Контрольная работа № 1 по теме: «Функции и графики»

I уровень

В заданиях 1-5 укажите номер ответа, который вы считаете верным.

1. Укажите область значений функции $y = \frac{x^2 - 1}{x^2}$.

Ответы: 1) $(-\infty; 0);$ 3) $(0; +\infty);$ 2) $(-\infty; 1);$ 4) $(1; +\infty).$

2. Решите неравенство $\frac{6}{r} + \frac{6}{r+1} \le 5$.

Ответы: 1) $-1 < x \le 0,6$ и $0 < x \le 2$;

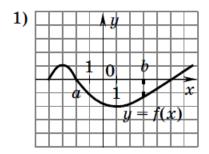
2) $x \le -0.6$ и $x \ge 2$;

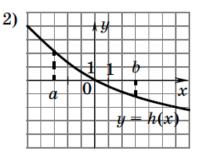
3) $x < -1 \text{ } \text{и} -0.6 \le x < 0 \text{ } \text{и} \text{ } x \ge 2.$

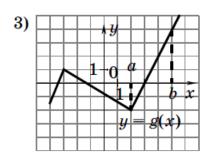
3. Какая из функций, заданных графиком (рис. 10), возрастает на промежутке [a;b]?

Ответы: 1); 2); 3); 4).

4. Укажите функцию, областью определения которой является промежуток ($-\infty$; -2).


Ответы: 1) $f(x) = \sqrt{\frac{-3}{2+x}}$; 3) $p(x) = \sqrt[4]{\frac{2-x}{4+x^2}}$.


2) $h(x) = \frac{1}{(x+2)^2}$;


Найдите наименьшее значение функции

 $y = 2x^2 - 8x + 3.1.$

Ответы: 1) 0; 2) -4; 3) -5,1; 4) -4,9.

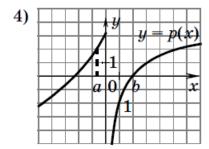
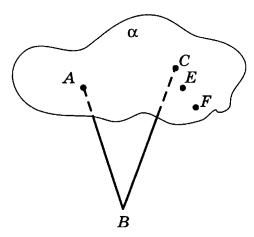


Рис. 10

II уровень

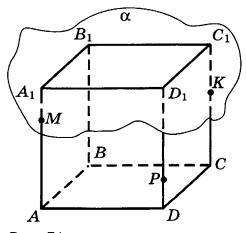
- **6.** 1) Изобразите график какой-нибудь функции y = f(x), непрерывной на отрезке [1; 4] так, чтобы одновременно выполнялись условия:
 - а) x = 3 нуль функции;
 - б) функция убывает на отрезке [1; 2] и возрастает на отрезке [2; 4].
 - 2) Сколько корней имеет уравнение f(x) = 0 на отрезке [1; 4]?
 - 3) В какой точке функция принимает свое наименьшее значение?
- 7. Запишите уравнение, задающее геометрическое место точек, равноудаленных от точек A(-2; 1) и B(6; 3).
- 8. Закрасьте множество точек, координаты которых удовлетворяют неравенству $(y-3x)(2y+x) \ge 0$.

III уровень


9. Найдите наименьшее значение функции

$$y = \frac{1}{\sqrt{3 + x - \frac{1}{4}x^2}}.$$

10. Постройте график функции $y = |4|x| - 3 - x^2|$.


Контрольная работа № 2 по теме: «Аксиомы стереометрии»

1. Точки A, C, E и F лежат в плоскости α , а точка $B \notin \alpha$ (рис. 70). Постройте точку пересечения прямой EF с плоскостью ABC. Поясните.

