

обизвленная информация: эпидемиология, клиника,

лечения

Пшеничная Н.Ю., д.м.н., проф. НМИЦ фтизиопульмонологии и инфекционных заболеваний МЗ РФ Международный комитет по таксономии вирусов (англ. International Committee on Taxonomy of Viruses, ICTV – присвоил название новому вирусу SARS-CoV-2;

ВОЗ отказалась использовать это наименование Вирус именуется, согласно ВОЗ, вирус COVID Заболевание получило название COVID

COV-коронавирус, ID – инфекционное заболевание

COVID-2019 11 МАРТА 2020 ВОЗ ОБЪЯВИЛА

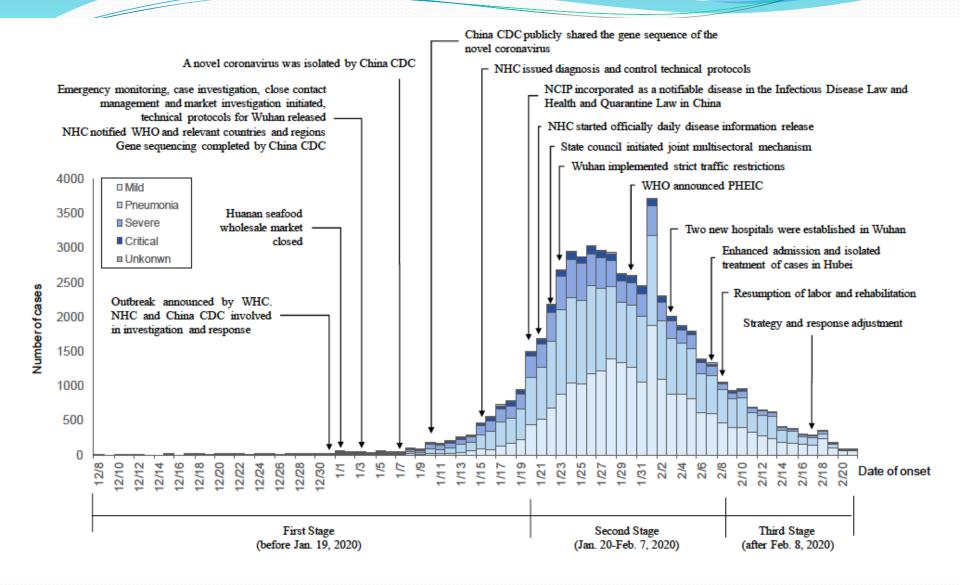
В легкой форме болеют (89%), в серьезном и критическом состоянии (11%)

Country, Other	Total Cases JF	New Cases II	Total Deaths	New Deaths 💵	Total Recovered 11	Active Cases IT	Serious, Critical	Tot Cases/ 1M pop
China	80,796	+18	3,169	+11	62,810	14,817	4,257	56.1
Italy	12,462		827		1,045	10,590	1,028	206.1
Iran	9,000		354		2,959	5,687		107.2
S. Korea	7,869	+114	66	+6	333	7,470	54	153.5
France	2,281		48		12	2,221	105	34.9
Spain	2,277		55		183	2,039	126	48.7
Germany	1,966		3		25	1,938	9	23.5
USA	1,336	+35	38		15	1,283	10	4.0
Diamond Princess	696		7		325	364	32	
Switzerland	652		4		4	644		75.3
Japan	639		16	+1	118	505	26	5.1
Norway	629				1	628		116.0
Denmark	514				1	513		88.7
Netherlands	503		5		2	496	1	29.4
Sweden	500		1		1	498	2	49.5
UK	456		8		18	430		6.7
Belgium	314		3		1	310	2	27.1
Austria	302	+56			4	298	1	33.5
Qatar	262					262		90.9
Bahrain	195				35	160	1	114.6
Singapore	178				96	82	12	30.4
Australia	149	+21	3		24	122	1	5.8
Malaysia	149				26	123	2	4.6
Hong Kong	130		3		77	50	6	17.3
Canada	118	+8	1		9	108	1	3.1
Israel	100	+3			4	96	2	11.6
Greece	99		1	+1		98	2	9.5
Czechia	94					94		8.8
Iceland	85					85		
UAE	74				17	57	2	7.5

