законы и закономерности как из одного раздела курса, так и интегрируя знания из разных разделов. Для качественных задач приоритетом являются задания на объяснение протекания физических явлений и процессов в окружающей жизни, требующие выбора физической модели для ситуации практикоориентированного характера.

В соответствии с требованиями ФГОС СОО к материальнотехническому обеспечению учебного процесса базовый уровень курса физики в средней школе должен изучаться в условиях предметного кабинета физики или в условиях интегрированного кабинета предметов естественно-научного цикла. В кабинете физики должно быть необходимое лабораторное оборудование для выполнения указанных в программе ученических практических работ и демонстрационное оборудование.

Демонстрационное оборудование формируется в соответствии с принципом минимальной достаточности и обеспечивает постановку перечисленных в программе ключевых демонстраций для исследования изучаемых явлений и процессов, эмпирических и фундаментальных законов, их технических применений.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»

Основными целями изучения физики в общем образовании являются:

- формирование интереса и стремления обучающихся к научному природы, интеллектуальных изучению развитие ИХ творческих способностей развитие представлений o научном методе познания И формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование умений объяснять явления с использованием физических знаний и научных доказательств;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

- приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;
- формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;
- освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;
- понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;
- овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;
- создание условий для развития умений проектно-исследовательской, творческой деятельности.

МЕСТО УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» В УЧЕБНОМ ПЛАНЕ

В соответствии с ФГОС СОО физика является обязательным предметом на уровне среднего общего образования. Данная программа, согласно учебного плана ГКУ ССОШ № 2 города Краснодара, предусматривает изучение физики на базовом уровне в объёме 105 часов за три года обучения по 1 часу в неделю в 10 - 12 классах.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ (БАЗОВЫЙ УРОВЕНЬ)

Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечивать достижение следующих личностных, метапредметных и предметных образовательных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Гражданское воспитание:

- сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;
- принятие традиционных общечеловеческих гуманистических и демократических ценностей;
- готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в школе и детско-

юношеских организациях;

- умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;
 - готовность к гуманитарной и волонтёрской деятельности.

Патриотическое воспитание:

- сформированность российской гражданской идентичности, патриотизма;
- ценностное отношение к государственным символам; достижениям российских учёных в области физики и технике.

Духовно-нравственное воспитание:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;
 - осознание личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

— эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке.

Трудовое воспитание:

- интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни.

Экологическое воспитание:

- сформированность экологической культуры, осознание глобального характера экологических проблем;
- планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;
- расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике.

Ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития физической науки;
- осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

В процессе достижения личностных результатов освоения программы среднего общего образования по физике у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

- *самосознания*, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;
 - саморегулирования, включающего самоконтроль, умение

принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

- *внутренней мотивации*, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;
- *социальных навыков*, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Универсальные познавательные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- определять цели деятельности, задавать параметры и критерии их достижения;
- выявлять закономерности и противоречия в рассматриваемых физических явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;
- вносить коррективы в деятельность, оценивать соответствие результатов
 - результатов целям, оценивать риски последствий деятельности;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

- владеть научной терминологией, ключевыми понятиями и методами физической науки;
- владеть навыками учебно-исследовательской и проектной деятельности в области физики; способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;
- владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
 - анализировать полученные в ходе решения задачи результаты,

критически оценивать их достоверность, прогнозировать изменение в новых условиях;

- ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;
 - давать оценку новым ситуациям, оценивать приобретённый опыт;
- уметь переносить знания по физике в практическую область жизнедеятельности;
 - уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
 - оценивать достоверность информации;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Универсальные коммуникативные действия

Общение:

- осуществлять общение на уроках физики и во внеурочной деятельности;
- распознавать предпосылки конфликтных ситуаций и смягчать конфликты;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств.

Совместная деятельность:

- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;
- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Универсальные регулятивные действия

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;
- самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;
 - давать оценку новым ситуациям;
- расширять рамки учебного предмета на основе личных предпочтений;
- делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;
 - оценивать приобретённый опыт;
- способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль:

— давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и

оснований; использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

- уметь оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности.

Принятие себя и других:

- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
 - признавать своё право и право других на ошибки.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В процессе изучения курса физики базового уровня в 10 -12 классах ученик научится:

— демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и

технологий, в практической деятельности людей;

- учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ; модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;
- распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел; диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах; электризация тел, взаимодействие зарядов;
- описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;
 - описывать изученные тепловые свойства тел и тепловые явления,
- используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;
- описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, І, ІІ и ІІІ законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта; молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики; закон

сохранения электрического заряда, закон Кулона; при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

- объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;
- выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы;
- осуществлять прямые и косвенные измерения физических величин; при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;
- исследовать зависимости между физическими величинами с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;
- решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;
- решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;
- использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников; критически анализировать получаемую информацию;
- приводить примеры вклада российских и зарубежных учёныхфизиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;
- использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и

планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» (БАЗОВЫЙ УРОВЕНЬ)

РАЗДЕЛ 1. ФИЗИКА И МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

Физика — наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике.

Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия.

Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Демонстрации

1. Аналоговые и цифровые измерительные приборы, компьютерные датчики.

РАЗДЕЛ 2. МЕХАНИКА

Тема 1. Кинематика

Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей.

Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени.

Свободное падение. Ускорение свободного падения.

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение.

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

Демонстрации

- 1. Модель системы отсчёта, иллюстрация кинематических характеристик движения.
 - 2. Преобразование движений с использованием простых механизмов.
 - 3. Падение тел в воздухе и в разреженном пространстве.
- 4. Наблюдение движения тела, брошенного под углом к горизонту и горизонтально.
 - 5. Измерение ускорения свободного падения.
 - 6. Направление скорости при движении по окружности.

