# Государственное бюджетное образовательное учреждение дополнительного профессионального образования

«Челябинский институт переподготовки и повышения квалификации работников образования»

Кафедра развития дошкольного образования

Основы возрастной анатомии, физиологии и гигиены

Учебное пособие

### Содержание

## Введение

Глава 1. Предмет, содержание и задачи возрастной анатомии, физиологии и гигиены, связь с другими науками.

- 1.1. Категориальный аппарат возрастной анатомии, физиологии, гигиены.
- 1.2. История развития возрастной анатомии и физиологии как науки.
- 1.3. Методы исследования возрастной анатомии и физиологии.

Глава 2. Общие закономерности роста и развития организма

- 2.1. Рост и развитие организма
- 2. 2. Возрастная периодизация

Глава 3 Анатомо-физиологические особенности нервной системы. Развитие нервной системы в онтогенезе

- 3.1. Значение и общий план строения нервной системы
- 3.2. Нервная ткань: строение, функции.
- 3.3.Спинной мозг: строение и функции
- 3.4 Головной мозг: строение и функции

Глава 4. Развитие опорно-двигательного аппарата

- 4.1. Строение и функции костной системы человека
- 4.2. Строение и функции мышечной системы человека

Глава 5. Строение, функции и возрастные особенности сенсорных систем.

- 5.1. Строение и функции зрительного анализатора
- 5.2. Слуховой анализатор, строение и функции
- 5.3. Возрастные особенности других сенсорных систем

Глава 6 Возрастные особенности дыхательной системы

6.1.Строение и функции дыхательной системы

# 6.2 Газообмен в легких

Глава 7. Кожа

7.1. Строение и функции кожи

Глава 8. Анатомия пищеварительной системы

- 8.1. Строение пищеварительной системы
- 8.2. Процесс пищеварения

Глава 9. Метаболизм

- 9.1.Основные понятия
- 9.2. Обмен питательных веществ
- 9.3. Витаминно-минеральный обмен

Глава 10. Сердечно-сосудистая система

- 10.1 Строение и функции сердечно-сосудистой системы
- 10.2 Кровообращение
- 10.3 Кровь и ее форменные элементы крови

Глава 11. Мочевыделительная система

11.1 Строение и функции органов выделения

Глава 12 Эндокринная система

- 12.1 Строение и функции желез внутренней секреции
- 12.2. Основные гормоны и их воздействие на организм

Список литературы

#### Введение

Цель учебного пособия «Возрастная анатомия, физиология и гигиена» формирование целостных представлений о возрастных особенностях развивающегося организма, его взаимоотношениях с окружающей средой, о закономерностях развития, основах сохранения и укрепления здоровья детей. Знания возрастной анатомии, физиологии и гигиены необходимы педагогу для того, чтобы на научной основе организовывать образовательный процесс с детьми раннего возраста, активно участвовать в работе по охране здоровья. В курсе «Основы возрастной анатомии, физиологии и гигиены детей внимание уделено большое вопросам, необходимым возраста» правильного понимания целого ряда аспектов возрастной психологии и педагогики, педиатрии и других наук, морфофизиологическим особенностям детского организма, вопросам физиологии нервной системы, высшей нервной анализаторов деятельности, др. Этим определяется пропедевтическое значение данного курса. Для педагогов дошкольных учреждений знание морфофункциональных особенностей организма ребенка особенно важно, так как именно в период его становления при неправильной организации условий жизни особенно быстро возникают различные патологические нарушения функций нервной системы, опорно-двигательного аппарата, сердечно-сосудистой системы и др.

К завершению курса слушатели овладевают знаниями о:

возрастных особенностях функционирования нервной, сенсорной, моторной висцеральной, эндокринной и других систем организма детей;

закономерностях роста и развития детского организма;

гигиенических основах организации режима дня, образовательного процесса.

закономерностях, лежащих в основе сохранения и укрепления здоровья детей раннего возраста.

# Глава 1. Предмет, содержание и задачи возрастной анатомии, физиологии и гигиены, связь с другими науками.

# 1.1. Категориальный аппарат возрастной анатомии, физиологии, гигиены.

**Анатомия** — это наука о форме и строении живых организмов, в частности строение человеческого тела, его органов.

Название «анатомия» происходит от греческого слова anatome – рассечение, расчленение.

**Физиология** — наука о функциях живого, о процессах, протекающих в организме и его частях — органах, тканях, клетках. Термин «физиология» образован от двух греческих слов physis — природа, logos — учение.

Анатомия и физиология тесно связаны между собой, так как форма и функции взаимно обусловлены.

**Возрастная анатомия и физиология** — самостоятельная ветвь биологической науки, которая изучает изменения строения и функций организма, возникающие в процессе его развития.

Гигиена — это медицинская наука. Она изучает взаимодействие организма ребенка с внешней средой с целью разработки на этой основе гигиенических нормативов и требований, направленных на охрану и укрепление здоровья, гармоническое развитие и совершенствование функциональных возможностей организма детей и подростков.

Гигиена и возрастная физиология тесно взаимосвязаны, поскольку разработка гигиенических норм режимов для детей разного возраста, организация их труда и отдыха, питания и одежды основаны на знании функциональных особенностей организма ребенка в различные возрастные периоды [9].

# Задачи возрастной анатомии, физиологии и гигиены:

- 1. Изучение возрастных особенностей развивающегося организма. Определение общих закономерностей роста и развития.
- 2. Изучение особенностей взаимодействия человека с окружающей средой. Методы гигиенической оценки окружающей ребенка среды. Гигиенические основы организации режима дня, образовательного процесса.
- 3. Определение закономерностей, лежащих в основе сохранения и укрепления здоровья школьников.

# 1.2. История развития возрастной анатомии и физиологии как науки.

Вопросы возрастной физиологии ставились еще в трудах Гиппократа, Аристотеля, в сочинениях древних индусов.

Научное изучение вопросов возрастной анатомии и физиологии человека начато у нас в стране профессором Петербургской военно-медицинской академии Н.П. Гундобиным (1860-1908). Он и его ученики изучали анатомо-физиологические особенности всех органов и систем детского организма.

В бывшем СССР особенно большое значение традиционно уделялось изучению механизмов высшей нервной деятельности детей, так как это необходимо для повышения эффективности различных учебновоспитательных мероприятий. В данном направлении много сделано В.М.Бехтеревым, А.Г. Ивановым-Смоленским, Н.И.Красногорским, Л.А. Орбели, П.К. Анохиным, М.М.Кольцовой, И.А. Аршавским и др.

В настоящее время вопросы возрастной анатомии и физиологии изучаются на молекулярном уровне. Ведущим центром является НИИ физиологии детей и подростков АПН в Москве, а также Институт возрастной физиологии РАО в Москве.

Гигиена как наука возникла в 19 веке и занималась изучением вопросов охраны здоровья детей. Основоположниками школьной гигиены были

русские ученые Ф.Ф.Эрисман (1842-1915) и А.П. Доброславин (1842-1889). Ф.Ф. Эрисман создал кафедру гигиены в МГУ. Он разработал гигиенические требования к выбору участка под строительство школы и проект школьного здания. В дальнейшем задачи данной отрасли медицинской науки расширились — она стала изучать вопросы охраны, укрепления здоровья и улучшения физического развития детей и подростков всех возрастных групп.

В создании и развитии гигиены детей и подростков значительную роль сыграли многие отечественные ученые: Н.А.Семашко разработал основные теоретические положения школьной гигиены и физической культуры, В.В.Гориневский создал капитальные труды по закаливанию детского организма и физическому воспитанию, П.М.Ивановский занимался вопросами физического воспитания, гигиенического обоснования режима дня школьников, планировки и благоустройства детских учреждений, С.Е.Советов организовал первую кафедру школьной гигиены в МГПИ им В.И.Ленина и является автором первых учебников по гигиене для студентов педагогических институтов.

#### 1.3. Методы исследования возрастной анатомии и физиологии.

- а) главным является эксперимент. Смысл научного эксперимента заключается в том, что изучение физиологических функций проводится на экспериментальных животных, которым моделируются интересующие ученого условия. и лабораторным экспериментом.
  - б) метод наблюдения
- функциональных метод нагрузок, активно применяемый физиологии, возрастной лабораторного является разновидностью Изучение функций эксперимента. ЭТОМ случае осуществляют применением дозированных функциональных нагрузок путем изменения интенсивности или продолжительности того или иного воздействия (ортостатическая проба, физические и умственные нагрузки).

Для задач возрастной анатомии и физиологии большое значение имеет оценка физического развития детей и подростков, которая проводится с помощью следующих методов:

- индивидуальный метод (метод продольных срезов) применяется при систематическом наблюдении за физическим развитием одного и того же ребенка в течение длительного времени, необходимого для индивидуальной оценки его развития. Оценка физического развития в данном случае осуществляется путем сопоставления найденных измерений с показателями стандартных (средних) величин;
- генерализирующий (массовый) метод (метод поперечных срезов) используется при массовом обследовании физического развития детей и подростков в относительно короткие сроки с целью получения средних показателей физического развития в каждой возрастно-половой группе. Достигается это с помощью статистической обработки полученных результатов. Они являются возрастными стандартами и отражают уровень физического развития определенных контингентов детей и подростков. В этом случае обследуется не менее 100 человек с учетом возраста. пола, национальности и региона проживания.

Связь возрастной анатомии и физиологии с другими науками: Изучаемые возрастной анатомией и физиологией закономерности и законы базируются на данных различных биологических наук: эмбриологии, генетики, анатомии, цитологии, гистологии, биофизики, биохимии и др. Данные возрастной физиологии, в свою очередь, могут быть использованы для развития различных научных дисциплин. Например, большое значение имеет возрастная физиология для развития педиатрии, антропологии и геронтологии, гигиены, возрастной психологии и педагогики. Анатомия и физиология близко связана со всеми медицинскими специальностями, ее достижения постоянно используются в практической медицине.

Контрольные вопросы:

- 1. Дайте определения понятий «возрастная анатомия», «возрастная физиология», «гигиена»
- 2. Перечислите задачи возрастной анатомии и физиологии.
- 3. Назовите методы возрастной анатомии и физиологии.
- 4. С какими науками связана возрастная анатомия и физиология?

### Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Учебное пособие для студентов дефектологический факультете высш. пед. учеб. заведений. М.: Издательский центр «Академия», 2008.
- 5. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.
- 6. Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.

#### Глава 2. Общие закономерности роста и развития организма

#### 2.1. Рост и развитие организма

На сегодняшний день общепринятым определением физического развития следует считать следующее. *Физическое развитие* — это совокупность морфологических и функциональных признаков в их взаимосвязи и зависимости от окружающих условий, характеризующих процесс созревания и функционирования организма в каждый данный момент времени [9].

Данным определением охватываются оба значения понятия «Физическое развитие». С одной стороны оно характеризует процесс развития, его соответствие биологическому возрасту, с другой – морфофункциональное состояние.

Физическое развитие, как один из основных критериев здоровья, характеризуется интенсификацией ростовых процессов и их замедлением, наступлением половой зрелости и формирования дефинитивных размеров тела, тесно связано с адаптационным резервом детского организма, расходуемым на достаточно длительном отрезке онтогенеза.

Онтогенез (индивидуальное развитие организма) — совокупность преобразований, претерпеваемых организмом от зарождения до конца жизни. Термин введен немецким биологом Э. Геккелем (1866).

В онтогенезе выделяют два относительно самостоятельных этапа развития: перинатальный и постнатальный. Первый начинается с момента зачатия и продолжается до рождения ребенка, второй – от момента рождения до смерти человека. Первый этап в среднем длится 280 дней. Продолжительность второго для всех людей различна и в нем выделяют следующие периоды развития: ранний, зрелый и заключительный (период старения). Процесс онтогенеза происходит в результате роста и развития организма человека.

Рост — увеличение длины, объема и массы тела детей и подростков. Рост осуществляется за счет процессов гиперплазии — увеличения числа клеток и количества составляющих их органических молекул, а также за счет гипертрофии — увеличения размеров клеток [6].

Развитие — качественные изменения, заключающиеся в усложнении строения и функций всех тканей и органов и процессов их регуляции [6].

Рост и развитие – две составляющих единого процесса. Они взаимосвязаны, взаимообусловлены осуществляются И постоянно. Постепенные количественные изменения, происходящие в процессе роста приводят К появлению у ребенка новых качественных особенностей. Например, формирование двигательных функций ребенка связано созреванием нервно-мышечного аппарата: увеличивается мышечная масса и изменяются свойства мышечной ткани; улучшается проведение нервных импульсов по нервным волокнам то головного мозга к обратном мышцам направлении, увеличивается количество И В межклеточных связей в подкорковых структурах коре головного мозга [6].

Основными закономерностями роста развития являются: эндогенность – рост и развитие организма не обусловлены внешними воздействиями, а совершаются по внутренним, присущим самому организма и запечатленным в наследственной программе законам. Рост - реализация естественной потребности организма в достижении взрослого состояния, когда делается возможным продолжение рода. Основные свойства онтогенеза:

- необратимость человек не может вернуться к тем особенностям строения, которые были у него в детстве;
- цикличность существуют периоды активизации и торможения роста. Первое отмечается в период до рождения и в первые месяцы жизни, затем интенсификация роста происходит в 6-7 лет и 11-14 лет;

- постепенность человек в своем развитии проходит ряд этапов,
   совершающихся последовательно один за другим;
- синхронность процессы роста и старения совершаются относительно одновременно в разных органах и системах организма. В процессе возрастного развития происходит видоизменения пропорций тела за счет разной скорости роста отдельных его частей. Основной характеристикой процесса роста является его скорость. Поскольку рост различных размеров тела протекает не равномерно, то на отдельных этапах возрастного развития говорят о продинамии (сходстве ростовых процессов) и гетеродинамии (их несоответствии). Тотальные размеры тела (длина, масса, окружность грудной клетки), характеризующие процессы роста и физического развития человека, позволяют получить суммарную характеристику ростовых закономерностей.