Происхождение вируса

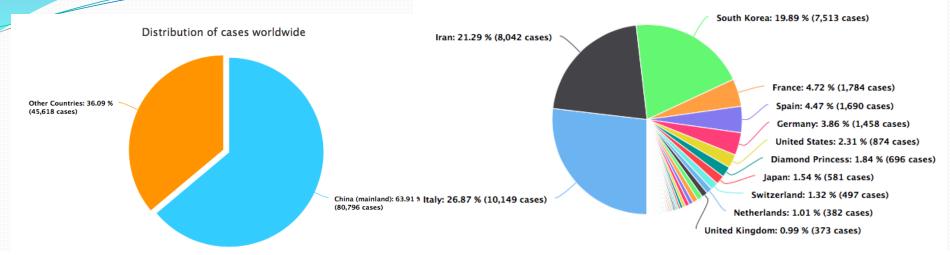
- Китайские исследователи обнаружили тесную связь между SARS-CoV-2 и SARS-подобными вирусами летучих мышей (88%), выделенному от больных с тяжелым острым респираторным синдромом в 2018 году в Чжоушане, SARS-CoV (79%) и и меньшую с вирусом MERS (50%).
- Генетические последовательности вирусов, выделенных от панголинов на 99% сходны с таковыми у нового коронавируса.

Более того, несмотря на то, что даже четко определен участок рынка морепродуктов в г. Ухань, откуда вероятно пошло распространение инфекции, до сих пор нет ясности в том, является ли именно он источником инфекции. Из первых 41 пациентов только 27 (66%) имели эпидемиологическую связь с рынков морепродуктов. Самые первые случаи, которые начали регистрироваться еще с 1 декабря отношения к рынку не имели

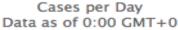


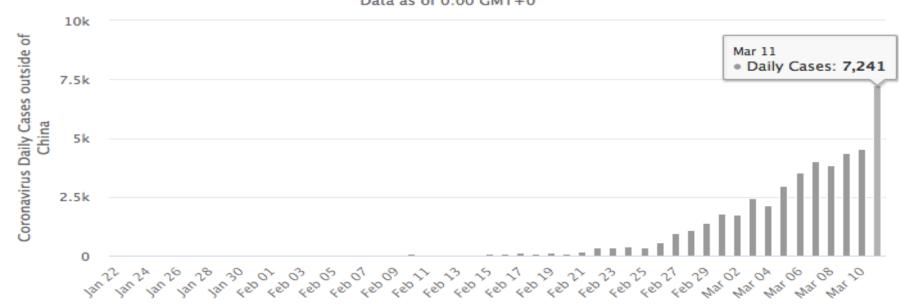
Более того, несмотря на то, что даже четко определен участок рынка морепродуктов в г. Ухань, откуда вероятно пошло распространение инфекции, до сих пор нет ясности в том, является ли именно он источником инфекции. Из первых 41 пациентов только 27 (66%) имели эпидемиологическую связь с рынков морепродуктов. Самые первые случаи, которые начали регистрироваться еще с 1 декабря отношения к рынку не имели

Lu R, Zhao X, LiJ, Niu P, Yang B, Wu H, Bi Y. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020; 395:565-574. doi: https://doi.org/10.1016/S0140-6736(20)30251-8

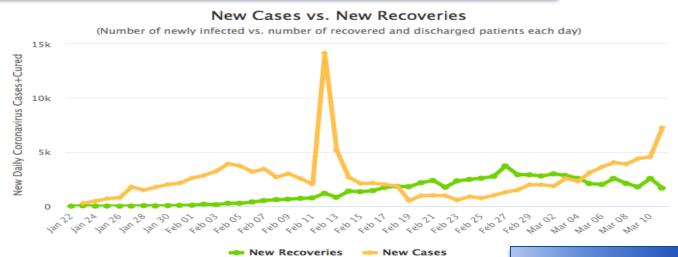

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 1221. doi: https://doi.org/10.1038/s41586-020-2012-7

9. Wong MC, Cregeen SJJ, Ajami N. J, Petrosino J. F. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. 2020 bioRxiv 13 Feb 2020 doi: https://doi.org/10.1101/2020.02.07.939207 (Дата доступа 20.02.2020)