Puc. 70

- 2. Трапеция ABCD (AD и BC основания) и треугольник AED имеют общую сторону AD и лежат в разных плоскостях. Точка M лежит на стороне AE, а точка P на стороне DE, причем MP параллельна плоскости трапеции.
 - 1) Докажите, что $MP \parallel BC$.
 - 2) Каково взаимное расположение прямых MP и AB? Чему равен угол между этими прямыми, если $\angle ABC = 110^{\circ}$? Поясните.
- 3. Плоскости α и β пересекаются по прямой m. Прямая a лежит в плоскости α , а b в плоскости β . Каково возможное взаимное расположение прямых a и b? Сделайте рисунок и поясните.
- 4*. Используя рисунок 71, постройте линию пересечения плоскости MPK с плоскостью α . Поясните.

Puc. 71

Контрольная работа № 3 по теме: «Степени корни»

I уровень

Укажите номер ответа, который вы считаете верным.

1. Вычислите
$$\frac{12^{0,5}}{7^{\frac{2}{3}} \cdot 8^{0,5}} \cdot \frac{3^{0,5} \cdot 7^{\frac{5}{3}}}{8^{-\frac{1}{6}}}.$$

Ответы: 1) 42; 2) 21; 3) 10; 4) 1.

2. Упростите выражение
$$\left(a^{\frac{3}{4}}\right)^2:\sqrt{a^3}$$
 .

Ответы: 1) $a^{\frac{13}{6}}$; 2) 1; 3) a^3 ; 4) $a^{\frac{9}{4}}$.

3. Упростите выражение
$$\frac{1+b}{1-\sqrt[3]{b}+\sqrt[3]{b^2}}-2b^{\frac{1}{6}}$$
.

Ответы: 1) $1 - 2b^{\frac{1}{2}}$; 3) $\left(1 - b^{\frac{1}{6}}\right)^2$;

2)
$$1-2b^{\frac{1}{6}}-b^{\frac{1}{3}};$$
 4) $\left(1+b^{\frac{1}{6}}\right)^2$.

4)
$$\left(1+b^{\frac{1}{6}}\right)^2$$
.

4. Укажите промежуток, которому принадлежит корень уравнения $\sqrt{2-4x+x^2} = x+1$.

Ответы: 1) [1; 2]; 3) (-1; 0); 2) [0; 1]; 4) (-2; -1).

5. Определите четность функции

$$y=\sqrt{4-x^2}\cdot(x^3-x^5).$$

Ответы: 1) четная;

2) нечетная;

3) ни четная, ни нечетная.

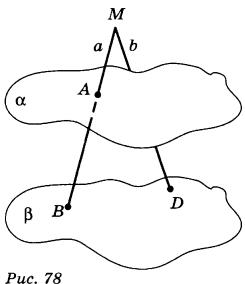
II уровень

6. Упростите выражение $\sqrt[4]{256a^4b^8c^{12}}$, если a < 0 и $c \geq 0$.

7. Определите знак разности $\sqrt[4]{7} - \sqrt{2\sqrt[4]{3}}$.

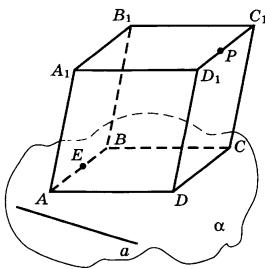
8. Решите неравенство $5\sqrt{x} - 4x \ge 1$.

III уровень


Найдите c, если известно, что

$$\frac{\sqrt{c}-c^{-\frac{1}{2}}}{c-1}+\frac{c^{-\frac{1}{2}}-1}{1+\sqrt{c}}=\frac{1}{28}.$$

10. Решите систему уравнений $\begin{cases} 2\sqrt[3]{x} + 3\sqrt[3]{y} = -1, \\ 2\sqrt[3]{x} - 3\sqrt[3]{y} = -7. \end{cases}$


Контрольная работа № 4 по теме: «Параллельность плоскостей. Построение сечений»

- 1. Прямоугольники ABCD и EBCF лежат в разных плоскостях и имеют общую сторону BC. Прямая a параллельна AD и пересекает плоскости ABE и DCF соответственно в точках P и H. Докажите, что PBCH параллелограмм.
- 2. Плоскости α и β параллельны (рис. 78). Прямые a и b пересекаются в точке M. Прямая a пересекает плоскости α и β соответственно в точках A и B, а прямая b пересекает плоскость β в точке D. Постройте точку пересечения прямой b с плоскостью α .