- гетерохронность. В неодновременности роста и развития отдельных систем лежит биологическая целесообразность. В первую очередь, развиваются жизненно необходимые органы, обеспечивающие адаптацию к конкретным условиям внешней среды и выживаемость организма [9]. Данная концепция ускоренного и избирательного развития отдельных структур выдвинута отечественным физиологом П.Анохиным. Например, мозг плода интенсивно развивается на 2-10 неделе беременности, сердце — на 3-7, пищеварительные органы — на 11-12. Если избирательность развития нарушена, то плод оказывается нежизнеспособным.

Неравномерность роста и развития наблюдается и после рождения. Так, к моменту рождения у ребенка относительно хорошо развиты мышцы губ, языка, щек, обеспечивающие ему процессы сосания. Организм ребенка осуществляет процессы газообмена с внешней средой, процессы терморегуляции, хорошо функционирует сердечно-сосудистая система. В то же время слабо развиты мышцы туловища, ребенок первые месяцы не в состоянии держать вертикально голову. Функционально не зрелые многие зоны коры больших полушарий. Проходит немного времени и высокими

темпами начинает развиваться нервная система, увеличивается масса головного мозга, возрастает возможность формирования условных рефлексов и т. д. После 5 лет темпы развития нервной системы снижаются и преобладающее развитие приобретает другая система и так до тех пор, пока организм не достигнет определенной функциональной зрелости.

Исходя из неравномерного темпа роста и развития организма, весь этап достижения функциональной зрелости условно делят на несколько возрастных периодов.

#### 2. 2. Возрастная периодизация.

Общепринятой классификации возрастных периодов нет. В отношении критериев, которые необходимо положить в основу возрастной периодизации до настоящего времени нет единой точки зрения.

Паспортный возраст, где межвозрастной интервал равен одному году, отличается от биологического (или анатомо-физиологического) возраста, охватывающего ряд лет жизни человека, в течение которых происходят определенные биологические изменения. Биологический возраст отражает степень биологического и социального развития человека на каждом возрастном этапе. Широко распространена классификация, предложенная русским педиатром, создателем петербургской школы педиатров, изучавшим возрастные анатомо-физиологические особенности детей, Н.П. Гундобиным [3]. В соответствии с ней выделяют:

```
период внутриутробного развития;
период новорожденного (2–3 недели);
период грудного возраста (до 1 года);
преддошкольный (с 1 года до 3 лет);
дошкольный возраст (с 3 до 7 лет, период молочных зубов);
младший школьный возраст (с 7 до 12 лет);
средний, или подростковый, возраст (с 12 до 15 лет);
```

старший школьный, или юношеский, возраст (с 14 до 18 лет у девочек, с 15–16 лет до 19–20 лет у мальчиков).

В современной науке нет единой общепринятой классификации периодов роста и развития и их возрастных границ, но предлагается такая схема:

- 1) новорожденный (1-10 дней);
- 2) грудной возраст (10 дней 1 год);
- 3) раннее детство (1–3 года);
- 4) первое детство (4–7 лет);
- 5) второе детство (8-12 лет для мальчиков, 8-11 лет для девочек);
- 6) подростковый возраст (13-16 лет для мальчиков, 12-15 лет для девочек);
  - 7) юношеский возраст (17-21 год для юношей, 16-20 лет для девушек);
  - 8) зрелый возраст:

I период (22-35 лет для мужчин, 22-35 лет для женщин);

II период (36-60 лет для мужчин, 36-55 лет для женщин);

- 9) пожилой возраст (61-74 года для мужчин, 56-74 года для женщин);
- 10) старческий возраст (75-90 лет);
- 11) долгожители (90 лет и выше) [3].

Таблица 1.Медико-биологическая классификация возрастных периодов детства [6].

| Возрастной период     | Критерии           | Основные морфо-              |  |
|-----------------------|--------------------|------------------------------|--|
|                       |                    | функциональные изменения     |  |
| I. Внутриутробный (40 | Оплодотворение,    | Формирование организма из    |  |
| недель)               | образование зиготы | зиготы. Быстрый рост и       |  |
|                       |                    | дифференцировка клеток и     |  |
|                       |                    | тканей, органов и систем.    |  |
|                       |                    | Питание за счет материнского |  |
|                       |                    | организма                    |  |

| 1. Эмбриональный (8   | Питание за счет слизистой | Критические периоды: 7-12 день  |
|-----------------------|---------------------------|---------------------------------|
| недель)               | матки, формирование       | - период имплантации; 3-6       |
| ,                     | плаценты                  | неделя - образование зачатков   |
|                       |                           | органов; 8 недель - начало      |
|                       |                           | функционирования сердца         |
| 2. Плацентарный (32   | Питание через плаценту и  | Критические месяцы: 3 мес       |
| недели)               | из околоплодных вод       | формирование плаценты и         |
|                       |                           | костно-мозгового                |
|                       |                           | кроветворения, образуются       |
|                       |                           | зачатки коры головного мозга; 6 |
|                       |                           | мес все органы в основном       |
|                       |                           | сформированы; конец 9 мес       |
|                       |                           | плод занимает постоянное        |
|                       |                           | положение                       |
| II. Внеутробный (от   | Развертывание во времени  | Дальнейший рост и развитие      |
| рождения до смерти)   | генетической программы    | организма                       |
|                       | развития и деградации с   |                                 |
|                       | учетом факторов внешней   |                                 |
|                       | среды                     |                                 |
| 1.Новорожденный (0-10 | Формирование легочного    | Адаптация к новым условиям      |
| дней)                 | газообмена. Вскармливание | существования сопровождается    |
|                       | молозивом                 | физиологической потерей веса    |
|                       |                           | (восстанавливается к концу      |
|                       |                           | периода), физиологической       |
|                       |                           | желтухой, заживлением           |
|                       |                           | пупочной ранки. Начинает        |
|                       |                           | функционировать дыхательная     |
|                       |                           | система, изменяется характер    |
|                       |                           | питания. Включаются             |
|                       |                           | механизмы терморегуляции.       |
|                       |                           | Взаимосвязь с окружающей        |
|                       |                           | средой осуществляется на основе |
|                       |                           | безусловных рефлексов.          |

|                         |                          | Образуются условные рефлексы   |  |
|-------------------------|--------------------------|--------------------------------|--|
|                         |                          | на время кормления и положение |  |
|                         |                          | при кормлении                  |  |
| 2 Francov (10 may 1     | Молочное питание.        |                                |  |
| 2. Грудной (10 дней - 1 |                          | 1                              |  |
| год)                    | Реализация и закрепление | Формирование изгибов           |  |
|                         | сидения и стояния        | позвоночника. Прорезывание     |  |
|                         |                          | первых молочных зубов.         |  |
|                         |                          | Развивается деятельность всех  |  |
|                         |                          | органов чувств. Формируются    |  |
|                         |                          | положительные эмоции.          |  |
|                         |                          | Начинается развитие внимания,  |  |
|                         |                          | памяти, мышления на основе     |  |
|                         |                          | условных рефлексов. Высокая    |  |
|                         |                          | ранимость организма и низкая   |  |
|                         |                          | сопротивляемость к различным   |  |
|                         |                          | острым заболеваниям            |  |
| 3. Раннее детство (1-3  | Освоение локомоторных    | Интенсивно развиваются         |  |
| года)                   | актов (ходьба, бег).     | системы организма,             |  |
|                         | Овладение речью          | совершенствуются движения.     |  |
|                         |                          | Формируется большое            |  |
|                         |                          | количество условных рефлексов  |  |
|                         |                          | и динамических стереотипов, но |  |
|                         |                          | они недостаточно устойчивы из- |  |
|                         |                          | за большой активности          |  |
|                         |                          | подкорковых отделов.           |  |
|                         |                          | Совершенствуется высшая        |  |
|                         |                          | нервная деятельность,          |  |
|                         |                          | увеличивается                  |  |
|                         |                          | работоспособность, быстро      |  |
|                         |                          | развивается речь.              |  |
|                         |                          | Сопротивляемость организма к   |  |
|                         |                          | болезнетворным воз действиям   |  |
|                         |                          |                                |  |
|                         |                          | внешней среды остается         |  |

|                         |                           | пониженной. Дети                 |  |
|-------------------------|---------------------------|----------------------------------|--|
|                         | чувствительны к нарушени  |                                  |  |
|                         | режима дня и питания      |                                  |  |
| 4. Папрод пототро (4.7. | Интоновриод подрижно и    | -                                |  |
| 4. Первое детство (4-7  | Интенсивное развитие и    | Замедление темпов роста, а в 6-7 |  |
| лет)                    | высокая пластичность коры | лет - усиление ростовых          |  |
|                         | головного мозга           | процессов. Повышение             |  |
|                         |                           | координации движений. Начало     |  |
|                         |                           | смены молочных зубов на          |  |
|                         |                           | постоянные. Высокая              |  |
|                         |                           | пластичность анализаторных       |  |
|                         |                           | систем, обеспечивающая           |  |
|                         |                           | возможность обучения,            |  |
|                         |                           | эстетического воспитания.        |  |
|                         |                           | Особая прочность динамических    |  |
|                         |                           | стереотипов (физиологических     |  |
|                         |                           | механизмов привычек).            |  |
|                         |                           | Дальнейшее развитие речи и       |  |
|                         |                           | становление абстрактного         |  |
|                         |                           | мышления. Основой всех           |  |
|                         |                           | функций служит игра. Легко       |  |
|                         |                           | возникают травмы вследствие      |  |
|                         |                           | большой любознательности и       |  |
|                         |                           | отсутствия собственного опыта    |  |
| 5. Второе детство       | Адаптация организма к     | Заканчивается смена молочных     |  |
| (девочки 8-11 лет,      | школьному обучению.       | зубов на постоянные.             |  |
| мальчики 8-12 лет)      | Развитие абстрактного     | Проявляются половые              |  |
|                         | мышления                  | особенности в развитии.          |  |
|                         |                           | Развитие девочек более           |  |
|                         |                           | интенсивно, чем мальчиков. У     |  |
|                         |                           | девочек формируется грудной      |  |
|                         |                           |                                  |  |
|                         |                           | тип дыхания, у мальчиков -       |  |
|                         |                           | брюшной. Повышение силы и        |  |
|                         |                           | уравновешенности нервных         |  |

|                        |                     | процессор пол треширующим      |
|------------------------|---------------------|--------------------------------|
|                        |                     | процессов под тренирующим      |
|                        |                     | воздействием учебной нагрузки. |
|                        |                     | Высокий уровень развития       |
|                        |                     | положительных и                |
|                        |                     | отрицательных условных         |
|                        |                     | рефлексов. Развитие внутренней |
|                        |                     | речи и абстрактно-логического  |
|                        |                     | мышления. Эмоциональные,       |
|                        |                     | умственные и физические        |
|                        |                     | перегрузки приводят к          |
|                        |                     | снижению надежности            |
|                        |                     | организма, развитию неврозов и |
|                        |                     | других нарушений здоровья      |
| 6. Подростковый период | Половое созревание, | Выраженные эндокринные         |
| (девочки 12-15 лет,    | развитие вторичных  | сдвиги и изменения в           |
| мальчики 13-16 лет) В  | половых признаков   | деятельности нервной системы,  |
| начале периода -       |                     | связанные с половым            |
| интенсивный рост.      |                     | созреванием, усиление          |
|                        |                     | деятельности половых желез,    |
|                        |                     | вегетативные расстройства,     |
|                        |                     | повышение возбудимости ЦНС,    |
|                        |                     | повышение активности           |
|                        |                     | подкорковых структур,          |
|                        |                     | ослабление тонуса коры         |
|                        |                     | головного мозга, ухудшение     |
|                        |                     | образования условных           |
|                        |                     | рефлексов, особенно            |
|                        |                     | торможения, преобладание       |
|                        |                     | конкретного мышления по        |
|                        |                     | сравнению с абстрактным;       |
|                        |                     | лаконичность, замедленность    |
|                        |                     | речи, обеднение словарного     |
|                        |                     | запаса. Несоответствие между   |

|                        |                                                           | предъявляемыми требованиями  |  |
|------------------------|-----------------------------------------------------------|------------------------------|--|
|                        |                                                           | и физиологическими           |  |
|                        |                                                           | возможностями приводит к     |  |
|                        |                                                           | утомлению                    |  |
| 7. Юношеский (девушки  | Завершение развития                                       | Замедление роста. Завершение |  |
| 16-20 лет, юноши 17-21 | организма и всех его систем полового развития. Гармонично |                              |  |
| лет)                   |                                                           | развитие коры и подкорковых  |  |
|                        |                                                           | отделов. Возрастание роли    |  |
|                        |                                                           | абстрактного мышления        |  |

## Контрольные вопросы:

- 1. Что такое физическое развитие?
- 2. Дайте определение онтогенеза.
- 3. Раскройте понятие «рост» и «развитие», их взаимосвязь.
- 4. Раскройте различие в понятиях паспортного и биологического возраста.
- Какие существуют виды возрастных периодизаций?
   Литература:
- 1. Агаджанян Н.А., Власова И.Г., Ермакова Н.В., Трошин В.И. Основы физиологии человека: Учебник М., 2009.
- 2. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 3. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 4. Липченко В.Я. Атлас нормальной анатомии человека. М.: Медецина. 2009.
- 5. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.

# Глава 3 Анатомо-физиологические особенности нервной системы. Развитие нервной системы в онтогенезе

#### 3.1. Значение и общий план строения нервной системы

Нервная система является основной регулирующей и координирующей системой организма. Она передает информацию ко всем органам и системам, обеспечивает функционирование организма как единого целого.