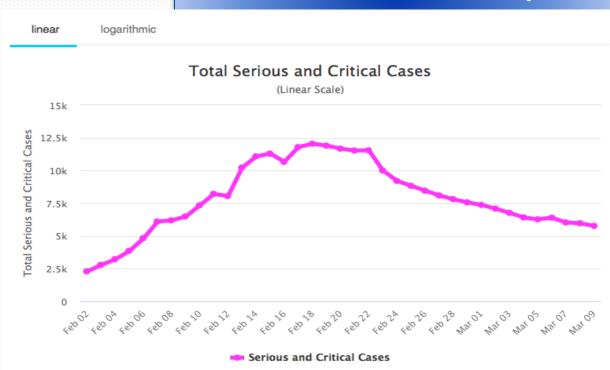



Распространение случаев в мире

Распределение случаев за пределами Китая



Daily New Cases outside of China



Соотношение выздоровевших и умерших

Тяжелые и очень тяжелые случаи

Пути передачи

Основные

- Воздушно-капельный (выделяется до 2-х недель из ВДП)
- Контактный

Возможен также фекально-оральный механизм реализации инфекции

- у 30% больных вирус обнаружен в фекалиях, может выделяться до 5 недель

В ряде случаев обнаружен в моче и слюне

Аэрозольный путь в натуральных условиях не доказан, но и не исключается

Вертикальный путь не доказан

Zhang W, Du RH, Li B, Zheng X S, Yang XL, Hu B, Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections 2020; 9(1), 386-389. doi: https://doi.org/10.1080/22221751.2020.1729071

23. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications 2020; 17 Feb 2020. doi: https://doi.org/10.1016/j.bbrc.2020.02.071;

24. Guan W, Ni Z, Yu H. et al. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv preprint posted online on Feb. 9, 2020; doi: https://doi.org/10.1101/2020.02.06.20020974

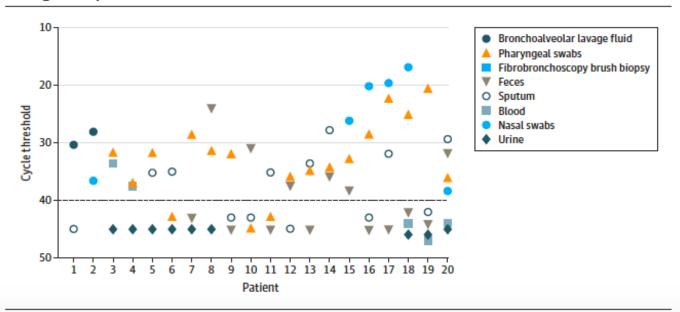
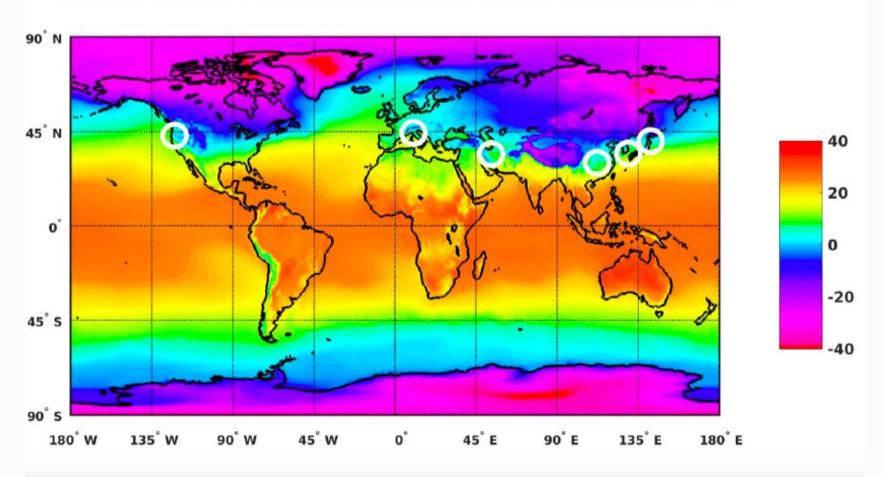

Выделение вируса из разных биологических жидкостей

Table. Detection Results of Clinical Specimens by Real-Time Reverse Transcriptase-Polymerase Chain Reaction

Specimens and values	Bronchoalveolar lavage fluid (n = 15)	Fibrobronchoscope brush biopsy (n = 13)	Sputum (n = 104)	Nasal swabs (n = 8)	Pharyngeal swabs (n = 398)	Feces (n = 153)	Blood (n = 307)	Urine (n = 72)
Positive test result, No. (%)	14 (93)	6 (46)	75 (72)	5 (63)	126 (32)	44 (29)	3 (1)	0
Cycle threshold, mean (SD)	31.1 (3.0)	33.8 (3.9)	31.1 (5.2)	24.3 (8.6)	32.1 (4.2)	31.4 (5.1)	34.6 (0.7)	ND
Range	26.4-36.2	26.9-36.8	18.4-38.8	16.9-38.4	20.8-38.6	22.3-38.4	34.1-35.4	
95% CI	28.9-33.2	29.8-37.9	29.3-33.0	13.7-35.0	31.2-33.1	29.4-33.5	0.0-36.4	

Abbreviation: ND, no data.