$oldsymbol{y}$ ченический эксперимент, лабораторные работы 1

- 1. Изучение неравномерного движения с целью определения мгновенной скорости.
- 2. Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.
 - 3. Изучение движения шарика в вязкой жидкости.
 - 4. Изучение движения тела, брошенного горизонтально.

Тема 2. Динамика

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта.

Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек.

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость.

Сила упругости. Закон Гука. Вес тела.

Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе.

Поступательное и вращательное движение абсолютно твёрдого тела.

Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела.

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

Демонстрации

- 1. Явление инерции.
- 2. Сравнение масс взаимодействующих тел.
- 3. Второй закон Ньютона.
- 4. Измерение сил.
- ¹ Здесь и далее приводится расширенный перечень лабораторных работ и опытов, из которого учитель делает выбор по своему усмотрению с учётом выбранного УМК и имеющегося оборудования.
 - 5. Сложение сил.
 - 6. Зависимость силы упругости от деформации.
 - 7. Невесомость. Вес тела при ускоренном подъёме и падении.
 - 8. Сравнение сил трения покоя, качения и скольжения.
 - 9. Условия равновесия твёрдого тела. Виды равновесия.

Ученический эксперимент, лабораторные работы

- 1. Изучение движения бруска по наклонной плоскости.
- 2. Исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации.
 - 3. Исследование условий равновесия твёрдого тела, имеющего ось

вращения.

Тема 3. Законы сохранения в механике

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение.

Работа силы. Мощность силы.

Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии.

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли.

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии.

Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

Демонстрации

- 1. Закон сохранения импульса.
- 2. Реактивное движение.
- 3. Переход потенциальной энергии в кинетическую и обратно.

Ученический эксперимент, лабораторные работы

- 1. Изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников.
- 2. Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута.

РАЗДЕЛ 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Тема 1. Основы молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса и размеры молекул. Количество вещества. Постоянная Авогадро.

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия.

Модель идеального газа. Основное уравнение молекулярнокинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева—Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара. *Технические устройства и практическое применение:* термометр, барометр.

Демонстрации

- 1. Опыты, доказывающие дискретное строение вещества, фотографии молекул органических соединений.
 - 2. Опыты по диффузии жидкостей и газов.
 - 3. Модель броуновского движения.
 - 4. Модель опыта Штерна.
- 5. Опыты, доказывающие существование межмолекулярного взаимодействия.
 - 6. Модель, иллюстрирующая природу давления газа на стенки сосуда.
- 7. Опыты, иллюстрирующие уравнение состояния идеального газа, изопроцессы.

Ученический эксперимент, лабораторные работы

- 1. Определение массы воздуха в классной комнате на основе измерений объёма комнаты, давления и температуры воздуха в ней.
- 2. Исследование зависимости между параметрами состояния разреженного газа.

Тема 2. Основы термодинамики

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче.

Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Второй закон термодинамики. Необратимость процессов в природе.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно и его КПД. Экологические проблемы теплоэнергетики.

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

Демонстрации

- 1. Изменение внутренней энергии тела при совершении работы: вылет пробки из бутылки под действием сжатого воздуха, нагревание эфира в латунной трубке путём трения (видеодемонстрация).
- 2. Изменение внутренней энергии (температуры) тела при теплопередаче.
- 3. Опыт по адиабатному расширению воздуха (опыт с воздушным огнивом).
- 4. Модели паровой турбины, двигателя внутреннего сгорания, реактивного двигателя.

Ученический эксперимент, лабораторные работы

1. Измерение удельной теплоёмкости.

Тема 3. Агрегатные состояния вещества.

Фазовые переходы

Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления.

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация.

Уравнение теплового баланса.

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии.

Демонстрации

- 1. Свойства насыщенных паров.
- 2. Кипение при пониженном давлении.
- 3. Способы измерения влажности.
- 4. Наблюдение нагревания и плавления кристаллического вещества.
- 5. Демонстрация кристаллов.

Ученический эксперимент, лабораторные работы

1. Измерение относительной влажности воздуха.

РАЗДЕЛ 4. ЭЛЕКТРОДИНАМИКА

Тема 1. Электростатика

Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда.

Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля.

Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.

Электроёмкость. Конденсатора. Электроёмкость плоского конденсатора. Энергия заряженного конденсатора.

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер.

Демонстрации

- 1. Устройство и принцип действия электрометра.
- 2. Взаимодействие наэлектризованных тел.
- 3. Электрическое поле заряженных тел.
- 4. Проводники в электростатическом поле.

- 5. Электростатическая защита.
- 6. Диэлектрики в электростатическом поле.
- 7. Зависимость электроёмкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемости.
 - 8. Энергия заряженного конденсатора.

Ученический эксперимент, лабораторные работы

1. Измерение электроёмкости конденсатора.

Тема 2. Постоянный электрический ток.

Токи в различных средах

Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток.

Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества. Последовательное, параллельное, смешанное соединение проводников.

Работа электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

ЭДС и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание.

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость.

Электрический ток в вакууме. Свойства электронных пучков.

Полупроводники. Собственная и примесная проводимость полупроводников. Свойства p—n-перехода. Полупроводниковые приборы.

Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма.

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

Демонстрации

- 1 Измерение силы тока и напряжения.
- 2.Зависимость сопротивления цилиндрических проводников от длины, площади поперечного сечения и материала.
 - 3.Смешанное соединение проводников.
- 4.Прямое измерение ЭДС. Короткое замыкание гальванического элемента и оценка внутреннего сопротивления.
 - 5. Зависимость сопротивления металлов от температуры.
 - 6.Проводимость электролитов.
 - 7 Искровой разряд и проводимость воздуха
 - 8.Односторонняя проводимость диода.