С помощью нервной системы происходит прием и анализ разнообразных сигналов из окружающей среды и внутренних органов, формируются ответные реакции на эти сигналы [6].

Нервная система в функциональном и структурном отношении делится на центральную и периферическую нервную системы Центральная нервная система (ЦНС) — это совокупность нервных образований спинного и головного мозга, которая обеспечивает восприятие, обработку, передачу, хранение и воспроизведение информации с целью адекватной реакции организма на изменения окружающей среды, организации оптимального функционирования органов, их систем и организма в целом.

ЦНС человека представлена спинным и головным мозгом, которые имеют морфологическую и функциональную специфику.

Периферическая часть нервной системы состоит из нервов — пучков нервных волокон, выходящих за пределы головного и спинного мозга и направляющихся к различным органам тела, а также нервных узлов (ганглий) — скоплений нервных клеток вне спинного и головного мозга.

В зависимости от строения и иннервации периферических структур различают соматический и вегетативный отделы нервной системы. Первый иннервирует сокращения поперечнополосатой мускулатуры и некоторых органов (языка, глотки, гортани и др.), обеспечивает чувствительность тела

человека. Второй регулирует деятельность внутренних органов и обмена веществ в соответствии с текущими потребностями организма.

Таблица 2 . Периферическая нервная система

| соматическая (нерв                        | ные волокна не       | вегетативная (нер                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | вные волокна        |
|-------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| прерываются; скорость проведения импульса |                      | ` •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 30-120 m/c)                               |                      | импульса 1-3 м/с)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 30 120 M/C)                               |                      | Interpretation of the Control of the |                     |
| черепно-мозговые                          | спишю-мозговые       | симпатические нервы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | парасимпатические   |
| нервы (12 пар)                            | нервы (31 пара)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | нервы               |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Состав и строение                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Отходят от различных                      | Отходят              | Отходят                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Отходят от ствола   |
| отделов головного                         | симметричными        | симметричными                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | головного мозга и   |
| мозга в виде нервных                      | парами по обе        | парами по обе стороны                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | крестцового отдела  |
| волокон.                                  | стороны спинного     | спинного мозга в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | спинного мозга.     |
| Подразделяются на                         | мозга. Через задние  | грудном и поясничном                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Нервные узлы        |
| центростремительные,                      | корешки входят       | отделах. Предузловое                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | лежат в стенках     |
| центробежные.                             | отростки             | волокно короткое, так                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | или около           |
| Иннервируют органы                        | центростремительных  | как узлы лежат вдоль                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | иннервируемых       |
| чувств, внутренние                        | нейронов; через      | спинного мозга;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | органов.            |
| органы, скелетные                         | передние корешки     | послеузловое волокно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Предузловое         |
| мышцы                                     | выходят отростки     | длинное, так как идет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | волокно длинное,    |
|                                           | центробежных         | от узла к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | так как проходит    |
|                                           | нейронов. Отростки   | иннервируемому                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | от мозга до органа, |
|                                           | соединяются, образуя | органу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | послеузловое        |
|                                           | нерв                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | волокно короткое,   |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | так как находится   |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в иннервируемом     |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | органе              |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Функции                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Обеспечивают связь                        | Осуществляют         | Иннервируют                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Иннервируют         |

| организма с внешней | движения всех частей | внутренние органы       | внутренние         |
|---------------------|----------------------|-------------------------|--------------------|
| средой, быстрые     | тела, конечностей,   | Послеузловые волокна    | органы, оказывая   |
| реакции на ее       | обусловливают        | выходят в составе       | на них влияние,    |
| изменение,          | чувствительность     | смешанного нерва от     | противоположное    |
| ориентировку в      | кожи. Иинервнруют    | спинного мозга и        | действию           |
| пространстве,       | скелетные мышцы,     | проходят к внутренним   | симпатической      |
| движения тела       | вызывая              | органам. Нервы          | нервной системы.   |
| (целенаправленные), | произвольные и       | образуют сплетения -    | Самый крупный      |
| чувствительность,   | непроизвольные       | солнечное, легочное,    | нерв -             |
| зрение, слух,       | движения.            | сердечное.              | блуждающий. Его    |
| обоняние, осязание, | Произвольные         | Стимулируют работу      | ветви находятся во |
| вкус, мимику лица,  | движения             | сердца, потовых желез,  | многих             |
| речь. Деятельность  | осуществляются под   | обмен веществ.          | внутренних         |
| осуществляется под  | контролем головного  | Тормозят деятельность   | органах - сердце,  |
| контролем головного | мозга, не            | пищеварительного        | сосудах, желудке,  |
| мозга               | произвольные - под   | тракта, сужают сосуды,  | так как там        |
|                     | контролем спинного   | расслабляют стенки      | расположены узлы   |
|                     | мозга (спинно-       | мочевого пузыря,        | этого нерва        |
|                     | мозговые рефлексы)   | расширяют зрачки и др.  |                    |
|                     |                      | Деятельность вегета     | тивной нервной     |
|                     |                      | системы регулирует      | работу всех        |
|                     |                      | внутренних органов, пр  | оиспосабливая их к |
|                     |                      | потребностям всего орга | низма              |
|                     |                      |                         |                    |

# 3.2. Нервная ткань: строение, функции.

Нервная ткань состоит из совокупности нейронов и глиальных клеток. Нейрон — основная структурно-функциональная единица нервной системы, которая воспринимает раздражения, перерабатывает их и передает к различным органам тела [6].

Виды нейронов

Нейроны представляют собой разнообразные по форме клетки. Нейрон состоит из клеточной мембраны, ядра, ядрышка, клеточных органоидов. Особенностью строения нейронов являются большое количество клеточных отростков и наличие в цитоплазме специфических образований: тигроидного вещества, или тигроидных глыбок, и нейрофибрилл.

Нейрон имеет два вида отростков: аксоны и дендриты.

Аксоны являются проводящей частью нейрона, они передают возбуждение от тела нервной клетки к другим нейронам и исполнительным органам (мышцам, железам). Аксон — длинный отросток, его длина может достигать 1,5 м. Конец аксона сильно ветвится, образуя контакты со многими сотнями клеток [6].

Дендриты — многочисленные короткие ветвящиеся отростки, расположенные в различных частях нервной клетки. Строение дендритов определяет их специализированную роль в восприятии поступающих дендритов сигналов. Ветвистость И наличие ШИПИКОВ значительно увеличивают поверхность дендрита в сравнении с телом клетки и создают условия для расположения на них большого числа контактов с другими нервными клетками — синапсов. Дендриты одного нейрона контактируют с сотнями и тысячами других клеток [6].

Синапс — зона функционального контакта двух нейронов. На теле одного нейрона может быть 100 и более синапсов, а на дендритах — несколько тысяч. Синапс образован двумя мембранами, — пресинаптической и постсинаптической, между которыми имеется синаптическая щель. Пресинаптическая мембрана находится на нервных окончаниях аксона, которые в ЦНС имеют вид пуговок, колечек или бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, к которому передается нервный импульс[3].

Закодированная в нервных импульсах информация передается с одного нейрона на другой с помощью медиаторов — особых веществ, способных

вызывать активное состояние других клеток постсинаптической мембраны. Медиатор располагается в синаптических пузырьках в пресинаптической мембране. При возбуждении нейрона медиаторы выходят в синаптическую щель, взаимодействуют с постсинаптической мембраной, изменяя ее проницаемость к ионам Na+, и вызывают возбуждение второго нейрона. Передача возбуждения происходит только в одном направлении — от пресинаптической мембраны к постсинаптической. К возбуждающим медиаторам относятся: ацетилхолин, адреналин ИЛИ норадреналин. Существуют также особые нейроны, синаптические окончания которых выделяют тормозные медиаторы, вызывающие торможение соседствующего нейрона. К ним относятся гамма-аминомасляная кислота и глицин.

На каждой нервной клетке расположено множество возбуждающих и тормозных синапсов, взаимодействие которых формирует окончательный ответ на пришедший импульс. Число и размеры синапсов в процессе постнатального развития человека значительно увеличиваются. У взрослого человека на одном нейроне может быть 10 тыс. синапсов. Число межнейронных связей зависит от процессов обучения: чем интенсивнее идет обучение, тем больше синапсов образуется.

#### Нервы и нервные волокна

Нервные волокна — отростки нервных клеток, покрытые оболочками. Тела нейронов и большая часть их дендритов сосредоточены в спинном и головном мозге. Некоторые нервные волокна имеют оболочку, состоящую из жироподобного вещества — миелина. Это вещество выполняет трофическую, защитную и электроизолирующую функции. Волокна, покрытые миелином, называются мякотными, а не имеющие его — безмякотными. Скорость проведения возбуждения в мякотных волокнах достигает 120 м/с, в безмякотных — 1-30 м/с.

На ранних этапах онтогенеза миелиновая оболочка отсутствует, она развивается в первые два-три года жизни, ее формирование зависит от

условий жизни ребенка. В неблагоприятных условиях процесс миелинизации может замедляться на несколько лет, что затрудняет управляющую и регулирующую деятельность нервной системы.

Объединяясь друг с другом, нервные волокна образуют нервы, которые в виде белых нитей видны невооруженным глазом. Нервы связывают все участки нашего тела с центральными отделами нервной системы. Основная функция нервных волокон и нервов — проведение нервных импульсов.

Различают три вида нервов:

- 1. чувствительные, или афферентные проводят нервные импульсы в ЦНС (центростремительные нервы);
- 2. двигательные, или эфферентные проводят нервные импульсы от ЦНС к периферическим органам (центробежные нервы);
- 3. смешанные состоят из чувствительных и двигательных волокон [6].

#### Глиальные клетки

Глиальные клетки (нейроглии) более многочисленны, чем нейроны, составляют половину объема ЦНС. Они способны к делению в течение всей жизни. По размеру глиальные клетки в 3-4 раза меньше нервных. Мембранный потенциал клеток нейроглии составляет 70-90 мВ. Глиальные клетки выполняют опорную, защитную, изолирующую, обменную (снабжение нейронов питательными веществами) функции.

В процессе развития человека соотношение между глиальными и нервными клетками значительно меняется. У новорожденного количество нейронов выше, чем глиальных клеток, к 20-30 годам их соотношение становится равным, после 30 лет количество глиальных клеток увеличивается [6].

Основные свойства нервной ткани: возбудимость, проводимость и лабильность.

Возбудимость — способность клеток нервной ткани быстро реагировать на раздражение посредством изменения электрических свойств мембраны клеток и их обмена веществ.

Количественной мерой возбудимости является порог раздражения — минимальная величина раздражителя, способная вызвать ответную реакцию ткани. Наиболее общим и естественным раздражителем для всех клеток нашего тела является нервный импульс. Раздражитель меньшей силы называют подпороговым, а большей — надпороговым. Последние вызывают более значительные ответные изменения в жизнедеятельности ткани или организма.

Проводимость — способность живой ткани проводить возбуждение. Проведение возбуждения происходит за счет распространения нервного импульса, который переходит через синапс на соседние клетки и может передаваться в любой отдел нервной системы.

Возникший в месте возбуждения потенциал действия (изменение электрического заряда мембраны) вызывает изменение электрических зарядов в соседнем участке, а те в свою очередь — в следующем, и так по всей цепи нейронов или по отросткам нервной клетки распространяется волна возбуждения, вызывая новые потенциалы действия.

Лабильность — способность возбудимой ткани воспроизводить максимальное количество потенциалов действия в единицу времени. Нервная ткань обладает наибольшей лабильностью, у мышечной ткани она значительно ниже [6].

Функциональное состояние нервной ткани зависит от ее лабильности. Патологические процессы и утомление приводят к снижению лабильности, а систематические специальные тренировки — к ее повышению.

# 3.3.Спинной мозг: строение и функции

Спинной мозг взрослого человека размещается в позвоночном канале и представляет собой цилиндрический тяж длиной 40-45 см, общей массой 34-

38 г. Спинной мозг новорожденного является наиболее зрелой частью ЦНС, однако его окончательное развитие заканчивается только к 20 годам. За этот период масса мозга увеличивается в 8 раз.

Спинной мозг имеет сегментарное строение. От каждого сегмента отходят по две пары передних и задних корешков. Две пары корешков соответствуют одному позвонку. Задние корешки образованы чувствительными (афферентными) нейронами. Тела этих нейронов лежат в специальных нервных узлах (ганглиях), а аксоны входят в спинной мозг и передают сигналы к следующим нейронам, тела которых находятся уже внутри позвоночного канала. Нейроны, расположенные в передней части спинного мозга, являются двигательными, они управляют работой скелетных мышц.

Спинной мозг условно подразделяют на четыре отдела — шейный, грудной, поясничный и крестцовый, каждый из которых содержит несколько сегментов; от любого сегмента отходит пара спинномозговых нервов. Каждая пара нервов иннервирует определенный участок организма. Например, нервы шейного и поясничного отделов иннервируют мышцы конечностей.

Центрально расположено серое вещество, которое окаймляет белое вещество. Серое вещество мозга представляет собой нервные клетки, а белое — нервные волокна. Переключение сигнала с афферентных на эфферентные нейроны осуществляется cпомощью вставочных нейронов ИЛИ непосредственно. Афферентные нейроны формируют чувствительные корешки, а эфферентные — двигательные корешки.

В спинном мозге проходят проводящие пути, образованные нервными волокнами. Их назначение — передавать возбуждение от нижележащих отделов спинного мозга к вышележащим и к головному мозгу (восходящие пути), а также доставлять сигналы от головного мозга в различные отделы спинного мозга (нисходящие пути). Это строение обеспечивает возможность контроля спинно-мозговых рефлексов вышележащими отделами ЦНС.