Figure. Severe Acute Respiratory Syndrome Coronavirus 2 Distribution and Shedding Patterns Among 20 Hospitalized Patients

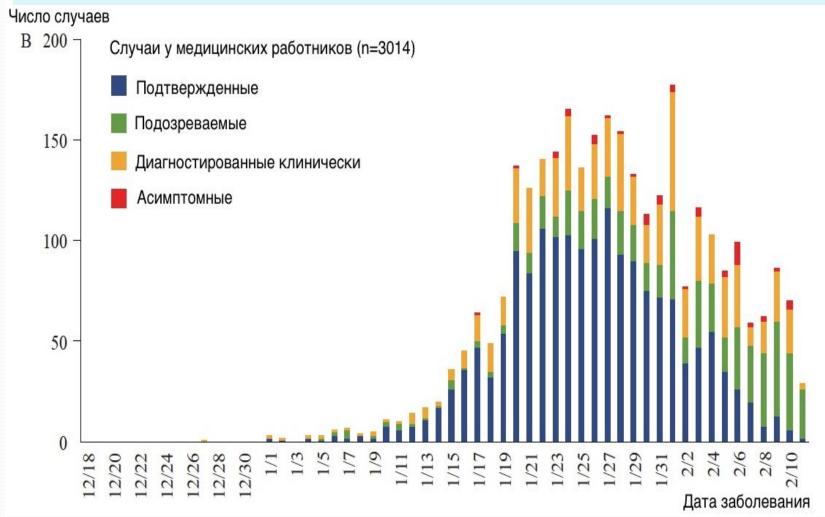


The specimen with a cycle threshold value above the dashed line is interpreted as positive for SARS-CoV-2 RNA; those under, negative.

Detection of SARS-CoV-2 in Different Types of Clinical Specimens; https://jamanetwork.com/ by a Uppsala University User on 03/11/2020

Прогнозирование распространения COVID-19 летом и осенью (1)

Average 2-meter Temperature (Celsius) for Jan-Feb 2020 (ERA-5)

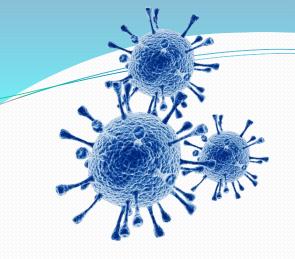

Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. *Available at SSRN 3550308*.

Прогнозирование распространения COVID-19 летом и осенью (2)

Было показано, что коронавирусы человека (HCoV-229E, HCoV-HKU1, HCoV-NL63 и HCOV-OC43), которые обычно вызывают ОРВИ, проявляют сильную зимнюю сезонность между декабрем и апрелем и не обнаруживаются в летние месяцы в умеренных регионах. Хотя на данном этапе трудно сделать долгосрочный прогноз, есть предпосылки к тому, что циркуляция COVID-19 значительно уменьшится в затронутых странах (выше 30o N") в ближайшие месяцы. Возможно, он будет преобладать на низких уровнях в тропических регионах, подобных гриппу, и вновы начнет расти поздней осенью и зимой в умеренных регионах в предстоящем году. Другая возможность заключается в том, что он не сможет продержаться летом в тропиках и Южном полушарии и исчезнет.

Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. *Available at SSRN 3550308*.

ИНФЕКЦИИ, СВЯЗАННЫЕ С ОКАЗАНИЕМ МЕДИЦИНСКОЙ ПОМОЩИ


The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases COVID-19—China CCDC Weekly 2020;2:1-10 http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51 (Дата доступа 22.02.2020)

Патогенез COVID

- Размножение в эпителии верхних и нижних дыхательных путей (преимущественно альвеолярных клеток типа II, имеющих рецепторы АСЕ2)
- Диффузное повреждение альвеоцитов, имеющих рецепторы к 2019-nCoV, что ведет к :
 - вирусной пневмонии,
 - ОРДС

Способность размножаться в энтероцитах кишечника

- в эпителии мочевыводящих путей?
- в эпителии слюнных желез?