Ученический эксперимент, лабораторные работы

1. Изучение смешанного соединения резисторов.

- 2.Измерение ЭДС источника тока и его внутреннего сопротивления.
- 3. Наблюдение электролиза.

МЕЖПРЕДМЕТНЫЕ СВЯЗИ

Изучение курса физики базового уровня в 10 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений; линейная функция, парабола, гипербола, их графики и свойства; тригонометрические функции: синус, косинус, тангенс, котангенс; основное тригонометрическое тождество; векторы и их проекции на оси координат, сложение векторов.

Биология: механическое движение в живой природе, диффузия, осмос, теплообмен живых организмов (виды теплопередачи, тепловое равновесие), электрические явления в живой природе.

Химия: дискретное строение вещества, строение атомов и молекул, моль вещества, молярная масса, тепловые свойства твёрдых тел, жидкостей и газов, электрические свойства металлов, электролитическая диссоциация, гальваника.

География: влажность воздуха, ветры, барометр, термометр.

Технология: преобразование движений с использованием механизмов, учёт трения в технике, подшипники, использование закона сохранения импульса в технике (ракета, водомёт и т. п.), двигатель внутреннего сгорания, паровая турбина, бытовой холодильник, кондиционер, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии, электростатическая защита, заземление электроприборов, струйный электронагревательные приборы, ксерокс, принтер, электроосветительные приборы, гальваника.

РАЗДЕЛ 4. ЭЛЕКТРОДИНАМИКА

Тема 3. Магнитное поле. Электромагнитная индукция

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов.

Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током.

Сила Ампера, её модуль и направление.

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца.

Явление электромагнитной индукции. Поток вектора магнитной

индукции. ЭДС индукции. Закон электромагнитной индукции Фарадея.

Вихревое электрическое поле. ЭДС индукции в проводнике, движущемся поступательно в однородном магнитном поле.

Правило Ленца.

Индуктивность. Явление самоиндукции. ЭДС самоиндукции.

Энергия магнитного поля катушки с током.

Электромагнитное поле.

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

Демонстрации

- 1. Опыт Эрстеда.
- 2. Отклонение электронного пучка магнитным полем.
- 3. Линии индукции магнитного поля.
- 4. Взаимодействие двух проводников с током.
- 5. Сила Ампера.
- 6. Действие силы Лоренца на ионы электролита.
- 7. Явление электромагнитной индукции.
- 8. Правило Ленца.
- 9. Зависимость ЭДС индукции от скорости изменения магнитного потока.
 - 10. Явление самоиндукции.

Ученический эксперимент, лабораторные работы

- 1. Изучение магнитного поля катушки с током.
- 2. Исследование действия постоянного магнита на рамку с током.
- 3. Исследование явления электромагнитной индукции.

РАЗДЕЛ 5. КОЛЕБАНИЯ И ВОЛНЫ

Тема 1. Механические и электромагнитные колебания

Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических колебаний. Превращение энергии при гармонических колебаниях.

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания.

Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения.

Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура

использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

- 1. Исследование параметров колебательной системы (пружинный или математический маятник).
 - 2. Наблюдение затухающих колебаний.
 - 3. Исследование свойств вынужденных колебаний.
 - 4. Наблюдение резонанса.
 - 5. Свободные электромагнитные колебания.
- 6. Осциллограммы (зависимости силы тока и напряжения от времени) для электромагнитных колебаний.
- 7. Резонанс при последовательном соединении резистора, катушки индуктивности и конденсатора.
 - 8. Модель линии электропередачи.

Ученический эксперимент, лабораторные работы

- 1. Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.
- 2. Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора.

Тема 2. Механические и электромагнитные волны

Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн.

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука.

Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов E, B, V в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн.

Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту.

Принципы радиосвязи и телевидения. Радиолокация.

Электромагнитное загрязнение окружающей среды.

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

Демонстрации

- 1. Образование и распространение поперечных и продольных волн.
- 2. Колеблющееся тело как источник звука.
- 3. Наблюдение отражения и преломления механических волн.
- 4. Наблюдение интерференции и дифракции механических волн.
- 5. Звуковой резонанс.
- 6. Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний.

7. Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция.

Тема 3. Оптика

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет.

Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой.

Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников.

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку.

Поляризация света.

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

- 1. Прямолинейное распространение, отражение и преломление света. Оптические приборы.
 - 2. Полное внутреннее отражение. Модель световода.
 - 3. Исследование свойств изображений в линзах.
 - 4. Модели микроскопа, телескопа.
 - 5. Наблюдение интерференции света.
 - 6. Наблюдение дифракции света.
 - 7. Наблюдение дисперсии света.
 - 8.Получение спектра с помощью призмы.
 - 9. Получение спектра с помощью дифракционной решётки.
 - 10. Наблюдение поляризации света.

Ученический эксперимент, лабораторные работы.

- 1. Измерение показателя преломления стекла.
- 2. Исследование свойств изображений в линзах.
- 3. Наблюдение дисперсии света.

РАЗДЕЛ 6. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.

РАЗДЕЛ 7. КВАНТОВАЯ ФИЗИКА

Тема 1. Элементы квантовой оптики

Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А. Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта.

Давление света. Опыты П. Н. Лебедева.

Химическое действие света.

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

Демонстрации

- 1. Фотоэффект на установке с цинковой пластиной.
- 2. Исследование законов внешнего фотоэффекта.
- 3. Светодиод.
- 4. Солнечная батарея.

Тема 2. Строение атома

Модель атома Томсона. Опыты Резерфорда по рассеянию а-частиц. Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода.

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм.

Спонтанное и вынужденное излучение.