В спинном мозге замыкается огромное количество рефлекторных дуг, благодаря этому он способен регулировать многие функции организма — такие как сгибание и разгибание конечностей, поддержание определенной позы, изменение работы кишечника, мочевого пузыря, кровеносных сосудов и других внутренних органов. Спинной мозг человека содержит два утолщения: шейное и поясничное. Они начинают развиваться в первые годы жизни ребенка. Шейное утолщение регулирует движение верхних конечностей, поясничное — нижних. Формирование шейного и поясничного утолщений зависит от двигательной активности ребенка [6].

Возрастные особенности спинного мозга. Развитие спинного мозга начинается раньше, чем развитие других отделов нервной системы. На ранних стадиях онтогенеза плода спинной мозг заполняет всю полость позвоночного канала. В дальнейшем позвоночник растет быстрее, чем спинной мозг, поэтому он не заполняет весь канал. У новорожденного спинной мозг находится на уровне 2-3 поясничного позвонка. К концу первого года жизни он расположен уровне 1-2 поясничного позвонка, так же как у взрослого. Из-за несоответствия размеров спинного мозга и позвоночника корешки, прежде чем выйти из позвоночного канала, проходят вдоль спинного мозга в нисходящем направлении. В самом нижнем отделе они образуют «конский хвост», который состоит из пояснично-крестцовых корешковых волокон и конечной нити спинного мозга.

У 5-6 - месячного плода нервные клетки еще не развиты, однако к моменту рождения все нервные и глиальные клетки по своему развитию и строению не отличаются от клеток детей дошкольного возраста.

Рефлекторная функция спинного мозга формируются уже в эмбриональном периоде. Раньше всех созревают спинномозговые рефлексы: сначала появляются обобщенные (генерализованные) рефлексы, которые постепенно переходят в специализированные. Такие специализированные рефлексы, как хватательный, рефлекс Бабинского (отведение большого

пальца ноги при раздражении стопы), свидетельствуют о готовности ЦНС новорожденного к выполнению рефлекторных двигательных актов (шагания, плавания и др.) [8].

# 3.4 Головной мозг: строение и функции

На раннем этапе эмбриогенеза в переднем отделе спинного мозга образуется зачаток головного мозга — три пузыря: передний, средний и задний. Каждый из них соответствует основным органам чувств: передний обонянию, средний — зрению, задний — слуху и равновесию. Позже передний и задний пузыри делятся еще на два. В дальнейшем из каждого пузыря формируются соответствующие отделы головного мозга: из первого переднего пузыря образуется передний мозг, второго — промежуточный мозг, третьего — средний мозг, четвертого — мозжечок, пятого — задний, включающий продолговатый мозг и варолиев мост (мост Продолговатый мозг, варолиев мост, средний и промежуточный мозг образуют ствол головного мозга. Масса головного мозга новорожденного составляет в среднем около 400 г. По отношению к массе тела мозг новорожденного больше, взрослого. Так, значительно чем y новорожденного он составляет 1/8 массы тела, а у взрослого — 1/40.

Наиболее интенсивный рост головного мозга происходит в первые три года жизни ребенка. До 4 месяца развития плода поверхность больших полушарий гладкая. К 5 месяцам внутриутробного развития образуются боковая, затем центральная, темен-но-затылочная борозды. К моменту рождения ребенка кора больших полушарий имеет такой же тип строения, как у взрослого.

Нервные клетки новорожденного имеют простую веретенообразную форму с небольшим количеством отростков, кора головного мозга у детей значительно тоньше, чем у взрослого.

Головной мозг развивается гетерохронно. Функциональной полноценности достигают прежде всего стволовые, подкорковые и корковые

структуры, регулирующие вегетативные функции организма. Миелинизация нервных волокон, расположение слоев коры, дифференцирование нервных клеток завершаются к 3 годам. Последующее развитие головного мозга заключается в увеличении количества ассоциативных волокон и образовании новых нервных связей. Масса мозга в эти годы увеличивается незначительно.

Окончательное созревание головного мозга заканчивается к 17-20 годам [8].

Головной мозг человека состоит и следующих отделов:

Задний мозг

Задний мозг включает продолговатый мозг и варолиев мост.

Продолговатый мозг — центр многих рефлексов, которые можно разделить на две группы: вегетативные и тонические.

К вегетативной группе относятся центры дыхательных, сосудодвигательных, пищеварительных рефлексов, потоотделения, чихания, кашля и др., а также сложные (цепные) рефлексы. Особенность сложных рефлексов заключается в том, что они состоят из двух и более рефлексов, когда конец одного является началом другого. К таким рефлексам относятся рвотный и сосательный. Последний стимулирует возникновение еще одного рефлекса — глотательного.

Рефлексы продолговатого мозга отличаются сложностью и разнообразием по сравнению с рефлексами спинного мозга.

Центрами тонических рефлексов являются ядра Бехтерева, Дейтерса и Швальбе, которые расположены в заднем мозге и выполняют функцию перераспределения мышечного тонуса между сгибательными и разгибательными мышцами. Тонические рефлексы обеспечивают сохранение позы человека и животных в покое и при движении.

Варолиев мост содержит ядра серого мозгового вещества в глубине белого мозгового вещества. По белому веществу проходят проводящие нервные пути, соединяющие вышележащие отделы головного мозга с

мозжечком, продолговатым и спинным мозгом. Поперечные волокна моста образуют правую и левую средние ножки мозжечка, которые соединяют мост с мозжечком.

В этом отделе находятся центры, управляющие деятельностью мимических, жевательных и одной из глазодвигательных мышц. В варолиев мост поступают нервные импульсы от рецепторов органов чувств, расположенных на голове: от языка (вкусовая чувствительность), внутреннего уха (слуховая чувствительность и равновесие) и кожи [6].

Возрастные особенности заднего мозга. К моменту рождения ребенка продолговатый мозг уже функционально развит. Его масса вместе с мостом составляет 8 г (2 % массы головного мозга). Продолговатый мозг состоит из мелких клеток, которые имеют длинные мало миелинизированные отростки. К функционально моменту рождения клетки развиты, поэтому осуществляется регуляция дыхания, сердечно-сосудистой И пищеварительной систем. К 1,5 годам клетки продолговатого мозга хорошо дифференцированы. В 7 лет структура продолговатого мозга и варолиева моста достигает уровня взрослого человека [6].

## Средний мозг

Средний мозг представлен четверохолмием, красными ядрами и черной субстанцией. Он расположен между промежуточным мозгом (кпереди), варолиевым мостом и мозжечком.

Средний мозг — подкорковый регулятор мышечного тонуса, центр зрительного и слухового ориентировочного рефлексов а также некоторых сложных двигательных рефлекторных актов (глотание, жевание).

Влияние среднего мозга на тонус скелетной мускулатуры осуществляется через красное ядро. К нему сходятся импульсы от коры больших полушарий, подкорковых ядер, мозжечка, ретикулярной формации. Выключение красного ядра вызывает резкое повышение тонуса скелетной мускулатуры. Черная субстанция среднего мозга активирует передний мозг,

придавая эмоциональную окраску некоторым поведенческим реакциям. В передаче этих влияний важная роль принадлежит дофамину\*. С функцией черной субстанции связана реализация рефлексов жевания и глотания. При совместном участии среднего и продолговатого мозга реализуются врожденные тонические рефлексы: позы (положения тела), выпрямительные, лифтные рефлексы и рефлекторные движения глазных яблок при вращении тела. Средний мозг обеспечивает регуляцию двигательных ориентировочных рефлексов.

Передние бугры четверохолмия являются первичными зрительными центрами: они осуществляют поворот глаз и головы в сторону раздражителя (зрительный ориентировочный рефлекс).

Задние бугры четверохолмия являются рефлекторными центрами слуховых ориентировочных рефлексов. При раздражении слуховых рецепторов происходят настораживание и поворот головы по направлению к источнику звука.

Возрастные особенности среднего мозга. У новорожденного масса среднего мозга составляет 2,5 г. Его форма и строение почти такие же, как у взрослого. Хорошо развито красное ядро, практически сформированы его связи с другими отделами ЦНС. Черная субстанция развивается медленнее [6].

Возрастные особенности среднего мозга

Функциональное развитие среднего мозга начинается еще во внутриутробном периоде. На раннем этапе эмбриогенеза обнаруживаются тонические, оборонительные и другие двигательные рефлексы.

В первые дни жизни ребенка формируется рефлекс на громкий внезапный раздражитель. Этот рефлекс исчезает к 4-7-месячному возрасту, но появляются реакции, близкие к ориентировочному рефлексу (рефлекс испуга, или вздрагивания). В 1,5 месяца появляется защитный мигательный рефлекс. В конце первого полугодия формируются тонические рефлексы,

которые выражаются в том, что при освещении глаз голова быстрым движением откидывается назад, а тело впадает в опистотонус (судорожная поза с резким выгибанием спины, запрокидыванием головы назад, вытягиванием ног, сгибанием рук, кистей, стоп и пальцев вследствие сокращения мышц конечностей, спины и шеи). Рефлекс положения тела в пространстве формируется после рождения, хотя рецепторы (кожные, зрительные и др.) созревают еще в эмбриональном периоде.

В процессе онтогенеза простые двигательные рефлексы (шагания, плавания, ползания) исчезают, вместо них возникают более сложные: переворачивание на живот, ползание на животе и на четвереньках, сидение, вставание и, наконец, хождение. В осуществлении этих реакций участвуют и другие отделы головного мозга [8].

#### Мозжечок

Мозжечок расположен над продолговатым мозгом и стволом. У млекопитающих и человека мозжечок состоит из двух образований: более древнего — червя мозжечка и более молодых — двух полушарий. Мозжечок Kopa обладает связан проводящими путями. мозжечка складчатой поверхностью, общая площадь которой у взрослого человека составляет 340 см2. Она состоит из трех слоев, содержащие разные виды клеток: звездчатые, корзинчатые, зернистые и т. д. Клетки всех слоев взаимодействуют между собой, возбуждаясь или тормозясь. Мозжечок участвует в координации сложных двигательных актов, поэтому к нему приходят импульсы от всех рецепторов, которые раздражаются во время движений тела. Наличие обратной связи мозжечка и коры больших полушарий головного мозга дают возможность ему оказывать влияние на произвольные движения, а большим полушариям через мозжечок регулировать тонус скелетных координировать их сокращения. У человека с нарушениями или выпадением функций мозжечка нарушается регуляция мышечного тонуса: движения рук ног становятся резкими, нескоординированными; походка шаткая

(напоминающая походку пьяного); наблюдается тремор конечностей и головы [3].

Таким образом мозжечок:

- обеспечивает точность, координированность, ловкость мышечных движений;
- участвует в поддержании тонуса скелетных мышц, позы и равновесия;
- влияет на деятельность сердечно-сосудистой, дыхательной и пищеварительной систем.

При повреждении червя мозжечка человек не может ходить и стоять, чувство равновесия нарушается. При поражении полушарий уменьшается тонус мышц, нарушается точность и быстрота произвольных движений, появляется сильная дрожь конечностей, а также быстрая утомляемость при движениях[6].

Возрастные особенности мозжечка. В эмбриональный период первоначально созревает развития червь, a затем полушария. новорожденного червь более развит, чем полушария. Во внутриутробном периоде образуются борозды и извилины полушарий мозжечка. Масса мозжечка к моменту рождения составляет 20,5-25 г, к 3 месяцам масса увеличивается вдвое, а к 6 — втрое. Наиболее интенсивно мозжечок растет в первый год жизни, особенно с 5 до 11 месяцев. Именно в это время ребенок учится сидеть и ходить. Затем интенсивное развитие происходит в период полового созревания. В 7 лет окончательно формируются ножки мозжечка [6].

Промежуточный мозг

Промежуточный мозг — часть мозгового ствола — формируется из задней части переднего мозга. Состоит из двух основных частей: таламуса (зрительный бугор) и гипоталамуса (подбугровая область). Последний

соединен с гипофизом, они составляют единую морфофункциональную гипоталамо-гипофизарную систему.

Таламус включает 40 ядер (передние, средние и задние). Морфологически и функционально их можно разделить на 4 группы:

- 1. Специфические ядра служат областью переключения различных афферентных сигналов, направляемых в соответствующие центры коры головного мозга.
- 2. Неспецифические ядра относятся к ретикулярной формации, обеспечивают тонус коры головного мозга.
  - 3. Ядра с моторными функциями.
  - 4. Ядра с ассоциативными функциями.

К четверной группе относятся три ядра, каждое из которых обеспечивает связь с теменной, лобной и височной зонами коры головного мозга. Повреждение этой связи сопровождается речевыми, зрительными и слуховыми нарушениями.

Таламус — это высший центр болевой чувствительности, при его повреждении уменьшается или полностью исчезает осознанное восприятие разных видов чувствительности.

Гипоталамус — главный подкорковый центр регуляции внутренней среды организма. В нем находятся центры терморегуляции, насыщения и голода, жажды, удовольствия и др.

Благодаря способности регулировать гомеостатические параметры гипоталамус является центром подкорковых врожденных мотивационных рефлексов. Эти рефлексы направлены на восстановление нарушенного равновесия внутренней среды. Так, при раздражении различных зон гипоталамуса проявляется оборонительное, пищевое, половое поведение. В мотивационном поведении человека большую роль играет взаимодействие гипоталамуса и коры головного мозга, поэтому поведенческие реакции протекают по механизму условных рефлексов, которые вырабатываются на

основе безусловных. Образуются индивидуальные реакции, облегчающие и совершенствующие выполнение поведенческих реакций.

Гипоталамус вырабатывает нейросекреты, которые усиливают (либерины) или уменьшают (статины) выработку гормонов передней долей гипофиза.