Благодаря S-белкам новый коронавирус способен связываться с рецептором ангиотензинпревращающего фермента 2 (ACE2) у человека.

Исследование 1000 образцов тканей легких у представителей разных рас не обнаружило различий в частоте экспрессии АПФ2 рецепторов, но установила ее повышение с возрастом

15. Chen, Y, Shan K, Qian W. Asians and Other Races Express Similar Levels of and Share the Same Genetic Polymorphisms of the SARS-CoV-2 Cell-Entry Receptor. Preprints 2020, 2020020258 (doi: 10.20944/preprints202002.0258.v1

Снижение и функциональное истощение Т- клеток у больных коронавирусной болезнью 2019 (COVID-19)

Общее количество Т-клеток, CD4 + и CD8 + Т-клеток было значительно снижено у пациентов с COVID-19, особенно среди пожилых пациентов (≥60 лет) и у пациентов, нуждающихся в лечении в отделении интенсивной терапии (ICU). Общее количество Т-клеток, CD8 + Т-клеток или CD4 + Т-клеток менее 800 / мкл, 300 / мкл и 400 / мкл соответственно отрицательно коррелирует с выживаемостью пациента. Статистический анализ продемонстрировал, что имеется обратная корреляция между количеством Т-клеток и концентрацией IL-6 в сыворотке, IL-10 и TNF-α, причем у пациентов в период выздоровления наблюдается снижение концентраций IL-6, IL-10 и TNF-α на фоне восстановленное количества Т-клеток.

Во Diao и др Журнал medRxiv February 20, 2020 https://www.medrxiv.org/content/10.1101/2020.02.18.20024364v1

Некоторые ключевые моменты в отношении эволюции вируса

Article Contents

ABSTRACT

Author notes

Supplementary data

ACCEPTED MANUSCRIPT

Alerts

On the origin and continuing evolution of SARS-CoV-2 3

Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian ... Show more

Author Notes

All National Science ▼

National Science Review, nwaa036, https://doi.org/10.1093/nsr/nwaa036

Новые данные, полученные учёными из Школы наук о жизни Пекинского университета и Института Пастера в Шанхае, показывают, что коронавирус SARS-CoV-2 мутировал и разделился на два типа (теперь медики выделают L- и S-тип).

Они также обнаружили, что более агрессивный тип нового коронавируса (L-тип) составлял примерно 70% проанализированных штаммов, в то время как 30% представляли собой менее агрессивный S-тип.

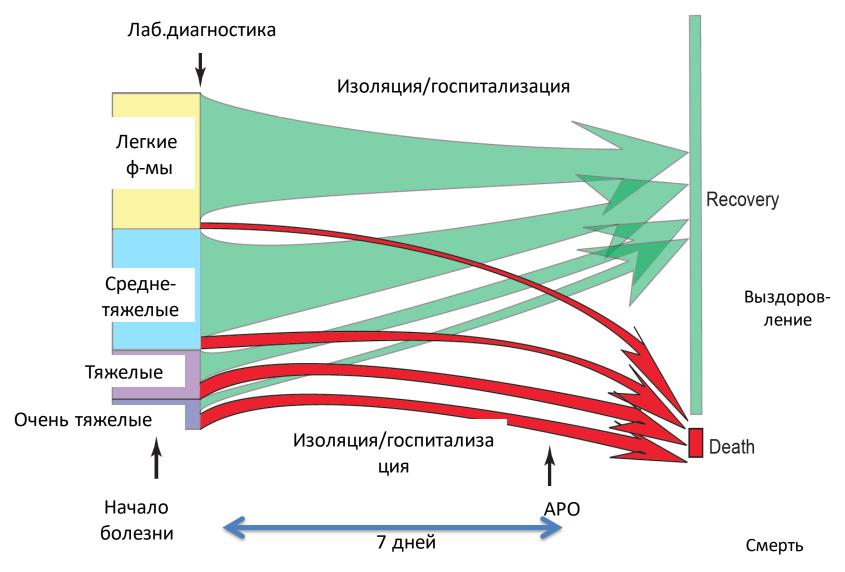
L-тип патогена распространялся на ранних стадиях вспышки в Ухане. Но частота появления коронавируса этого типа с начала января начала снижаться.

S-тип является "потомком" L-типа. В статье, вышедшей в журнале National Science Review,

исследователи предполагают, что его появление, вероятно, было вызвано мутациями и естественным отбором помимо рекомбинации.