3. В тетраэдре DABC точка M — середина AC, DB = 6, MD = 10, $\angle DBM = 90^\circ$. Постройте сечение тетраэдра плоскостью, проходящей через середину ребра DC параллельно плоскости DMB, и найдите площадь сечения.

4*. Постройте сечение параллелепипеда плоскостью, проходящей через точки E и P параллельно прямой a (рис. 79).

Puc. 79

Контрольная работа № 5

по теме: «Показательная и логарифмическая функции» I уровень

Укажите номер ответа, который вы считаете верным.

1. Упростите выражение $\log_3 15 - \log_3 5 + 3^{\log_3 5}$. Ответы: 1) 1; 2) 3; 3) 6; 4) 9.

2. Укажите промежуток, которому принадлежит корень уравнения $3^{x-\frac{1}{2}} \cdot 3^{x+1} = 1$. Ответы: 1) (-3; -1); 2) (-1; 0); 3) (0; 2); 4) (2; 4).

3. Найдите сумму корней уравнения $4\log_3 x = \log_{\sqrt{3}}(9x - 20).$

Ответы: 1) 5; 2) 8; 3) 9; 4) 10.

4. Решите неравенство $(\sqrt{3})^x \le \left(\frac{1}{27}\right)$.

Ответы: 1) $x \le -3$; 3) $x \le -6$; 2) $x \ge -3$; 4) $x \ge -6$.

5. Найдите область определения функции

$$f(x) = \frac{\lg (1-x)}{3^{x+4}-9}$$
.
Ответы: 1) $x < -2$, $-2 < x < 1$; 3) $x < 2$; 2) $x < 1$; 4) $-2 < x < 1$.

II уровень

6. Известно, что $\log_{\frac{1}{4}} 43 = a$. Найдите $\log_{\frac{1}{4}} \frac{43}{256}$.

7. Решите систему уравнений $\begin{cases} 2^x \cdot 2^y = 16, \\ \log_3 x + \log_3 y = 1. \end{cases}$

8. Найдите область значений функции $f(x) = 0.3^{x+1} - 10.$

III уровень

9. Решите уравнение

$$2\log_2\left(1-\frac{13}{2x+7}\right)=3\log_2\left(2+\frac{13}{x-3}\right)+2.$$

10. Докажите, что число корней уравнения

$$3^x + 3^{-x} = ax^4 + 2x^2 + 2$$

не может быть четным ни при каком значении a.

Контрольная работа № 6 по теме: «Перпендикулярность прямых и плоскостей»

- 1. Через сторону AD ромба ABCD проведена плоскость α , удаленная от BC на расстояние, равное $3\sqrt{3}$ см. Сторона ромба равна 12 см, $\angle BCD = 30^{\circ}$. Найдите угол между плоскостью ромба и плоскостью α .
- 2. Треугольник ACB прямоугольный ($\angle C = 90^{\circ}$), AC = CB = 3 см. Треугольник AMC имеет общую сторону AC с треугольником ACB, $AM = CM = \sqrt{6}$ см. Плоскости треугольников взаимно перпендикулярны.
 - 1) Докажите, что $MC \perp BC$.
 - (2) Найдите угол между (MB) и плоскостью (ABC).
- 3^* . Найдите расстояние от точки E середины AB до плоскости BMC.

Контрольная работа № 7 по теме: «Тригонометрические функции и свойства»

I уровень

1. Переведите 120° из градусной меры в радианную.

Ответы: 1) $\frac{3\pi}{4}$; 2) π ; 3) $\frac{2\pi}{3}$; 4) $\frac{2\pi}{6}$.

2. Переведите $2,5\pi$; из радианной меры в градусную.

Ответы: 1) 250°;

2) 360°; 3) 400°; 4) 450°.