Поражение гипоталамуса приводит к тяжелейшим эндокринным и вегетативным расстройствам: снижение или повышение кровяного давления, урежение или учащение сердечного ритма, затруднение дыхания, нарушение перистальтики кишечника, изменения в составе крови и др[6].

Возрастные особенности промежуточного мозга.

Наблюдается гетерохронность развития отделов промежуточного мозга. Таламус начинает формироваться на 2 месяце внутриутробного развития. На 4-5 месяцах образуются нервные волокна, соединяющие таламус с корой головного мозга. В 6 месяцев развиваются неспецифические ядра. Усиленный рост таламуса происходит в 4-летнем возрасте, размеров взрослого человека он достигает к 13 годам.

В эмбриональном периоде закладывается гипоталамус. Ядра гипоталамуса хорошо выражены у плода только на 4-8 месяце. В 2-3 года они еще недостаточно сформировались, поэтому у детей в этом возрасте несовершенны терморегуляция и водно-солевой баланс. Окончательное созревание ядер происходит к 13-14 годам [6].

Передний мозг

Передний мозг состоит из подкорковых (базальных) ядер и коры больших полушарий.

Подкорковые (базальные) ядра входят в состав серого вещества больших полушарий и состоят из полосатого тела, бледного шара, скорлупы, ограды, субтала-мического ядра и черной субстанции. Подкорковые ядра — это связующее звено между корой и стволом мозга. К базальным ядрам подходят афферентные и эфферентные пути.

Функционально базальные ядра являются надстройкой над красными ядрами среднего мозга и обеспечивают пластический тонус, т. е. способность удерживать длительное время врожденную или выученную позу. Например, поза кошки, которая стережет мышь, или длительное удержание позы балериной, выполняющей какое-либо па.

Подкорковые ядра позволяют осуществлять медленные, стереотипные, рассчитанные движения, а их центры — регуляцию врожденных и приобретенных программ движения, а также регуляцию мышечного тонуса.

Нарушение различных структур подкорковых ядер сопровождается многочисленными двигательными и тоническими сдвигами. Так, у новорожденных неполное созревание базальных ядер (особенно бледного шара) приводит к резким судорожным сгибательным движениям.

Нарушение функций полосатого тела ведет к заболеванию — хорее, которое сопровождается непроизвольными движениями, значительными изменениями позы. При расстройстве полосатого тела нарушается речь, возникают затруднения в повороте головы и глаз в сторону звука, происходит потеря словарного запаса, прекращается произвольное дыхание.

Нарушение обмена дофамина в базальных ядрах является причиной развития болезни Паркинсона, основные симптомы которого: постоянное дрожание рук и ног, маскообразность лица, слюнотечение, повышение тонуса всех мышц, общая скованность, замедленность движений.

Кора больших полушарий головного мозга — это высший отдел ЦНС, состоит из трех зон: древней, старой и новой.

В древнюю кору входят обонятельная доля, боковая обонятельная извилина. Старая кора образована гиппокамповой и зубчатой извилинами. Новая кора — это проекция внешней рецепции на поле воспринимаемых нейронов коры. Быстрое развитие проекционных полей, ассоциативных областей коры и медленное развитие костей черепа привело к образованию

складок: борозд и извилин. У человека поверхность новой коры составляет 1500 см 2.

Кора больших полушарий головного мозга состоит из 14 млрд клеток, расположенных в шести слоях:

- 1 слой молекулярный, состоит из нервных волокон и небольшого количества мелких клеток;
- 2 наружный зернистый, в его состав входят густо расположенные мелкозернистые, треугольные и многоугольные клетки;
  - 3 состоит из мелких и средних пирамидных клеток;
- 4 внутренний, зернистый слой, в его состав входят густо расположенные мелкие клетки, клетки-зерна;
- 5 глубокий слой пирамид, состоит из гигантских пирамидных клеток;
- 6 слой полиморфных треугольных, веретенообразных и звездчатых клеток.
- Слои 2, 4 и 6 состоят из воспринимающих клеток, 3 и 5 из пирамидных, обеспечивающих регуляцию произвольных движений.

В коре больших полушарий головного мозга располагаются высшие регуляторные центры, которые контролируют и регулируют все рефлекторные процессы организма, психическую деятельность, поведение, воспринимают все чувствительные сигналы.

Возрастные особенности переднего мозга.

Базальные ядра развиваются быстрее, чем зрительные бугры. Миелинизация структур базальных ядер начинается еще в эмбриональном периоде, а заканчивается к первому году жизни. Двигательная активность новорожденного зависит от функционирования бледного шара. Импульсы от него вызывают общие некоординированные движения головы, туловища, конечностей. У новорожденного базальные ядра связаны со зрительными буграми, гипоталамусом и черной субстанцией. При развитии полосатого

тела у ребенка появляются мимические движения, а затем умение сидеть и стоять. В 10 месяцев ребенок может свободно стоять. По мере развития базальных ядер и коры головного мозга движения становятся более координированными. К концу дошкольного периода устанавливается равновесие корково-подкорковых двигательных механизмов [6].

#### Ретикулярная формация

Ретикулярная формация — сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх). Нейроны, составляющие ретикулярную формацию, разнообразны по величине, строению и длине аксонов, их волокна густо переплетаются. Ретикулярная формация морфологически и функционально связана со спинным мозгом, мозжечком, лимбической системой и корой больших полушарий головного мозга.

К ядрам ретикулярной формации от всех афферентных систем по неспецифическому пути направляется поток чувствительных импульсов, который поддерживает активное состояние коры головного мозга. Поэтому ретикулярная формация у бодрствующего человека находится в постоянном тонусе — возбуждении. Нарушение связи между ретикулярной формацией и корой головного мозга приводит к развитию сонного состояния, при котором большие полушария Ретикулярная формация не воспринимают внешнего раздражения. Восходящий путь от ретикулярной формации к коре называется восходящей активирующей системой, создающей определенный уровень энергетического обмена в клетках коры головного мозга и оптимальные условия для их работоспособности. На спинной мозг ретикулярная формация оказывает как активирующее, так и угнетающее влияние [6].

#### Лимбическая система

Лимбическая система окаймляет ствол мозга и является краевой поверхностью, представляющей собой ряд концентрически расположенных переходов от древней коры головного мозга к новой коре (плащу).

Лимбическая система участвует в регуляции вегетативных функций, влияет на смену сна и бодрствования. Совместно с гиппокампом она обеспечивает процессы запоминания и долговременной памяти. Особая роль принадлежит лимбической системе в формировании эмоций: она является высшим подкорковым регулятором поведенческих реакций, связанных с удовлетворением первичных потребностей (еда, питье, половые потребности). К лимбической системе стекаются импульсы от рецепторов внутренних органов, эти импульсы несут информацию о состоянии внутренних органов. Поведенческие реакции, связанные с удовлетворением потребностей, имеют эмоциональную окраску [6].

#### КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Из каких отделов состоит нервная система человека?
- 2. Какие функции выполняет нервная система?
- 3. Каковы основные процессы, протекающие в нервных клетках?
- 4. Каковы функции спинного мозга?
- 5. Каковы функции: продолговатого мозга; среднего мозга; мозжечка; промежуточного мозга; лимбической системы; подкорковых ядер?
- 6. Определите основные возрастные особенности центральной нервной системы.

### Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
  - 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.

- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Учебное пособие для студентов дефектологический факультете высш. пед. учеб. заведений. М.: Издательский центр «Академия», 2008.
- 5. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456с.
- 6. Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.

## Глава 4. Развитие опорно-двигательного аппарата

Опорно-двигательный аппарат человека состоит из костной и мышечной систем. С его деятельностью связана одна из ведущих функций всего живого — движение. Нет ни одной формы человеческой деятельности, которая протекала бы без движений. Благодаря развитию опорнодвигательного аппарата человек приобрел такие качества как труд и речь, которые стали важными факторами для антропогенеза.

Движения являются важнейшим фактором для нормального развития ребенка. Уже в эмбриональном периоде двигательная активность в значительной степени определяет темпы общего развития организма. Еще большее значение она приобретает в постнатальном развитии. Около 50 % своего времени младенец проводит в движении. Ограничивать его двигательную активность — значит тормозить и физическое, и психическое развитие ребенка.

Двигательная активность значительно влияет на развитие функций мозга ребенка. Существует две формы влияния движений на функции головного мозга: специфическая и неспецифическая. Влияние специфической формы проявляется в том, что двигательные области головного мозга являются необходимым элементом его деятельности как целого. Неспецифическая форма связана с влиянием движений на работоспособность корковых клеток, способствует повышение которой формированию новых условнорефлекторных связей и функционированию старых. Большое значение имеют движения рук, особенно точные движения пальцев. Дети в результате тренировок точных движений пальцев быстро овладевают речью, значительно опережая группу детей, в которой подобные упражнения не проводились.

Таким образом, движения — необходимый элемент, фактор для нормального развития ребенка, поскольку с помощью них ребенок формируется физически, у него развиваются функции речи и мышления. Ограничение подвижности или мышечные перегрузки нарушают гармоничность развития организма, способствуют развитию многих заболеваний [6].

# 4.1. Строение и функции костной системы человека

Структурной единицей скелета является кость. Скелет человека состоит из 206 костей, соединенных между собой различными способами. Масса костей взрослого человека составляет у мужчин 18 % от общей массы тела, у женщин — 16 %[6].

Таблица 3. Скелет человека

| Отделы<br>тела  | Отделы<br>скелета                 | Кости<br>скелета                                                                               | Тип кости | Характер<br>соединения                  | Особенности<br>скелета<br>человека                                            |
|-----------------|-----------------------------------|------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|-------------------------------------------------------------------------------|
| Голова (скелет) | Мозговой отдел (черепная коробка) | Парные кости: теменные и височные. Непарные кости: лобная, затылочная, решетчатая, клиновидная | Плоские   | Неподвижное                             | Мозговой отдел черепа развит больше, чем лицевой - объем 1500 см <sup>3</sup> |
|                 | Лицевой отдел черепа              | Парные кости: верхняя челюсть, скуловые, носовые,                                              | Плоские   | Неподвижное,<br>кроме нижней<br>челюсти | Развитие подбородочного выступа в связи с членораздельной речью               |

|                     |                       | слезные, небные, нижняя носовая раковина. <i>Непарные</i> кости: нижняя челюсть, сошник, подъязычная кость |                                      |                                                                                  |                                                                            |
|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Туловище (скелет)   | Позвоночник           | 7 шейных позвонков, 12 грудных, 5 поясничных, 5 крестцовых, 4-5 копчиковых                                 | Короткие                             | Полуподвижное,<br>кроме<br>крестцовых<br>позвонков,<br>соединенных<br>неподвижно | S-образный изгиб позвоночника, увеличение тел позвонков, отсутствие хвоста |
|                     | Грудная<br>клетка     | 12 грудных позвонков. 12 пар ребер, грудная кость                                                          | Короткие,<br>плоские                 | Полуподвижное                                                                    | Сжата в передне-<br>заднем<br>направлении                                  |
| Конечности (скелет) | Верхняя<br>конечность | Плечевой пояс: две лопатки, две ключицы                                                                    | Плоские                              | Подвижное                                                                        | Большая<br>подвижность<br>плечевого сустава                                |
|                     |                       | Свободная конечность - рука: плечо - плечевая кость, предплечье -                                          | Трубчатые.<br>Короткие<br>(запястье) | Подвижное                                                                        | Большой палец противопоставлен остальным                                   |

|            | локтевая и     |              |             |                 |
|------------|----------------|--------------|-------------|-----------------|
|            | лучевая кости, |              |             |                 |
|            | кисть -        |              |             |                 |
|            | запястье,      |              |             |                 |
|            | пясть,         |              |             |                 |
|            | фаланги        |              |             |                 |
|            | пальцев        |              |             |                 |
|            | ,              |              |             |                 |
| Нижняя     | Тазовый пояс:  | Плоские      | Неподвижное | Широкий и       |
| конечность | парные кости   |              |             | массивный скеле |
|            | -              |              |             | таза для        |
|            | подвздошные,   |              |             | поддержания     |
|            | седалищные,    |              |             | внутренних      |
|            | лобковые       |              |             | органов         |
|            |                |              |             |                 |
|            | Свободная      | Трубчатые.   | Подвижное   | Ограниченное    |
|            | конечность -   | Короткие     |             | движение        |
|            | нога: бедро -  | (предплюсна) |             | тазобедренного  |
|            | бедренная      |              |             | сустава. Стопа  |
|            | кость, голень- |              |             | образует свод.  |
|            | большая и      |              |             | Развита большая |
|            | малая          |              |             | пяточная кость, |
|            | берцовые,      |              |             | но меньше       |
|            | стопа -        |              |             | развиты пальцы. |
|            | предплюсна,    |              |             | Ноги длиннее    |
|            | пяточная       |              |             | рук, кости      |
|            | кость,         |              |             | массивнее       |
|            | плюсна,        |              |             |                 |
|            | фаланги        |              |             |                 |
|            |                |              | I .         |                 |

Скелет выполняет три основные функции: опорную, защитную и движения [6]. Опорная функция заключается в том, что скелет служит опорой для мышц и внутренних органов, которые, фиксируясь к костям, удерживаются в своем положении.

Функция движения проявляется в том, что кости скелета — своеобразные рычаги, которые приводятся в движение мышцами, обуславливая различные двигательные акты — бег, ходьбу, прыжки и др.

Защитная функция состоит в том, что скелет образует стенки ряда полостей и является, таким образом, надежной защитой для располагающихся в этих полостях органов.

Строение, химический состав и физические свойства костей

Основа кости образована костной тканью, которая является разновидностью соединительной ткани. Костная ткань состоит из костных клеток и межклеточного вещества. В кости находятся кровеносные сосуды и нервы. Кость обладает высокой механической прочностью. Например, большая берцовая кость, поставленная вертикально, способна выдержать груз массой в две тонны.