Учёные Поднебесной, впрочем, предупреждают, что данные, которые были проанализированы в ходе данного исследования, всё ещё очень ограничены.

Некоторые ключевые моменты в отношении эпидемиологии COVID-19


- Выделение вируса от больного максимально в первые 1-3 дня от начала болезни и может начинаться за 48 часов до начала заболевания
- Вирус может быть изолирован из фекалий но пока доказательств реализации фекально-орального механизма передачи нет
- выделение вируса обычно продолжается до 12 дней в легких/умеренных случаях и в течение > 2 недель в тяжелых случаях.
- У выздоровевших пациентов ПЦР может быть положительной после исчезновения симптомов.
- Существенной циркуляции вируса в популяции не наблюдается (0.14% из 320 ооо протестированных лиц)
- подавляющее большинство случаев заражения возникает при контакте с клинически манифестированными случаями (у 1-5% из 38 ооо близких контактов развивается COVID-19)
- передача в большинстве случаев осуществляется в семейных кластерах (75-85% кластеров);
- Доказательств передачи инфекции от детей взрослым не найдено.

Клинические формы течения COVID

Клинические формы:

- легкая с поражением только верхних дыхательных путей,
- **средне-тяжелая** (пневмония без дыхательной недостаточности),
- тяжелая (пневмония с развитием дыхательной недостаточности, ЧДД ≥30 в минуту, сатурации ≤93%, РаО2/FiO2<300, или появлением инфильтратов в легких в виде матового стекла», занимающих более 50% легких в течение 24–48 часов);
- очень тяжелая/критическая форма (пневмония, ОРДС, сепсис, септический шок, полиорганная недостаточность).

Особенности течения COVID-19

приблизительно 10-15% мягких/средне-тяжелых случаев переходят в тяжелые, около 15-20% тяжелых становятся очень-тяжелыми

Тяжесть заболевания

Бессимптомная 1-3%, Легкая и средне-тяжелая 81-82% Тяжелая и очень тяжелая 16-18%

Летальность в зависимости от возраста

Возраст	Летальность
≥80	14,8-21,0%
70-79	8,0%
60-69	3,6%
50-59	1,3%
40-49	0,4%
10-19/20-29/30-39	0,2%
0-9	0%

The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases COVID-19—China CCDC Weekly 2020;2:1-10 http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51 (Дата доступа 22.02.2020)

Другие факторы, влияющие на летальность от COVID-19

Сопутствующие заболевания	Летальность
Без установленной соматической патологии	0,9%
Заболевания ССС	13,2%
Сахарный диабет	9,2%
Артериальная гипертензия	8,4%
Онкологические заболевания	7,6%
Хронические заболевания легких	8,0%

Пол	Летальность
Мужчины	2,8%
Женщины	1,7%

Беременные болеют COVID-19 легче, чем гриппом

Среди почти 147 беременных, по данным CDC Китая, на 7 февраля 2020 90% перенесли заболевание в легкой форме, 8% - в тяжелой и 1% - очень тяжелой форме.

Поражение сердечно-сосудистой системы и COVID-19

возможные механизмы повреждения миокарда:

- сопутствующая патология ССС (гипертензия, аритмия), метаболический синдром (гиперлипидемия и др. взаимодействие вируса через АСЕ-2 рецепторы с клетками миокарда;
- повреждение миокарда вследствие цитокинового шторма;
- кардиотоксичность назначаемых противовирусных препаратов;
- гипоксемия и респираторная дисфункция;
- сочетание нескольких факторов

НЕОБХОДИМО НАЗНАЧЕНИЕ КАРДИОПРОТЕКТОРОВ В ГРУППАХ РИСКА, ПРИ СРЕДНЕ-ТЯЖЕЛОМ И ТЯЖЕЛОМ ТЕЧЕНИИ COVID-19

Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie, X. (2020). COVID-19 and the cardiovascular system. Nature Reviews Cardiology, 1-2.