3. Найдите область значений функции

 $f(x) = 2 \sin x - 1$.

Ответы: 1) [-3; 1]; 3) [-2; 1];

2) [-2; 0]; 4) [-2; 2].

4. Укажите нечетную функцию среди данных.

Ответы: 1) $y = \cos x$; 3) $y = \log_5 x$;

2) y = ctg x; 4) $y = 5^x$.

5. Найдите корни уравнения $2 \cos x + \sqrt{2} = 0$, принадлежащие отрезку $[\pi; 2\pi]$.

Ответы: 1) $\frac{7\pi}{4}$; 2) $\frac{5\pi}{4}$; 3) $\frac{3\pi}{4}$; 4) $-\frac{3\pi}{4}$.

II уровень

Найдите значение выражения

$$tg \frac{7\pi}{4} - 2\sin\left(-\frac{\pi}{6}\right) - \cos 3\pi.$$

7. Решите неравенство $\sin x < \frac{\sqrt{3}}{2}$.

8. Найдите корни уравнения

$$\sin (\pi - x) - \cos \left(\frac{\pi}{2} + x\right) = -\sqrt{2},$$
 принадлежащие отрезку [0; 2π].

III уровень

9. Решите неравенство $\cos x \ge 1 + x^2$.

10. Чему равен arcsin (sin 4)?

Контрольная работа № 8 по теме: «Многогранники»

- 1. В основании прямого параллелепипеда $ABCDA_1B_1C_1D_1$ лежит параллелограмм ABCD, у которого $BD \perp AB$, AB=3 см, BD=4 см. Плоскость AB_1C_1 составляет с плоскостью основания угол 45° . Найдите площадь полной поверхности параллелепипеда.
- 2. В основании пирамиды MABCD лежит квадрат ABCD со стороной, равной 12. Грани MBA и MBC перпендикулярны плоскости основания. Высота пирамиды равна 5. Найдите площадь полной поверхности пирамиды.
- 3. В указанной выше пирамиде найдите расстояние между прямыми BC и MD.

Контрольная работа № 9 по теме: «Тригонометрические функции и свойства»

I уровень

Укажите номер ответа, который вы считаете верным.

1. Найдите значение выражения

 $\sin 50^{\circ} \cdot \cos 5^{\circ} - \sin 5^{\circ} \cdot \cos 50^{\circ}$

3. Найдите наименьший положительный корень уравнения $2 \sin^2 x - 3 \sin x + 1 = 0$.

Ответы: 1) $\frac{\pi}{3}$; 2) $\frac{\pi}{6}$; 3) $\frac{\pi}{2}$; 4) $\frac{\pi}{4}$.

4. Найдите $\sin \alpha$, если $\cos \alpha = -\frac{15}{17}$, $\frac{\pi}{2} < \alpha < \pi$.

Ответы: 1) $-\frac{8}{17}$; 2) $\frac{2}{17}$; 3) $\frac{6}{17}$; 4) $\frac{8}{17}$.

5. Найдите абсциссы точек пересечения графиков функций $y = \sin^2 x$ и $y = \cos^2 x$.

Ответы: 1) $\frac{\pi}{2} + \pi n, n \in \mathbb{Z};$ 3) $\frac{\pi}{4} + \pi n, n \in \mathbb{Z};$

2) $\frac{\pi}{4} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$; 4) $\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$.

II уровень

6. Сколько корней имеет уравнение

$$\left(\frac{1}{\sin^2 x} - 1\right) \sqrt{4 - x^2} = 0 ?$$

7. Решите неравенство $\sin \frac{4x}{2} > -\frac{\sqrt{3}}{2}$.

8. Найдите $\cos \alpha - \sin \alpha$, если известно, что

 $\sin \alpha \cos \alpha = -\frac{1}{4}, \frac{3\pi}{2} < \alpha < 2\pi.$

III уровень

9. Сравните числа

 $\frac{\sin 113}{16\sin 7^{\circ}}$ и $\cos 7^{\circ} \cos 14^{\circ} \cos 28^{\circ} \cos 56^{\circ}$.