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

Демонстрации

- 1. Модель опыта Резерфорда.
- 2. Определение длины волны лазера.
- 3. Наблюдение линейчатых спектров излучения.
- 4. Лазер.

Ученический эксперимент, лабораторные работы

1. Наблюдение линейчатого спектра.

Тема 3. Атомное ядро

Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы.

Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга—Иваненко. Заряд ядра. Массовое число ядра. Изотопы.

Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада.

Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра.

Ядерные реакции. Деление и синтез ядер.

Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики.

Элементарные частицы. Открытие позитрона.

Методы наблюдения и регистрации элементарных частиц.

Фундаментальные взаимодействия. Единство физической картины мира.

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

Демонстрации

1. Счётчик ионизирующих частиц.

Ученический эксперимент, лабораторные работы

1. Исследование треков частиц (по готовым фотографиям).

РАЗДЕЛ 8. ЭЛЕМЕНТЫ АСТРОНОМИИ И АСТРОФИЗИКИ

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии.

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение.

Солнечная система.

Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные характеристики. Диаграмма «спектральный класс — светимость». Звёзды главной последовательности. Зависимость «масса — светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд.

Млечный Путь — наша Галактика. Положение и движение Солнца в Галактике. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

Нерешённые проблемы астрономии.

Ученические наблюдения

- 1. Наблюдения невооружённым глазом с использованием компьютерных приложений для определения положения небесных объектов на конкретную дату: основные созвездия Северного полушария и яркие звёзды.
 - 2. Наблюдения в телескоп Луны, планет, Млечного Пути.

ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека; роль и место физики и астрономии в современной научной картине мира; роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе.

МЕЖПРЕДМЕТНЫЕ СВЯЗИ

Изучение курса физики базового уровня осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений; тригонометрические функции: синус, косинус, тангенс, котангенс; основное тригонометрическое тождество; векторы и их проекции на оси координат, сложение векторов; производные элементарных функций; признаки подобия треугольников, определение площади плоских фигур и объёма тел.

Биология: электрические явления в живой природе, колебательные движения в живой природе, оптические явления в живой природе, действие радиации на живые организмы.

Химия: строение атомов и молекул, кристаллическая структура твёрдых тел, механизмы образования кристаллической решётки, спектральный анализ.

География: магнитные полюса Земли, залежи магнитных руд, фотосъёмка земной поверхности, предсказание землетрясений.

Технология: линии электропередач, генератор переменного тока, электродвигатель, индукционная печь, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь, проекционный аппарат, волоконная оптика, солнечная батарея.

КАЛЕНДАРНО- ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тематический блок, тема	Кол-во часов	Основное содержание	Основные виды деятельности учащихся
		10 класс	
	PA3	<mark>ЦЕЛ 1. ФИЗИКА И МЕТОДЫ НАУЧ</mark>	НОГО ПОЗНАНИЯ (2 ч)
Тема 1.1	2	Физика — наука о природе.	Работа в группе по подготовке коротких со-
Физика и методы		Научные методы познания	общений о роли и месте физики в практической
научного познания		окружающего мира. Роль	деятельности людей.
		эксперимента и теории в процессе	Освоение основных приёмов работы с цифровой
		познания природы. Эксперимент в физике.	лабораторией по физике
		Моделирование физических явлений	
		и процессов. Научные гипотезы.	
		Физические законы и теории.	
		Границы применимости физических	
		законов. Принцип соответствия.	
		Роль и место физики в	
		формировании современной научной	
		картины мира, в практической	
		деятельности людей	
		РАЗДЕЛ 2. МЕХАНИКА	А (14 ч)
Тема 2.1	4	Механическое движение.	Проведение эксперимента: изучение нерав-
Кинематика		Относительность механического	номерного движения с целью определения
		движения. Система отсчёта.	мгновенной скорости; исследование соотношения
		Траектория.	между путями, пройденными телом за
		Перемещение, скорость (средняя	последовательные равные промежутки времени
		скорость, мгновенная скорость) и	при равноускоренном движении с начальной

T 2 2		ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей. Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени. Свободное падение. Ускорение свободного падения. Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение	скоростью, равной нулю; изучение движения шарика в вязкой жидкости. Объяснение основных принципов действия технических устройств, таких как: спидометр, цепные и ремённые передачи движения; и условий их безопасного использования в повседневной жизни. Решение расчётных задач с явно заданной физической моделью с использованием основных формул кинематики. Построение и анализ графиков зависимостей кинематических величин от времени. Распознавание физических явлений в учебных опытах и окружающей жизни: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности. Описание механического движения с использованием физических величин: координата, путь, перемещение, скорость, ускорение. Работа в группах при планировании, проведении и интерпретации результатов опытов и анализе дополнительных источников информации по теме
Тема 2.2 Динамика	6	Принцип относительности Галилея. Первый закон Ньютона.	Проведение эксперимента: исследование зависимости сил упругости, возникающих в
динамика		Инерциальные системы отсчёта.	пружине и резиновом образце, от их деформации;
		Масса тела. Сила. Принцип	изучение движения бруска по наклонной
		суперпозиции сил. Второй закон	плоскости; исследование условий равновесия
		пьютона для материальной точки.	твердого тела, имеющего ось врашения.
		Ньютона для материальной точки. Третий закон Ньютона для	твёрдого тела, имеющего ось вращения. Объяснение особенностей равномерного и