В состав кости входят минеральные и органические вещества в соотношении 2/3 : 1/3. Минеральные вещества придают костям твердость, органические — упругость. Минеральные соединения кости образованы в основном солями кальция.

Снаружи кости покрыты соединительнотканной оболочкой — надкостницей. В надкостнице находится большое количество нервов и кровеносных сосудов, которые питают костную ткань, а также ко сте образующие клетки, определяющие рост кости в толщину и сращение костных обломков при переломах.

За надкостницей следует компактное (плотное) вещество кости, а затем губчатое. Губчатое вещество имеет пористую структуру, внешне напоминающую губку. Это вещество образовано тонкими костными перекладинами, между которыми находится костный мозг, участвующий в кроветворении. Соотношение компактного и губчатого веществ в различных костях зависит от их функционального назначения. Например, кости,

выполняющие функции опоры и движения, содержат больше компактного вещества.

На поверхности костей, в местах прикрепления мышц, образуются шероховатости — бугорки, гребни, расположение и степень развития которых определяется двигательными нагрузками. У мужчин они выражены больше, чем у женщин [6].

Возрастные особенности костной системы.

В процессе пренатального и постнатального развития костная система ребенка подвергается сложным преобразованиям. Формирование скелета начинается в середине 2 месяца эмбриогенеза и продолжается до 18-25 лет постнатальной жизни. Вначале у эмбриона весь скелет состоит из хрящевой ткани, окостенение которой не завершается к моменту рождения, поэтому новорожденный ребенок содержит в своем скелете еще много хрящей, да и сама кость значительно отличается по своему химическому составу от кости взрослого человека. На первых этапах постнатального онтогенеза кость содержит много органических веществ. Она непрочна и легко искривляется под влиянием неблагоприятных внешних воздействий: узкой неправильном положении ребенка в кроватке и т. д. До 6-7 лет стенки костей интенсивно утолщаются, повышается их механическая прочность. Затем до 14 лет толщина компактного вещества практически не изменяется, а с 14 до 18 лет вновь происходит возрастание прочности костей. Окончательное окостенение скелета завершается у женщин в 17-21 год, у мужчин — в 19-25 лет. Кости разных отделов скелета окостеневают в различное время. Например, окостенение позвоночника завершается к 20-25 годам, копчиковых позвонков — 30, кисти — в 6-7 лет, запястных костей — 16-17, окостенение костей хинжин конечностей заканчивается приблизительно к 20 годам.

Темпы развития костей кисти коррелируют с общим физическим развитием детей и подростков, поэтому сопоставление паспортного и

«костного» возраста позволяет относительно правильно охарактеризовать темпы общего физического развития детей и подростков. Позвоночник новорожденного отличается отсутствием каких-либо изгибов и характеризуется чрезвычайной гибкостью. В 2 месяца постнатальной жизни появляется шейный лордоз, в 6 месяцев — грудной кифоз, к первому году жизни — поясничный лордоз. Последним формируется крестцовый кифоз

К 3-4 годам позвоночник приобретает все четыре изгиба, которые наблюдаются у взрослого. Однако до 12 лет позвоночник ребенка остается эластичным, изгибы его фиксированы слабо, поэтому в неблагоприятных условиях развития позвоночник у ребенка легко искривляется.

Усиление темпов роста позвоночника наблюдается в младшем школьном возрасте (7-9 лет) и с началом полового созревания. После 14 лет позвоночник практически не растет. Грудная клетка к 12-13 годам уже значительно напоминает грудную клетку взрослого.

Три части тазовых костей срастаются в 7-8 лет, с 9 лет формируются половые отличия в строении таза у девочек и мальчиков. К 14-16 годам строение таза становится аналогичным строению взрослого человека, с этого момента таз способен выдерживать значительные нагрузки.

Большие изменения претерпевает скелет головы. Закрытие родничков происходит в 1-2 года, а сращивание черепных швов — в 4 года. Лицевая часть черепа интенсивно растет в пубертатном периоде до наступления половой зрелости.

Смена молочных и формирование постоянных зубов заканчиваются к пубертатному периоду, и только большие коренные зубы (зубы «мудрости») появляются после полового созревания. Сроки появления молочных зубов и их смена на постоянные также коррелируют с общим физическим развитием.

Таким образом, скелет детей и подростков отличается высокой эластичностью. Неправильное положение ребенка за рабочим столом в процессе занятий или при приготовлении уроков дома, могут нарушить

правильное развитие скелета и привести к необратимым деформациям. Для правильного развития скелета детей особое значение имеет полноценное и богатое витаминами питание. Например, при недостатке витамина D может развиться рахит, который проявляется в задержке роста и деформации различных частей скелета: в искривлении ног, деформации черепа, грудной клетки и позвоночника [6].

#### 4.2. Строение и функции мышечной системы человека

Мышечная ткань

В организме человека насчитывают около 600 скелетных мышц

Мышцы тела человека образованы в основном мышечной тканью, состоящей из мышечных клеток. Различают гладкую, поперечно-полосатую скелетную и сердечную мышечную ткань[9].

Поперечно-полосатая мышечная ткань образует скелетные мышцы, а также входит в структуру некоторых внутренних органов (язык, глотка, верхний отдел пищевода и др.).

Клетки поперечно-полосатой мускулатуры очень имеют малый диаметр и большую длину (до 10-12 см), их называют волокнами. В состав мышечных волокон входит большое количество еще более тонких волоконец — миофибрилл, которые, в свою очередь, состоят из тончайших нитей протофибрилл. В состав протофибрилл входят специальные сократительные белки миозин и актин. Сокращение — основная функция мышц обусловлено скольжением нитей актина и миозина относительно друг друга. Механизм мышечных сокращений представляет собой сложный процесс физических и химических превращений, протекающий в мышечном волокне обязательном участии сократительного аппарата. Запуск механизма осуществляется нервным импульсом, а энергией для процесса аденозинтрифосфорная кислота. Особенностью сокращения является строения мышечных волокон является также большое количество митохондрий, обеспечивающих мышечное волокно необходимой энергией.

Расслабление мышечного волокна происходит пассивно, благодаря эластичности мембраны и внутримышечной соединительной ткани.

Гладкая мышечная ткань состоит из одноядерных клеток — миоцитов вере-теновидной формы длиной 20-500 мкм. Эта ткань обладает особыми свойствами: она медленно непроизвольно сокращается и расслабляется, обладает автоматией. Гладкая мышечная ткань образует мышечные слои в стенках кровеносных и лимфатических сосудов, в стенках полых органов (желудок, кишечник, мочевыводя-щие пути, матка и пр.).

Сердечная мышечная ткань состоит из многоядерных кардиомиоцитов. Кар-диомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма. Этот вид мышечной ткани образует миокард сердца. Особым свойством этой ткани является автоматия — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках. Эта ткань сокращается непроизвольно[6].

Таблица 4. Строение, форма и классификация скелетных мышц

| Части  | Название           | Прикреплени                                            | Тип                  | Характер     | Функции                     |
|--------|--------------------|--------------------------------------------------------|----------------------|--------------|-----------------------------|
| тела   | мышц               | е мышц                                                 | мышечно<br>й ткани   | работы       |                             |
| Голова | Жевательные        | Одним концом к височной кости черепа, другим к челюсти | Поперечно -полосатая | Произвольный | Движение<br>челюстей        |
|        | Мимические<br>лица | Одним концом к костям черепа, другим - к               | Поперечно -полосатая | Произвольный | Мимические<br>движения лица |

|           |                       | коже                      |                      |               |                  |
|-----------|-----------------------|---------------------------|----------------------|---------------|------------------|
|           | Круговая<br>мышца рта | Прикреплена только к коже | Поперечно -полосатая | Произвольный  | Движение рта     |
| Туловище  | Затылочные,           | К костям                  | Поперечно            | Произвольный  | Поддержание      |
|           | спинные,              | скелета                   | -полосатая           |               | туловища в       |
|           | грудные,              |                           |                      |               | вертикальном     |
|           | брюшные,              |                           |                      |               | положении.       |
|           | диафрагма,            |                           |                      |               | Мышцы -          |
|           | межреберные           |                           |                      |               | сгибатели и      |
|           |                       |                           |                      |               | разгибатели.     |
|           |                       |                           |                      |               | Движения тела.   |
|           |                       |                           |                      |               | Дыхательные      |
|           |                       |                           |                      |               | движения         |
| Конечност | Двуглавая и           | К костям                  | Поперечно            | Произвольный  | Мышцы-           |
| И         | трехглавая            | скелета                   | -полосатая           |               | сгибатели и      |
|           | мышцы рук;            | конечностей и             |                      |               | разгибатели рук, |
|           | мышцы кисти           | поясов                    |                      |               | ног,             |
|           | руки;                 | конечностей               |                      |               | осуществляющи    |
|           | двуглавая,            |                           |                      |               | е движения       |
|           | четырехглава          |                           |                      |               | конечностей      |
|           | я, икроножная         |                           |                      |               |                  |
|           | мышцы ног:            |                           |                      |               |                  |
|           | мышцы стопы           |                           |                      |               |                  |
| Внутренни | Сердечная             | Не                        | Поперечно            | Непроизвольны | Сокращение       |
| е органы  | мышца                 | прикреплена к             | -полосатая           | й             | сердца           |
|           |                       | костям                    |                      |               |                  |
|           | Мышцы                 | Не                        | Гладкая              |               |                  |
|           | стенок                | прикреплены               |                      |               |                  |
|           | сосудов,              | к костям                  |                      |               |                  |
|           | кишечника,            |                           |                      |               |                  |
|           |                       |                           |                      |               |                  |

## Возрастные особености мышечной системы

Мышечная система ребенка в процессе онтогенеза претерпевает значительные структурные и функциональные изменения. Формирование мышечных клеток и образование мышц как структурных единиц мышечной системы происходит гетерохронно, т. е. сначала образуются те скелетные мышцы, которые необходимы для нормальной жизнедеятельности организма ребенка на данном возрастном этапе. Процесс «чернового» формирования мышц заканчивается к 7-8 неделе пренатального развития. На этом этапе раздражение кожных рецепторов уже вызывает ответные двигательные реакции плода, что свидетельствует об установлении функциональной связи между тактильной рецепцией и мышечной системой. В последующие месяцы у плода интенсивно идет функциональное созревание мышечных клеток, связанное с увеличением количества миофибрилл и их толщины. После созревание мышечной ткани продолжается. В частности, рождения интенсивный рост волокон наблюдается до 7 лет и в пубертатном периоде. Начиная с 14-15 лет, микроструктура мышечной ткани практически не отличается от микроструктуры взрослого человека. Однако утолщение 30-35 мышечных волокон может продолжаться ДО лет. Более крупные мышцы формируются всегда раньше мелких. Например, мышцы плеча и предплечья формируются быстрее мелких мышц кисти. Развитие мышц верхних конечностей, как правило, предшествует развитию мышц нижних конечностей. У годовалого малыша мышцы рук и плечевого пояса развиты лучше, чем мышцы таза и ног. Особенно интенсивно 6-7 развиваются мышцы рук В лет. Общая масса мышц быстро нарастает в период полового созревания: у

мальчиков 13-14 лет, девочек 11-12. a y Значительно меняются в процессе онтогенеза и функциональные свойства мышц. Увеличивается возбудимость и лабильность мышечной ткани. Изменяется мышечный тонус. У новорожденного мышечный тонус повышен, а мышцы, вызывающие сгибание конечностей, преобладают над мышцамиразгибателями, поэтому их движения достаточно скованны. С возрастом увеличивается тонус мышц-разгибателей, формируется баланс мышцами-сгибателями.

К 15-17 лет заканчивается формирование опорно-двигательного аппарата. В процессе развития опорно-двигательного аппарата изменяются двигательные качества мышц: быстрота (скорость), сила, ловкость и выносливость. Их развитие происходит неравномерно. Прежде всего развиваются быстрота и ловкость движений.

Быстрота движений характеризуется числом движений, которое ребенок в состоянии произвести за единицу времени. Быстрота определяется тремя показателями: скоростью одиночного движения, временем двигательной реакции и частотой движений. Скорость одиночного движения значительно возрастает у детей с 4-5 лет и к 13-14 годам достигает уровня взрослого. К 13-14 годам уровня взрослого достигает и время двигательной реакции, которая обусловлена скоростью физиологических процессов в нервномышечном аппарате. Максимальная произвольная частота движений увеличивается с 7 до 13 лет, причем у мальчиков в 7-10 лет она выше, чем у девочек, а с 13-14 лет частота движений девочек превышает этот показатель у мальчиков.

В 13-14 лет завершается развитие ловкости, которая связана со способностью детей и подростков осуществлять точные, координированные и быстрые движения, т. е. дети должны с пространственной и временной точностью выполнять сложные двигательные задачи. Наиболее важен для развития ловкости дошкольный и младший школьный периоды.

Таким образом, дети до 6-7 лет не в состоянии совершать тонкие точные движения в предельно короткое время. Ловкость продолжает совершенствоваться до 17 лет.

Позже других физических качеств развивается выносливость — способность человека противостоять утомлению и воздействию различных факторов внешней среды при длительном выполнении какого-либо вида деятельности без снижения ее эффективности и при сохранении оптимальной работоспособности. Существуют возрастные, половые и индивидуальные отличия в выносливости. Выносливость детей дошкольного возраста находится на низком уровне, особенно к статической работе. Интенсивный прирост выносливости к динамической работе наблюдается в 11-12 лет. Своего максимального уровня она достигает поздно, к 25-30 годам.