10. Решите уравнение $2\sin^2 x = |\sin x|$.

Контрольная работа № 10по теме: «Векторы в пространстве»

- 1. $ABCDA_1B_1C_1D_1$ параллелепипед. Изобразите на рисунке векторы, равные:
 - 1) $\overrightarrow{BC} + \overrightarrow{C_1D_1} + \overrightarrow{B_1B} + \overrightarrow{D_1A_1}$;
 - $2) \overrightarrow{D_1C_1} \overrightarrow{A_1B}.$
- 2. В тетраэдре \overrightarrow{DABC} точка E середина \overrightarrow{DB} , а точка M точка пересечения медиан грани \overrightarrow{ABC} . Разложите вектор \overrightarrow{EM} по векторам \overrightarrow{DA} , \overrightarrow{DB} и \overrightarrow{DC} .
- 3. Даны три неколлинеарных вектора \vec{a} , \vec{b} и \vec{c} . Найдите значение k, при котором векторы $\vec{m} = k\vec{a} + k^2\vec{b} + 2\vec{c}$ и $\vec{n} = \vec{a} + k\vec{b} + \vec{c}$ коллинеарны.
- 4*. В кубе $ABCDA_1B_1C_1D_1$ точки E и F середины отрезков BD и C_1C . Докажите, используя векторы, что прямые BC_1 , EF и DC параллельны одной плоскости.

Итоговая контрольная работа

I уровень

Укажите номер ответа, который вы считаете верным.

1. Найдите область определения функции $y = \log_{0.3}(2 - 4x)$.

Ответы: 1) $(-\infty; 2);$ 3) $(-\infty; 0,5];$ 2) $(-\infty; 0,5);$ 4) $(0,5; +\infty).$

2. Какая из функций является убывающей на всей области определения:

Ответы: 1) $y = \sin x$; 3) y = |x|; 2) $y = \lg x$; 4) $y = \pi^{-x}$.

3. Найдите все значения аргумента, при которых функция $y = x\sqrt[4]{2-x}$ принимает положительные значения.

Ответы: 1) (0; 2); 3) (0; $+\infty$); 2) (0; 2]; 4) ($-\infty$; 2].

4. Укажите промежуток, которому принадлежит корень уравнения $2^{2x+1} + 7 \cdot 2^x = 4$.

Ответы: 1) (-6; -4); 3) (-2; 0); 2) [-4; -2]; 4) [0; 1].

5. Укажите количество натуральных решений неравенства $\log_4(x^2 + 2x - 8) < 2$.

Ответы: 1) 9; 2) 5; 3) 2; 4) 1.

II уровень

6. При каких значениях аргумента значения функции $y = (x+3)(x-1)^2(x-2)^3$ отрицательны.

7. Решите уравнение $\sin \frac{x}{2} \cos \frac{x}{2} \sqrt{16 - x^2} = 0$.

8. Решите неравенство $\log_{\cos x}(\bar{0}, 5-0, 5\sin 2x) > 0$.

III уровень

9. Найдите, сколько целых чисел принадлежит области значений функции

 $y = 16\log_{\frac{1}{16}} \frac{\sin x + \cos x + 3\sqrt{2}}{\sqrt{2}}.$

10. Решите уравнение $\arcsin(x^2-4) = \arcsin(2x+4)$.

Критерии к оцениванию.

К.Р. №1, 3, 5, 7,9, итоговая:

за правильное решение заданий 1 первого уровня - «3»; за правильное решение заданий 1 и 2 уровня - «4»; за правильное решение заданий 1, 2 и 3 уровней - «5».

K.P. № 2, 4, 6, 8, 10:

за 50 - 70% верно выполненных заданий - «3»;

за 70 - 90% верно выполненных заданий - «4»;

за 90 — 100 % верно выполненных заданий - «5».