Особенности клиники COVID-2019 (1)

Средний возраст - 47 лет, м : ж - 58:42 сопутств. патология - 23,2%, летальность - 1,4 %

Клинические проявления

Повышение температуры на момент обращения за мед. помощью – 87,9%;

- 37,6 38,0 22,0%
- 38,1 39,0 18,2%
- > 39,0 3,5[%]

Кашель – **67,7**%, с мокротой – 33,4%, боль в гр. клетке – 2%

Боли в горле – 13,9%, ринорея – 4,8 %

Головная боль – 13,6%, мышечная боль – 14,8%, слабость – 38,1%

Одышка - 18,6%

Диарея – 3,7%, тошнота и рвота – 5,0%

Особенности клиники COVID-2019 (2)

Осложнения				
Септический шок 1%				
ОРДС – 3,4%				
Пневмония – 76% Время от начала заболевания до развития пневмонии – 4 дня (2-7 дней)				
Гипоксия (необходимость в оксигенотерапии) – 38%				
Необходимость в неинвазивной вентиляции легких –	5,1%			
инвазивной вентиляции легких – 2	,2%			
ЭКМО - о,	5%			

Особенности клиники COVID-2019 (3)

Инструментальные данные					
Изменения на рентгенограмме -	14,7%				
- изменения по типу «матового стекла» -	5,0%				
- односторонние инфильтраты -	7,0%				
- двухсторонние инфильтраты –	9,1%				
интерстициальные изменения –	1,1%				
Изменения на компьютерной томограмме -	7 6%				
- изменения по типу «матового стекла» -	50 %				
- односторонние инфильтраты -	37,2 %				
- двухсторонние инфильтраты –	46,0 %				
интерстициальные изменения –	13,6%				
Лабораторные данные					
Лейкопения –	33,7%				
Лимфопения –	82,1%				
Тромбоцитопения –	36,2%				
СРБ выше 10 мг/л –	60,7%				
ЛДГ выше 250 U/л –	41,5%				

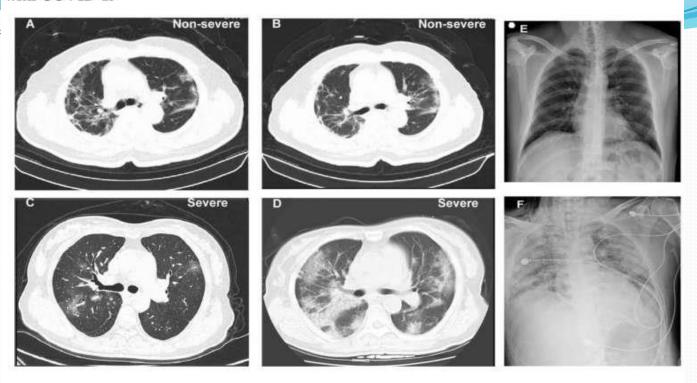

Вирусная пневмония, ОРДС

Figure: First case of 2019 novel coronavirus in Canada Chest x-ray shows bilateral, peribronchovascular, ill-defined opacities in all lung zones.

https://emcrit.org/ibcc/COVID19/

Figure S1. Representative chest radiographic manifestations in a non-severe and a severe case with COVID-19

Transverse chest computed tomography imaging from a 50-year-old male with non-severe COVID-19, at 8 days after hospital admission (Panel A) and at 15 days after hospital admission (following the receipt of supportive treatment) (Panel B) showing multilobular and subpleural ground-glass opacity and consolidation. The transverse chest computed tomography imaging from a 60-year-old female with severe COVID-19 at 1 day after hospital admission (Panel C) showing multilobular ground-glass opacity and consolidation and at 4 days after hospital admission (following the receipt of supportive treatment) showing rapid radiologic progression, evidenced by multilobar subsegmental consolidation (Panel D).

Chest X-ray imaging from a 39-year-old male with non-severe COVID-19 after hospital admission demonstrating minor infiltrates in the right lower lobe (Panel E) and from 49-year-old male with severe COVID-19 after hospital admission demonstrating diffuse patchy shadowing and consolidation (Panel F).

W Guan Z et al, NEJM 2020

Маркеры воспаления

В сыворотке крови больных отмечается повышенное содержание провоспалительных цитокинов: ФНО-альфа, IL1B, IFNy, IP10, and MCP1, что коррелирует с тяжестью заболевания. Дальнейшее изучение цитокинового профиля пациентов с COVID-19 инфекцией может внести ясность в патогенез новой коронавирусной инфекции.

Диагностика (1)

На сегодняшний день основным методом диагностики инфекции является выявление РНК вируса методом ПЦР в режиме реального времени. Разработаны ИФА и серологические тесты

Разрабатываются:

- экспресс-тесты на базе иммунохроматографического анализа (ИХА).
- тесты на основе амплификации нуклеиновых кислот.