		Закон всемирного тяготения. Сила тяжести. Первая космическая скорость. Сила упругости. Закон Гука. Вес тела. Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе. Поступательное и вращательное движение абсолютно твёрдого тела. Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела	свободного падения тел, движения по окружности на основе законов Ньютона, закона всемирного тяготения. Объяснение основных принципов действия технических устройств, таких как подшипники. Объяснение движения искусственных спутников. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул динамики. Распознавание физических явлений в учебных опытах и окружающей жизни: инерция, взаимодействие тел. Анализ физических процессов и явлений с использованием законов и принципов: закон всемирного тяготения, I, II и III законы Ньютона, принцип суперпозиции сил, принцип равноправности инерциальных систем отсчёта
Тема 2.3 Законы сохранения в механике	4	Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение. Работа силы. Мощность силы. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии. Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи	Проведение эксперимента: изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников; исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул динамики и законов сохранения. Решение качественных задач с опорой на изученные в разделе «Механика» законы, закономерности и физические явления. Описание механического движения с использованием

	поверхности Земли.	физических величин: импульс тела, кинетическая
	Потенциальные и непотенциальные	энергия, потенциальная энергия, механическая
	силы. Связь работы непотенци-	работа, механическая мощность.
	альных. сил с изменением	Анализ физических процессов и явлений с
	механической энергии системы тел.	использованием закона сохранения механической
	Закон сохранения механической	энергии, закона сохранения импульса.
	энергии.	Объяснение основных принципов действия
	Упругие и неупругие столкновения	технических устройств, таких как: водомёт, копёр,
		пружинный пистолет.
		Объяснение движения ракет с опорой на
		изученные физические величины и законы механики.
		Использование при подготовке сообщений о
		применении законов механики современных
		информационных технологий для поиска,
		структурирования, интерпретации и
		представления информации, критический анализ
		получаемой информации
PA3	ДЕЛ 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И	
Тема 3.1 7	Основные положения молекулярно-	
Основы молекуля-	•	Проведение эксперимента: определение массы
рно-кинетической	кинетической теории. Броуновское	воздуха в классной комнате на основе измерений
теории	движение. Диффузия. Характер	объёма комнаты, давления и температуры воздуха
Теории	движения и взаимодействия частиц	в ней; исследование зависимости между
	вещества. Модели строения газов,	параметрами состояния разреженного газа.
	жидкостей и твёрдых тел и	Объяснение основных принципов действий
	объяснение свойств вещества на	технических устройств, таких как: термометр и
	основе этих моделей. Масса	_
		барометр; и условий их безопасного
	молекул. Количество вещества.	использования в повседневной жизни.
	Постоянная Авогадро. Тепловое	Распознавание физических явлений в учебных

		равновесие. Температура и её	опытах и окружающей жизни: диффузия,
		измерение. Шкала температур	броуновское движение.
		Цельсия. Модель идеального газа.	Описание тепловых явлений с использованием
		Основное уравнение молекулярно-	физических величин: давление газа, температура,
		кинетической теории идеального	средняя кинетическая энергия хаотического
		газа. Абсолютная температура как	движения молекул, среднеквадратичная скорость
		мера средней кинетической энергии	молекул.
		теплового движения частиц газа. Га-	Анализ физических процессов и явлений с
		зовые законы. Уравнение	использованием молекулярно-кинетической
		Менделеева— Клапейрона. Закон	теории строения вещества, газовых законов, связи
		Дальтона.	средней кинетической энергии теплового
		Изопроцессы в идеальном газе с	движения молекул с абсолютной температурой.
		постоянным количеством вещества.	Решение расчётных задач с явно заданной
		Графическое представление	физической моделью с использованием основных
		изопроцессов: изотерма, изохора,	положений МКТ, законов и формул молекулярной
		изобара	физики.
			Работа в группах при планировании, проведении и
			интерпретации результатов опытов и анализе
			дополнительных источников информации по теме
Тема 3.2	8	Термодинамическая система.	Проведение ученического эксперимента: из-
Основы		Внутренняя энергия	мерение удельной теплоёмкости вещества.
термодинамики		термодинамической системы и	Объяснение основных принципов действия
		способы её изменения. Количество	технических устройств, таких как: двигатель
		теплоты и работа. Внутренняя	внутреннего сгорания, бытовой холодильник,
		энергия одноатомного идеального	кондиционер; и условий их безопасного
		газа. Виды теплопередачи:	использования в повседневной жизни.
		теплопроводность, конвекция,	Описание изученных свойств тел и тепловых
		излучение. Удельная теплоёмкость	явлений с использованием физических величин:
		вещества. Количество теплоты при	давление газа, температура, количество теплоты,

		теплопередаче.	внутренняя энергия, работа газа.
		Понятие об адиабатном процессе.	Решение расчётных задач с явно заданной
		Первый закон термодинамики.	физической моделью с использованием основных
		Применение первого закона	законов и формул термодинамики. Решение
		термодинамики к изопроцессам.	качественных задач с опорой на изученные в
		Графическая интерпретация работы	разделе «Молекулярная физика и термодинамика»
		Газа.	законы, закономерности и физические явления.
		Второй закон термодинамики.	Работа в группах при анализе дополнительных
		Необратимость процессов в природе.	источников информации по теме
		Тепловые машины. Принципы	источников информации по теме
		действия тепловых машин.	
		Преобразования энергии в тепловых	
		машинах. КПД тепловой машины.	
		Цикл Карно и его КПД. Эколо-	
		гические проблемы теплоэнергетики	
Тема 3.3	4	Парообразование и конденсация.	Проведение эксперимента: измерение отно-
Агрегатные	т	Испарение и кипение. Абсолютная и	сительной влажности воздуха.
-		относительная влажность воздуха.	Объяснение основных принципов действия
состояния		Насыщенный пар. Удельная теплота	технических устройств, таких как: гигрометр и
вещества. Фазовые		парообразования. Зависимость	психрометр, калориметр; и условий их
переходы		температуры кипения от давления.	безопасного использования в повседневной
		Твёрдое тело. Кристаллические и	жизни. Описание принципов получения современ-
			ных материалов, в том числе наноматериалов.
		аморфные тела. Анизотропия	Решение расчётных задач с явно заданной
		свойств кристаллов. Жидкие	
		кристаллы. Современные	физической моделью с использованием уравнения
		материалы. Плавление и	теплового баланса.
		кристаллизация. Удельная теплота	Решение качественных задач с опорой на
		плавления. Сублимация.	изученные законы, закономерности и физические
		Уравнение теплового баланса	явления по теме.
			Распознавание физических явлений в учебных