Развитие двигательной активности и координации движений

Двигательная активность и координация движений у новорожденного безусловно-рефлекторную ограничены имеют основу. Безусловно-И плавательный рефлекс, рефлекторную природу имеет максимальное проявление которого наблюдается к 40 дню постнатального развития. В этом возрасте ребенок способен совершать в воде плавательные движения и держаться на ней до 15 мин. Естественно, что голову ребенка следует поддерживать, так как его мышцы шеи еще очень слабы. В дальнейшем рефлекс плавания и другие безусловные двигательные рефлексы угасают, а им на смену формируются различные двигательные навыки.

Развитие движений ребенка зависит не только от формирования опорно-двигательной и нервной системы, но и от условий воспитания.

Все основные естественные движения, свойственные человеку (ходьба, лазанье, бег, прыжки и т. д.), и их координация формируются у ребенка до 3-5 лет. При этом большую роль для нормального развития движений играют первые недели жизни.

Координационные механизмы дошкольном возрасте еще В несовершенны. Известный советский физиолог Н. A. Бернштейн охарактеризовал моторику дошкольного возраста как «грациозную неуклюжесть». Несмотря на TO, ЧТО движения дошкольника плохо скоординированы и неловки, дети способны овладевать относительно сложными движениями. В частности, именно в дошкольном возрасте дети учатся орудийным движениям, т. е. двигательным умениям и навыкам пользоваться различными инструментами (молоточком, ножницами и т. д.). С 67 лет дети овладевают письмом и другими движениями, требующими тонкой координации. Формирование координационных механизмов движений заканчивается К подростковому возрасту. Конечно, совершенствование движений и их координация при систематических упражнениях могут продолжаться и в зрелом возрасте, например, у музыкантов, спортсменов, артистов цирка и др.

Таким образом, развитие движений и механизмов их координации наиболее интенсивно идет в первые годы жизни и до подросткового возраста. Их совершенствование всегда тесно связано с развитием нервной системы ребенка, поэтому всякая задержка в развитии движений должна насторожить воспитателя. В таких случаях необходимо обратиться за помощью к врачам и функциональное состояние нервной проверить системы подростковом возрасте координация движений вследствие гормональных изменений в организме ребенка несколько нарушается. Однако это временное явление, которое, как правило, после 15 лет исчезает. Общее формирование всех координационных механизмов заканчивается подростковом возрасте, а к 18-25 годам они полностью соответствуют уровню взрослого человека. Возраст 18-30 лет — это возраст расцвета двигательных способностей человека. Причины и профилактика нарушений осанки

Появившиеся в детском возрасте отклонения в осанке могут в дальнейшем привести к образованию стойких деформаций костной системы. Причин нарушений осанки много: несоответствие мебели размерам ребенка, слабость мышц, низкая двигательная активность, неправильная посадка за рабочим местом, ношение тяжести в одной руке, недостаточная освещенность рабочего места, плоскостопие или разная длина конечностей и т. д.

Для профилактики нарушений осанки следует регулярно проводить с детьми физические упражнения, подвижные игры, прогулки на свежем воздухе и пр. Нельзя допускать, чтобы дети лежали или спали в очень мягкой кровати, и притом всегда на одном и том же боку. Нельзя до 3 месяцев жизни держать ребенка в вертикальном положении, до 6 — сажать, до 9-10 месяцев — надолго ставить на ножки. Не следует разрешать детям подолгу стоять с опорой на одну ногу, например, при катании на самокатах. Нужно следить за тем, чтобы маленькие дети не сидели на корточках продолжительное время на одном месте, не ходили на большие расстояния, не переносили тяжестей.

Одним из условий сохранения нормальной осанки является соблюдение гигиенических требований к детской мебели.

На формирование осанки сильно влияет форма стопы. При нормальной форме стопы нога опирается на наружный продольный свод, а внутренний свод служит рессорой, которая обеспечивает эластичность походки. Если мышцы, поддерживающие свод стопы, ослабевают, вся нагрузка ложится на связки, которые, растягиваясь, уплощают стопу. При плоскостопии нарушается опорная функция нижних конечностей, ухудшается их кровоснабжение, отчего появляются боли, отечность, а иногда и судороги в ногах. Стопа становится потливой, холодной, синюшной. Уплощение стопы влияет на положение таза и позвоночника. Дети, страдающие плоскостопием, при ходьбе широко размахивают руками, топают, подгибают ноги в коленях; походка их напряженная, неуклюжая. У таких детей быстрее снашивается

обувь, особенно внутренняя сторона подошвы и каблука. К концу дня дети могут жаловаться на тесную обувь, поскольку под влиянием длительной дневной нагрузки стопа еще более уплощается, и, следовательно, удлиняется.

Условия, способствующие развитию плоскостопия, различны, например: заболевание рахитом; общая слабость и пониженное физическое развитие; излишняя тучность, при которой на стопу постоянно действует чрезмерная весовая нагрузка; преждевременное (ранее 10-12 месяца жизни) длительное стояние и передвижение на ногах; длительное хождение по твердому грунту (асфальту) в мягкой обуви без каблука и задников.

Для предупреждения плоскостопия рекомендуются умеренные упражнения для мышц ног и стоп, ежедневные ножные ванны, хождение босиком летом по рыхлой, неровной поверхности, так как при этом ребенок непроизвольно переносит тяжесть тела на наружный край стопы и поджимает пальцы, что способствует укреплению свода стопы. Следует внимательно относиться к подбору обуви для детей и при необходимости использовать ортопедические стельки. Для детей с нарушенной осанкой и плоскостопием в занятия по физической культуре, включая утреннюю гимнастику, вводят специальные корригирующие упражнения [6].

#### КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Значение скелета. Отделы скелета.
- 2. Способы соединения костей.
- 3. Особенности химического состава костей детей. Роль питания в формировании костной ткани.
- 4. Возрастные особенности изменения скелета. Рост костей в длину и толщину.
  - 5. Строение скелетных мышц, их классификация, свойства.
  - 6. Особенности формирования скелетных мышц в онтогенезе.

- 7. Роль движений в физическом и психическом развитии детей и подростков. Влияние мышечной работы на функциональное состояние организма.
  - 8. Физическое утомление.
  - 9. Развитие у детей двигательной активности и координации движений.
  - 10. Осанка. Виды осанки. Причины и профилактика нарушений.
  - 11. Плоскостопие, причины и профилактика.

## Литература:

- 1. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 2. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Учебное пособие для студентов дефектологический факультете высш. пед. учеб. заведений. М.: Издательский центр «Академия», 2008.
- 3. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.
- 4. Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.
- 5. Физиологические основы здоровья / Под ред. проф. Р.И. Айзмана и проф. А.Я. Тернера.- Новосибирск: Лада, 2001.- 524с.

# Глава 5. Строение, функции и возрастные особенности сенсорных систем.

Сенсорной системой называют анализатор с дополнительными анатомическими образованиями, которые обеспечивают передачу энергии раздражителя к рецепторам [6].

Все анализаторы и сенсорные системы состоят из трех тесно связанных между собой отделов: периферического, проводникового, центрального. Различие этих понятий связано с периферическим отделом, по отношению к остальным отделам они являются синонимами.

Периферический отдел анализатора — рецепторы, эволюционно приспособленные для восприятия раздражителя определенной природы. Так, рецепторы, расположенные в сетчатке глаза, способны реагировать на ничтожно малую величину светового излучения. Рецепторы внутреннего уха воспринимают воздействие, оказываемое вибрационным смещением порядка нескольких ангстрем.

Периферический отдел сенсорной системы включает в себя совокупность рецепторов и дорецепторного звена — вспомогательных образований, которые облегчают восприятие раздражителя. Рецепторы и дорецепторные структуры образуют специальные органы — органы чувств. Например, периферический отдел зрительной сенсорной системы — глаз. Он включает дорецепторное звено — оптическую систему и рецепторы сетчатки — палочки и колбочки.

Пороговые раздражители вызывают изменение электрических свойств мембраны рецептора и возникновение биоэлектрического (рецепторного) потенциала, или нервного импульса, который затем по нервным волокнам передается в ЦНС.

Проводниковый отдел анализатора (сенсорной системы) представлен чувствительным нервом и рядом подкорковых ядер, через которые проходит информация от рецепторов в кору больших полушарий [6].

# 5.1. Строение и функции зрительного анализатора.

Зрительный анализатор представляет собой систему рецепторов, нервных центров мозга и соединяющих их путей, функция которой заключается в восприятии зрительных раздражений, их трансформации в нервные импульсы и передаче в корковые центры мозга, где формируется зрительное ощущение. Зрительный анализатор имеет сложное строение.

Таблица 5. Строение глаза

| Системы         | Придатки и части глаза | Строение                                                     | Функции                                                                                         |
|-----------------|------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Вспомогательные | Брови                  | Волосы, растущие от внутреннего к внешнему углу глаза        | Отводят пот со лба                                                                              |
|                 | Веки                   | Кожные складки с ресницами                                   | Защищают глаз от световых лучей. пыли                                                           |
|                 | Слезный аппарат        | Слезная железа и<br>слезовыводящие<br>пути                   | Слезы смачивают,<br>очищают, дезинфицируют<br>глаз                                              |
| Оболочки        | Белочная               | Наружная плотная оболочка, состоящая из соединительной ткани | Защита глаза от механического и химического воздействия, вместилище всех частей глазного яблока |
|                 | Сосудистая             | Срединная оболочка, пронизанная кровеносными сосудами        | Питание глаза                                                                                   |
|                 | Сетчатка               | Внутренняя оболочка глаза, состоящая из                      | Восприятие света                                                                                |

|                     |                                   | фоторецепторов - палочек и колбочек                                     |                                                                                             |
|---------------------|-----------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Оптическая          | Роговица                          | Прозрачная передняя часть белочной оболочки                             | Преломляет лучи света                                                                       |
|                     | Водянистая влага                  | Прозрачная жидкость, находящаяся за роговицей                           | Пропускает лучи света                                                                       |
|                     | Радужная<br>оболочка<br>(радужка) | Передняя часть сосудистой оболочки                                      | Содержит пигмент, придающий цвет глазу                                                      |
|                     | Зрачок                            | Отверстие в радужной оболочке, окруженное мышцами                       | Регулирует количество света, расширяясь и суживаясь                                         |
|                     | Хрусталик                         | Двояковыпуклая эластичная прозрачная линза, окруженная ресничной мышцей | Преломляет и фокусирует лучи света, обладает аккомодацией                                   |
|                     | Стекловидное<br>тело              | Прозрачное тело в состоянии коллоида                                    | Заполняет глазное яблоко. Пропускает лучи света                                             |
| Световоспринимающая | Фоторецепторы<br>(нейроны)        | В сетчатке в форме палочек и колбочек                                   | Палочки воспринимают форму (зрение при слабом освещении), колбочки - цвет (цветовое зрение) |
|                     | Зрительный<br>нерв                | Нервные клетки коры, от которых начинаются волокна зрительного нерва,   | Воспринимает возбуждение и передает в зрительную зону коры головного мозга, где             |

| соединены с     | происходит анализ       |
|-----------------|-------------------------|
| отростками      | возбуждения и           |
| фоторецепторных | формирование зрительных |
| нейронов        | образов                 |

Светопреломление в глазу. К светопреломляющим средам глаза относятся: роговица, водянистая влага передней камеры глаза, хрусталик и стекловидное тело. Во многом ясность зрения зависит от прозрачности этих сред, однако преломляющая сила глаза почти полностью зависит от лучепреломления в роговице и хрусталике. Лучепреломление измеряется в диоптриях. Диоптрия — это величина, обратная фокусному расстоянию. Преломляющая сила роговицы постоянна и равна 43 дптр. Преломляющая сила хрусталика непостоянна и изменяется в широких пределах: при смотрении на ближайшем расстоянии — 33 дптр, вдаль — 19 дптр. Преломляющая сила всей оптической системы глаза: при смотрении вдаль — 58 дптр, на ближнее расстояние — 70 дптр.

Параллельные световые лучи после преломления в роговице и хрусталике сходятся в одну точку в центральной ямке. Линия, проходящая через центры роговицы и хрусталика в центр желтого пятна, называется зрительной осью [3].

Аккомодация. Способность глаза четко различать предметы, находящиеся на разных расстояниях, называется аккомодацией. Явление аккомодации основано на рефлекторном сокращении или расслаблении ресничной, или цилиарной, мышцы, иннервируемой парасимпатическими волокнами глазодвигательного нерва. Сокращение и расслабление цилиарной мышцы изменяет кривизну хрусталика:

а) когда мышца сокращается, происходит расслабление ресничной связки, что вызывает увеличение светопреломления, потому что хрусталик становится более выпуклым. Такое сокращение ресничной мышцы, или

напряжение зрения, происходит, когда предмет приближается к глазу, т. е. при рассматривании предмета, находящегося на максимально близком расстоянии;

б) когда мышца расслабляется, ресничные связки натягиваются, сумка хрусталика сдавливает его, кривизна хрусталика уменьшается и его лучепреломление снижается. Это происходит при отдалении предмета от глаза, т. е. при смотрении вдаль.

Сокращение ресничной мышцы начинается, когда предмет приближается на расстояние около 65 м, затем ее сокращения усиливаются и становятся отчетливыми при приближении предмета на расстояние 10 м. Далее, по мере приближения предмета сокращения мышцы все более усиливаются и наконец доходят до предела, при котором четкое видение становится невозможным. Минимальное расстояние от предмета до глаза, на котором он четко видим, называется ближайшей точкой ясного видения. У нормального глаза дальняя точка ясного видения находится в бесконечности. [3].

Дальнозоркость и близорукость.