Диагностика (2)

- Помимо тестирования образцов из верхних и нижних дыхательных путей в перспективе планируется тестирование слюны, кала, мочи что является многообещающим неинвазивным методом диагностики, мониторинга и инфекционного контроля у пациентов с инфекцией COVID-19.
- Разрабатываются тест системы для серологической диагностики, что позволит определить напряженность иммунитета в популяции, дифференцировать бессимптомные случаи заболевания от возможного транзиторного носительства вируса.

Временные рекомендации по профилактике, диагностике и лечению коронавирусной инфекции

COVID-2019 от 04.03.2020

2019-nCoV без поражения НДП

Интерферон-альфа по 3000 МЕ – 5-6 раз в день интраназально 5 дней.

2019-nCoV с поражением НДП (пневмония, ОРДС)

Интерферон-альфа по 3000 МЕ – 5-6 раз в день интраназально 5 дней.

Рибавирин 2000 мг – нагрузочная доза.

Далее 4 дня по 1200 мг каждые 8 часов, 4-6 дней по 600 мг каждые 8 часов.

- **Лопинавир/ритонавир (калетра)** (400 мг лопинавира/100 мг ритонавира) назначаются каждые 12 часов в течение 14 дней в таблетированной форме.
- В случае невозможности перорального приема препаратов Лопинавир/ритонавир (400 мг лопинавира/100 мг ритонавира) вводится в виде суспензии (5 мл) каждые 12 часов в течение 14 дней через назогастральный зонд

+/-

• Интерферон IFN-β1b назначается в дозе 0.25 мг/мл (8 млн МЕ) подкожно в течение 14 дней (всего 7 инъекций).

Лечение COVID

ЭТИОТРОПНОЕ ЛЕЧЕНИЕ С ДОКАЗАННОЙ ЭФФЕКТИВНОСТЬЮ ОТСУТСТВУЕТ

За рубежом обсуждаются:

- лопинавир/ритонавир;
- ламивудин;
- тенофовир
- хлорохин;
- Софосбувир;
- Интерферон-бета
- арбидол

Экспериментальные препараты (в стадии клинических исследований за рубежом)

- ремдесивир
- В перспективе (исследования in vitro)
- пептид ЕК1
- моноклональные антитела

Капельные+контактные меры предосторожности (если предполагаются новые патогены, в особенности зоонозного происхождения)

• Медработник

- Используйте соответствующие СИЗ (перчатки, маску, защитные очки или щитки, халат с длинным рукавом), если пациент с ТОРИ находится на расстоянии менее 1 метра от вас
- Используйте одноразовое или же предназначенное только для данного пациента оборудование, если возможно
- > Если оборудование используется несколькими пациентами, обеспечьтеего чистку и дезинфекцию в промежутках между ними

• Пациент

- > Изолированная палата если диагноз не установлен
- многоместную палату с пациентами с заболеванием той же этиологии, или на расстоянии не менее 1 метра от других пациентов
- > Адекватную вентиляцию
- Ограничьте передвижения пациента вне палаты и транспортировку
- > Наденьте маску на пациента при транспортировке его вне палаты

Когда необходимо применять меры по предотвращению распространения инфекции воздушно-пылевым/аэрозольным путем:

- У всех пациентов с COVID, при оказании помощи которым используются капельные меры предосторожности, при выполнении определенных процедур, сопряженных с повышенным риском передачи инфекции аэрогенным путем:
- ✓ аспирация или открытое отсасывание секрета дыхательных путей
- ✓ интубация
- ✓ сердечно-легочная реанимация
- ✓ Бронхоскопия
- Аэрозоль-генерирующий небулайзер
- Неинвазивная вентиляция
- ✓ Подача кислорода с высокой скоростью потока
- Передача вируса COVID в аэрозольным путем естественных условиях не доказана, но и не исключается поэтому необходимо применять меры по предотвращению инфекции аэрозольным путем на постоянной основе

Изоляция пациентов

- Подозрительные случаи изолированные палаты
- Подтвержденные допустима когортная изоляция
- Легкие и средне-тяжелые случаи палаты с нормальным давлением
- Тяжелые боксы с отрицательным давлением

Выписка из стационара

• Выписка из стационара проводится после двукратного отрицательного результата лабораторного исследования на наличие PHK SARS-CoV-2 методом ПЦР с интервалом не менее 1 дня.

СПАСИБО ЗА ВНИМАНИЕ!

Пшеничная Н.Ю., д.м.н., проф. НМИЦ фтизиопульмонологии и инфекционных заболеваний МЗ РФ