		1	V 1
			опытах и окружающей жизни: деформация
			твёрдых тел, нагревание и охлаждение тел,
			изменение агрегатных состояний вещества и
			объяснение их на основе законов и формул
			молекулярной физики. Использование
			информационных технологий для поиска,
			структурирования, интерпретации и
			представления информации при подготовке
			сообщений о применении законов молекулярной
			физики и термодинамики в технике и технологиях
11 класс			
		РАЗДЕЛ 4. ЭЛЕКТРОДИНА	МИКА (26 ч)
Тема 4.1	8	Электризация тел. Электрический	Проведение эксперимента: измерение элек-
Электростатика		заряд. Два вида электрических	троёмкости конденсатора.
_		зарядов. Проводники, диэлектрики и	Объяснение основных принципов действия
		полупроводники. Закон сохранения	технических устройств и технологий, таких как:
		электрического заряда.	электроскоп, электрометр, электростатическая
		Взаимодействие зарядов. Закон	защита, заземление электроприборов,
		Кулона. Точечный электрический	конденсатор, копировальный аппарат, струйный
		заряд. Электрическое поле.	принтер; и условий их безопасного применения в
		Напряжённость электрического	практической жизни.
		поля. Принцип суперпозиции	Решение расчётных задач с явно заданной
		электрических полей. Линии	физической моделью с использованием основных
		напряжённости электрического	законов и формул электростатики.
		поля.	Решение качественных задач с опорой на
		Работа сил электростатического	изученные законы, закономерности и физические
		поля. Потенциал. Разность	явления по теме «Электростатика». Распознавание
		потенциалов.	физических явлений в учебных опытах и
		Проводники и диэлектрики в	окружающей жизни: электризация тел,
		электростатическом поле.	взаимодействие зарядов; и объяснение их на
			1 2000 Suprigor, it of Entered in the

		Диэлектрическая проницаемость.	основе законов и формул электростатики.
		Электроёмкость. Конденсатор.	Описание изученных свойств вещества и
		Электроёмкость плоского	электрических явлений с использованием
		конденсатора. Энергия заряженного	физических величин: электрический заряд,
		конденсатора	напряжённость электрического поля, потенциал,
		-	разность потенциалов, электроёмкость.
Тема 4.2	10	Электрический ток. Условия	Проведение эксперимента: изучение смешанного
Постоянный		существования электрического тока.	соединения резисторов; измерение ЭДС
электрический ток.		Источники тока. Сила тока.	источника тока и его внутреннего сопротивления;
Токи в различных		Постоянный ток.	наблюдение электролиза.
средах		Напряжение. Закон Ома для участка	Объяснение основных принципов действия
Средах		цепи.	технических устройств и технологий, таких как:
		Электрическое сопротивление.	амперметр, вольтметр, реостат, источники тока,
		Удельное сопротивление вещества.	электронагревательные приборы,
		Последовательное, параллельное,	электроосветительные приборы, термометр
		смешанное соединение	сопротивления, вакуумный диод, термисторы и
		проводников.	фоторезисторы, полупроводниковый диод,
		Работа электрического тока. Закон	гальваника; и условий их безопасного применения
		Джоуля—Ленца. Мощность	в практической жизни.
		электрического тока.	Решение расчётных задач с явно заданной
		ЭДС и внутреннее сопротивление	физической моделью с использованием основных
		источника тока. Закон Ома для	законов и формул темы «Постоянный
		полной (замкнутой) электрической	электрический ток».
		цепи. Короткое замыкание.	Распознавание физических явлений в учебных
		Электронная проводимость твёрдых	опытах и окружающей жизни: электрическая
		металлов. Зависимость	проводимость, тепловое, световое, химическое,
		сопротивления металлов от	магнитное действия тока. Анализ электрических
		температуры. Сверхпроводимость.	явлений и процессов в цепях постоянного тока с
		Электрический ток в вакууме.	использованием законов: закон Ома,
		Свойства электронных пучков.	закономерности последовательного и

		Полупроводники. Собственная и	параллельного соединения проводников, закон
		примесная проводимость	Джоуля— Ленца.
		полупроводников.	Описание изученных свойств веществ и
		Свойства <i>р</i> —и-перехода.	электрических явлений с использованием
		Полупроводниковые приборы.	физических величин: электрический заряд, сила
		Электрический ток в растворах и	тока, электрическое напряжение, электрическое
		расплавах электролитов.	сопротивление, разность потенциалов, ЭДС,
		Электролитическая диссоциация.	работа тока, мощность тока.
		_	Использование информационных технологий для
		Электролиз.	1 · ·
		Электрический ток в газах. Самостоятельный и несамостоятельный	поиска, структурирования, интерпретации и
			представления информации при подготовке сообщений о применении законов постоянного
		разряд. Молния. Плазма	тока в технике и технологиях
Тема 4.3	O	Постоянные магниты.	
=	8		Проведение эксперимента: изучение магнитного
Магнитное поле.		Взаимодействие постоянных магнитов. Магнитное поле. Вектор	поля катушки с током; исследование действия
Электромагнитная		магнитов. Магнитное поле. Вектор магнитной индукции. Принцип	постоянного магнита на рамку с током;
индукция		суперпозиции магнитных полей.	исследование явления электромагнитной
		Линии магнитной индукции.	индукции. Объяснение основных принципов действия
		Картина линий магнитной индукции	технических устройств, таких как: постоянные
		поля постоянных магнитов.	магниты, электромагниты, электродвигатель,
		Магнитное поле проводника с	ускорители элементарных частиц, индукционная
		током. Картина линий индукции	печь; и условий их безопасного применения в
		магнитного поля длинного прямого	практической жизни.
		проводника и замкнутого	Решение расчётных задач на применение формул
		кольцевого проводника, катушки с	темы «Магнитное поле. Электромагнитная
		током. Опыт Эрстеда. Взаимо-	темы «магнитное поле. Электромагнитная индукция».
		действие проводников с током.	Решение качественных задач с опорой на
		Сила Ампера, её модуль и	изученные законы, закономерности и физические
		1 • • • • • • • • • • • • • • • • • • •	
		направление. Сила Лоренца, её	явления темы «Магнитное поле.

	индукции. Поток вектора магнитной индукции. ЭДС индукции. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. ЭДС индукции в проводнике, движущемся по ступательно в однородном магнитном поле. Правило Ленца. Индуктивность. Явление самоиндукции. ЭДС самоиндукции. ЭНС самоиндукции.	опытах и окружающей жизни: взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд. Анализ электромагнитных явлений с использованием закона электромагнитной индукции. Описание изученных свойств веществ и электромагнитных явлений с использованием физических величин: индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей
	током.	
	1	RO THU (7 u)
7	Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических	Проведение эксперимента: исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза; исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора. Объяснение основных принципов действия технических устройств, таких как: электрический
	7	индукции. ЭДС индукции. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. ЭДС индукции в проводнике, движущемся по ступательно в однородном магнитном поле. Правило Ленца. Индуктивность. Явление самоиндукции. ЭДС самоиндукции. ЭНергия магнитного поля катушки с током. Электромагнитное поле РАЗДЕЛ 5. КОЛЕБАНИЯ И I Колебательная система. Свободные механические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник.

Итоговое	2	при гармонических колебаниях. Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре. Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания. Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения. Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни	электропередач; и условий их безопасного применения в практической жизни. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул, описывающих механические и электромагнитные колебания. Описание изученных механических и электромагнитных колебаний с использованием физических величин: период и частота колебаний, амплитуда и фаза колебаний, заряд и сила тока в процессе гармонических электромагнитных колебаний. Решение качественных задач с опорой на изученные законы, закономерности, описывающие механические и электромагнитные колебания. Работа в группах при планировании, проведении и интерпретации результатов опытов, и анализе дополнительных источников информации по теме
повторение	2		

		12 класс	
		РАЗДЕЛ 5. КОЛЕБАНИЯ И В	ВОЛНЫ (12 ч)
Тема 5.2 Механические и электромагнитные волны	4	Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн. Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука. Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов Е, В, v в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн. Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту. Принципы радиосвязи и телевидения. Радиолокация. Электромагнитное загрязнение окружающей среды	Объяснение основных принципов действия технических устройств и технологий, таких как: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь; и условий их безопасного применения в практической жизни. Решение расчётных и качественных задач с опорой на изученные законы и закономерности, описывающие распространение механических и электромагнитных волн. Использование информационных технологий для поиска, структурирования, интерпретации и представления информации при подготовке сообщений об использовании электромагнитных волн в технике. Участие в дискуссии об электромагнитном загрязнении окружающей среды. Работа в группах при планировании, проведении и интерпретации результатов опытов и анализе дополнительных источников информации по теме
Тема 5.3 Оптика	8	Геометрическая оптика. Прямолинейное распространение	Проведение эксперимента: наблюдение дисперсии света; измерение показателя преломления стекла;
		света в однородной среде. Точечный	исследование свойств изображений в линзах.

источник света. Луч света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет. Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой. Пределы применимости геометрической оптики. Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников. Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на

Объяснение основных принципов действия технических устройств и технологий, таких как: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид; и условий их безопасного применения в практической жизни. Решение расчётных задач с явно заданной физической моделью с использованием основных законов и формул геометрической оптики. Построение и описание изображения, создаваемого плоским зеркалом, тонкой линзой. Распознавание физических явлений в опытах и окружающей жизни: прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света.

Анализ оптических явлений с использованием законов: закон прямолинейного распространения света, законы отражения света, законы преломления света.

Описание оптических явлений с использованием физических величин: фокусное расстояние и оптическая сила линзы

		дифракционную решётку.				
DA	ЗПЕП 6.	Поляризация свет ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИ	U OTHOCUTE ILHOCTU (3 m)			
РАЗДЕЛ 6. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (3 ч) Тема 6.1 3 Границы применимости						
Основы СТО	3	Границы применимости				
Основы СТО		классической механики. Постулаты				
		специальной теории				
		относительности: инвариантность				
		модуля скорости света в вакууме,				
		принцип относительности				
		Эйнштейна. Относительность	Решение качественных задач с опорой на			
		одновременности. Замедление	изученные законы, закономерности и физические			
		времени и сокращение длины.	явления по теме «Основы СТО».			
		Энергия и импульс релятивистской	Использование информационных технологий для			
		частицы.	поиска, структурирования, интерпретации и			
		Связь массы с энергией и импульсом	представления информации при подготовке			
		релятивистской частицы. Энергия	сообщений о границах применимости			
		покоя	классической механики и основах СТО			
		РАЗДЕЛ 7. КВАНТОВАЯ ФИ	ЗИКА (12 ч)			
Тема 7.1	5	Фотоны. Формула Планка связи	Объяснение основных принципов действия			
Элементы кванто-		энергии фотона с его частотой.	технических устройств, таких как: фотоэлемент,			
вой оптики		Энергия и импульс фотона.	фотодатчик, солнечная батарея, светодиод; и			
		Открытие и исследование	условий их безопасного применения в			
		фотоэффекта. Опыты А. Г. Сто-	практической жизни. Решение расчётных задач с			
		летова. Законы фотоэффекта.	явно заданной физической моделью с			
		Уравнение Эйнштейна для	использованием основных законов и формул			
		фотоэффекта. «Красная граница»	квантовой оптики.			
		фотоэффекта.	Решение качественных задач с опорой на			
		Давление света. Опыты	изученные законы, закономерности квантовой			
		П. Н. Лебедева. Химическое	оптики.			

		действие света	Распознавание физических явлений в учебных
			опытах: фотоэлектрический эффект, световое
			давление.
			Описание изученных квантовых явлений и
			процессов с использованием физических величин:
			скорость электромагнитных волн, длина волны и
			частота света, энергия и импульс фотона
Тема 7.2	3	Модель атома Томсона. Опыты	Проведение эксперимента: наблюдение ли-
Строение атома		Резерфорда по рассеянию а-частиц.	нейчатого спектра.
		Планетарная модель атома.	Объяснение основных принципов действия
		Постулаты Бора. Излучение и	технических устройств, таких как: спектроскоп,
		поглощение фотонов при переходе	лазер, квантовый компьютер; и условий их
		атома с одного уровня энергии на	безопасного применения в практической жизни.
		другой. Виды спектров. Спектр	Решение качественных задач с опорой на
		уровней энергии атома водорода.	изученные законы, закономерности и физические
		Волновые свойства частиц. Волны	явления по теме «Строение атома». Распознавание
		де Бройля. Корпускулярно-волновой	физических явлений в учебных опытах:
		дуализм.	возникновение линейчатого спектра.
		Спонтанное и вынужденное	Анализ квантовых процессов и явлений с
		излучение	использованием постулатов Бора
Тема 7.3	4	Эксперименты, доказывающие	Проведение ученического эксперимента:
Атомное ядро		сложность строения ядра. Открытие	исследование треков частиц (по готовым
		радиоактивности. Опыты	фотографиям).
		Резерфорда по определению состава	Объяснение основных принципов действия
		радиоактивного излучения. Свойства	технических устройств, таких как: дозиметр,
		альфа-, бета-, гамма-излучения.	камера Вильсона, ядерный реактор, атомная
		Влияние радиоактивности на живые	бомба; и условий их безопасного применения в
		организмы.	практической жизни. Решение качественных задач
		Открытие протона и нейтрона.	с опорой на изученные законы, закономерности и
		Нуклонная модель ядра	физические явления по теме «Атомное ядро».

Гейзенберга—Иваненко. Заряд ядра. Массовое число ядра. Изотопы. Альфа-распад. Электронный и позитронный бета-распад. Гаммаизлучение. Закон радиоактивного распада. Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра. Ядерные реакции. Деление и синтез ядер. Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики. Элементарные частицы. Открытие позитрона. Методы наблюдения и регистрации элементарных частиц. Фундаментальные взаимодействия. Единство физической картины мира Тема 8.1 6

Распознавание физических явлений в учебных опытах и в окружающей жизни: естественная и искусственная радиоактивность. Описание изученных квантовых явлений и процессов с использованием физических величин: период полураспада, энергия связи атомных ядер. Анализ процессов и явлений с использованием законов и постулатов: закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада. Использование информационных технологий для поиска, структурирования, интерпретации и представления информации при подготовке сообщений о применении законов квантовой физики в технике и технологиях

РАЗДЕЛ 8. ЭЛЕМЕНТЫ АСТРОНОМИИ И АСТРОФИЗИКИ (6 ч)

Элементы астрофизики

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии. Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое лвижение. Солнечная система. Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные

Подготовка сообщений о методах получения научных астрономических знаний, открытиях в современной астрономии. Выполнение заданий, проверяющих владение основополагающими астрономическими понятиями, позволяющими характеризовать процессы, происходящие в звёздах, в звёздных системах, в межгалактической среде; движение небесных тел, эволюцию звёзд и Вселенной.

	характеристики. Диаграмма	Проведение наблюдений невооружённым глазом с
	«спектральный класс —	использованием компьютерных приложений для
	светимость». Звёзды главной	определения положения небесных объектов на
	последовательности. Зависимость	конкретную дату: основные созвездия Северного
	«масса — светимость» для звёзд	полушария и яркие звёзды.
	главной последовательности.	Проведение наблюдений в телескоп Луны, планет,
	Внутреннее строение звёзд.	Млечного Пути
	Современные представления о	
	происхождении и эволюции Солнца	
	и звёзд. Этапы жизни звёзд.	
	Млечный Путь — наша Галактика.	
	Положение и движение Солнца в	
	Галактике. Типы галактик.	
	Радиогалактики и квазары. Чёрные	
	дыры в ядрах галактик.	
	Вселенная. Расширение Вселенной.	
	Закон Хаббла. Разбегание галактик.	
	Теория Большого взрыва.	
	Реликтовое излучение.	
	Масштабная структура Вселенной.	
	Метагалактика.	
	Нерешённые проблемы астрономии	
Итоговое 2		
повторение		
Всего 105		

Материально-техническое обеспечение

- 1. Учебник Г. Я. Мякишев. Физика 10-11, издательство «Просвещение», 2019.
- 2. Интерактивное учебное пособие Физика «Лабораторные работы», ООО «Издательство Экзамен», 2021 г.
- 3. Интерактивные творческие задания «Физика 7-9», ЗАО «Новый диск», 2007 г.

СОГЛАСОВАНО:

Исполняющий обязанности заместителя директора по УР

Котовец Н.Г.

30 августа 2022 года