Здоровый глаз при смотрении вдаль преломляет пучок параллельных лучей так, что они фокусируются в центральной ямке. При близорукости параллельные лучи собираются в фокус впереди центральной ямки, в нее попадают расходящиеся лучи и потому изображение предмета расплывается. Причинами близорукости могут быть напряжение ресничной мышцы при аккомодации на близкое расстояние или слишком длинная продольная ось глаза. При дальнозоркости (из-за короткой продольной оси) параллельные лучи фокусируются позади сетчатки, и в центральную ямку попадают сходящиеся лучи, что также вызывает нечеткость изображения [10].

Возрастные особенности органа зрения

После рождения органы зрения человека претерпевают значительные морфофункциональные изменения. Например, длина глазного яблока у

новорожденного составляет 16 мм, а его масса — 3,0 г, к 20 годам эти цифры увеличиваются до 23 мм и 8,0 г. Ребенок рождается видящим, но четкое, ясное видение у него еще не развито. В первые дни после рождения движения глаз у детей не координированы. Так, можно наблюдать, что у ребенка правый и левый глаз двигаются в противоположных направлениях или при неподвижности одного глаза второй свободно двигается. В этот же период наблюдаются некоординированные движения век и глазного яблока (одно веко может быть открыто, а другое опущено). Становление координации зрения происходит ко второму месяцу жизни.

Слезные железы у новорожденного развиты нормально, но плачет он без слез – отсутствует защитный слезный рефлекс из-за недоразвития соответствующих нервных центров. Слезы при плаче у детей появляются после 1,2–2 месяцев. Развитие зрительной сенсорной системы также идет от Миелинизация периферии К центру. зрительных нервных путей заканчивается к 3-4 месяцам жизни. Причем развитие сенсорных и моторных функций зрения идет синхронно. В первые дни после рождения движения глаз независимы друг от друга, и соответственно механизмы координации и способность фиксировать взглядом предмет, несовершенны и формируются в возрасте от 5 дней до 3-5 месяцев. Функциональное созревание зрительных зон коры головного мозга по некоторым данным происходит уже к рождению ребенка, по другим – несколько позже.

Оптическая система глаза в процессе онтогенетического развития также изменяется. Ребенок в первые месяцы после рождения путает вверх и низ предмета. То обстоятельство, что мы видим предметы не в их перевернутом изображении, а в их естественном виде объясняется жизненным опытом и взаимодействием сенсорных систем.

Аккомодация у детей выражена в большей степени, чем у взрослых. Эластичность хрусталика с возрастом уменьшается, и соответственно падает аккомодация. Вследствие этого у детей встречаются некоторые нарушения аккомодации. Так, у дошкольников вследствие более плоской формы хрусталика очень часто встречается дальнозоркость. В 3 года дальнозоркость наблюдается у 82% детей, а близорукость — у 2,5%. С возрастом это соотношение изменяется и число близоруких значительно увеличивается, достигая к 14-16 годам 11%. Важным фактором, способствующим появлению близорукости, является нарушение гигиены зрения: чтение лежа, выполнение уроков в плохо освещенной комнате, увеличение напряжения на глаза и многое др.

В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, колбочки еще незрелые и их количество невелико. Элементарные функции цветоощущения у новорожденных, видимо, есть, но полноценное включение колбочек в работу происходит только к концу 3-го года. Однако и на этой возрастной ступени оно еще неполноценно. Своего максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Большое значение для формирования цветоощущения имеет тренировка. Интересно то, что быстрее всего ребенок начинает узнавать желтые и зеленые цвета, а позднее – синий. Узнавание формы предмета появляется раньше, чем узнавание цвета. При знакомстве с предметом у дошкольников первую реакцию вызывает его форма, затем размеры и в последнюю очередь цвет.

С возрастом повышается острота зрения и улучшается стереоскопия. Наиболее интенсивно стереоскопическое зрение изменяется до 9-10 лет и достигает к 17-22 годам своего оптимального уровня. С 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Глазомер у девочек и мальчиков 7-8 лет значительно лучше, чем у дошкольников, и не имеет половых различий, но приблизительно в 7 раз хуже, чем у взрослых. В последующие годы развития у мальчиков линейный глазомер становится лучше, чем у девочек.

Поле зрения особенно интенсивно развивается в дошкольном возрасте, и к 7 годам оно составляет приблизительно 80% от размеров поля зрения взрослого. В развитии поля зрения наблюдаются половые особенности. В 6 лет поле зрения у мальчиков больше, чем у девочек, в 7-8 лет наблюдается обратное соотношение. В последующие годы размеры поля зрения одинаковы, а с 13-14 лет его размеры у девочек больше. Указанные возрастные и половые особенности развития поля зрения должны учитываться при организации индивидуального обучения детей, т. к. поле зрения (пропускная способность зрительного анализатора и, следовательно, учебные возможности) определяет объем информации, воспринимаемой ребенком [3].

## Профилактика нарушений зрения

Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление снижает работоспособность детей, что отражается на их общем состоянии. Для профилактики нарушения зрения большое значение имеет правильный режим труда и отдыха, мебель, отвечающая физиологическим особенностям детей, достаточное освещение рабочего места и др. Важную роль в охране зрения играет защитный аппарат глаз (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к коньюнктивитам, блефаритам (воспаление век) и другим заболеваниям органов зрения.

Особое внимание следует уделять организации работы за компьютером, а также просмотру телевизионных передач. При подозрении на нарушение зрения необходима консультация врача — офтальмолога. До 5 лет у детей преобладает дальнозоркость. При этом дефекте зрения помогают очки с собирательными двояковыпуклыми стеклами, которые улучшают остроту зрения и снижают излишнее напряжение аккомодации

глаз.В дальнейшем из-за увеличения нагрузки при обучении частота дальнозоркости снижается, а частота нормальной рефракции и близорукости увеличивается. К окончанию школы по сравнению с начальными классами близорукости 5 распространенность возрастает раз. Формированию и прогрессированию близорукости способствует дефицит света. На развитие близорукости влияет высокая зрительная нагрузка, которая связана с необходимостью рассматривать объекты на близком расстоянии. У детей, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. В результате уменьшается тонус глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.

В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому страдающим близорукостью, необходимо детям, строго выполнять предписания офтальмолога. Своевременное ношение очков школьниками обязательным. является Близоруким рекомендуются детям занятия физической культурой только ПО специальной программе. Им противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.

Для профилактики зрения используют офтальмотренаж — система упражнений для глаз. Упражнения учащиеся выполняют 2-3 раза в течение учебного дня и во время производственной работы, связанной с большим напряжением зрения. В основе упражнений лежит многократный (15-20 раз в течение 3 мин) перевод взора с мелкого (3-5 мм) предмета, удаленного от глаз на 20 см, на другой предмет, находящийся, как и первый, на линии взора, но на расстоянии 7-10 м от глаз. В тренировочные упражнения также включают направленные движения (1015 раз) глазных яблок в течение 1-1,5

мин по контурам начертанных геометрических фигур — кругов и эллипсов Сначала выполняют движения глазных яблок по горизонтальной (вправо — влево) и вертикальной линиям (вверх — вниз). Длина горизонтальной линии — 58 см, вертикальной— 46 см. Затем производят движение глазных яблок по внутреннему и наружному эллипсам (слева направо, справа налево), по левому и правому внутренним кругам [10].

## 5.2. Слуховой анализатор, строение и функции

Основной функцией органов слуха является восприятие колебаний воздушной среды. Органы слуха тесно связаны с органами равновесия. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе.

Таблица 6. Строение и функции органа слуха.

| Части уха | Строение               | Функции                                   |
|-----------|------------------------|-------------------------------------------|
| Наружное  | Ушная раковина,        | Защищает ухо, улавливает и проводит       |
| yxo       | слуховой канал,        | звуки.                                    |
|           | барабанная перепонка - | Колебания звуковых волн вызывают          |
|           | туго                   | вибрацию барабанной перепонки, которая    |
|           | натянутая сухо         | передается в среднее ухо                  |
|           | жильная перегородка    |                                           |
| Среднее   | Полость заполнена      | Проводит звуковые колебания. Слуховые     |
| yxo       | воздухом.              | косточки (масса 0.05 г) последовательно и |
|           | Слуховые косточки:     | подвижно соединены. Молоточек             |
|           | молоточек, наковальня, | примыкает к барабанной перепонке и        |
|           | стремечко.             | воспринимает ее колебания, затем передает |
|           | Евстахиева труба       | их на наковальню и стремечко, которое     |
|           |                        | соединено с внутренним ухом через         |
|           |                        | овальное окно, затянутое эластичной       |
|           |                        | пленкой (соединительной тканью).          |
|           |                        | Евстахиева труба соединяет среднее ухо с  |
|           |                        | носоглоткой, обеспечивает                 |
|           |                        | выравненное давление                      |

| Внутреннее ухо | Полость заполнена     | Овальное окно посредством эластичной       |
|----------------|-----------------------|--------------------------------------------|
|                | жидкостью.            | мембраны воспринимает колебания, идущие    |
|                | Орган слуха:          | от стремечка, и передает их через жидкость |
|                | овальное окно,        | полости внутреннего уха на волоконца       |
|                | улитка, кортиев орган | улитки. Улитка имеет канал,                |
|                |                       | закручивающийся на 2,75 оборота.           |
|                |                       | Посередине канала улитки проходит          |
|                |                       | перепончатая перегородка - основная        |
|                |                       | мембрана, которая состоит из 24 тыс.       |
|                |                       | волокон различной длины, натянутых как     |
|                |                       | струны. Над ними нависают                  |
|                |                       | цилиндрические клетки с волосками,         |
|                |                       | которые образуют кортиев орган - слуховой  |
|                |                       | рецептор. Он воспринимает колебания        |
|                |                       | волокон и передает возбуждение в слуховую  |
|                |                       | зону коры больших полушарий, где           |
|                |                       | формируются звуковые сигналы (слова,       |
|                |                       | музыка)                                    |
|                | Орган равновесия: три | Органы равновесия воспринимают             |
|                | полукружных канала и  | положение тела в пространстве. Передают    |
|                | отолитовый аппарат    | возбуждения в продолговатый мозг, после    |
|                |                       | чего возникают рефлекторные движения,      |
|                |                       | приводящие тело в нормальное положение     |

## Механизм восприятия звука.

Звук улавливается ушной раковиной, направляется по наружному слуховому проходу к барабанной перепонке. Колебания барабанной перепонки передаются через среднее ухо. Посредством системы рычага три слуховые косточки усиливают звуковые колебания и передают их жидкости, находящейся между костным и перепончатым лабиринтом улитки. Волны, достигая основания улитки, вызывают смещение основной мембраны, с которой соприкасаются волосковые клетки. Клетки начинают колебаться,

возбуждающий вследствие чего возникает рецепторный потенциал, окончания нервных волокон. Эластичность основной мембраны на разных участках не одинакова. Вблизи овального окна мембрана уже и жестче, далее — шире и эластичнее. Волосковые клетки в узких отрезках воспринимают более звуки высокими частотами, a В широких низкими. Различение звуков происходит на уровне рецепторов. Сила звука кодируется числом возбужденных нейронов и частотой их импульсации. Внутренние волосковые клетки возбуждаются при большой силе звука, наружные — при меньшей. Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва, который передает нервный импульс в продолговатый мозг. Далее, перекрещиваясь со вторым нейроном слухового пути, слуховой нерв направляется к задним буграм четверохолмия и ядрам промежуточного мозга, а от них — в височную область коры, где располагается центральная часть слухового анализатора. Центральный отдел слухового анализатора расположен в височной доле. В коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов. Другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку. У человека в центральном ядре слухового анализатора особое значение имеет зона Вернике, расположенная в задней части верхней височной извилины. Эта зона отвечает за понимание смысла слов и является центром сенсорной речи [3].

Возрастные особенности слухового анализатора.

Уже на 8-9 месяце внутриутробного развития ребенок воспринимает звуки в пределах 20-5000 Гц и реагирует на них движениями. Четкая реакция на звук появляется у ребенка в 7-8 недель после рождения, а с 6 месяцев грудной ребенок способен к относительно тонкому анализу звуков. Слова дети слышат много хуже, чем звуковые тоны, и в этом отношении сильно

отличаются от взрослых. Окончательное формирование органов слуха у детей заканчивается к 12 годам. К этому возрасту значительно повышается острота слуха, которая достигает максимума к 14-19 годам и после 20 лет уменьшается. С возрастом также изменяются пороги слышимости, и падает верхняя частота, воспринимаемых звуков.

У новорожденных полость среднего уха заполнена амниотической жидкостью. Это затрудняет колебания слуховых косточек. Со временем жидкость рассасывается, и вместо нее из носоглотки через евстахиеву трубу проникает воздух. Новорожденный ребенок при громких звуках вздрагивает, у него изменяется дыхание, он перестает плакать. Более четким слух у детей становится к концу второго — началу третьего месяца. Через два месяца ребенок дифференцирует качественно различные звуки, в 3–4 месяца различает высоту звука, в 4–5 месяцев звуки для него становятся условнорефлекторными раздражителями. К 1–2 годам дети различают звуки с разницей в один-два, а к четырем-пяти годам — даже 3/4 и 1/2 музыкального тона [3].

#### Гигиена слуха детей

Для избежания неблагоприятного воздействия шума необходимо соблюдать определенные гигиенические требования. Гигиена слуха — система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слуховой сенсорной системы, способствующих нормальному ее развитию и функционированию.

Различают специфическое и неспецифическое действие шума на организм человека. Специфическое действие проявляется в нарушении слуха, неспецифическое — в отклонениях со стороны ЦНС, вегетативной реактивности, в эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта.

У лиц молодого и среднего возраста уровни шума в 90 дБ, воздействуя в течение часа, понижают возбудимость клеток коры головного мозга,

ухудшают координацию движений, отмечается снижение остроты зрения, устойчивости ясного видения и чувствительности к оранжевому цвету, нарастает частота срывов дифференцировки. Достаточно пробыть всего 6 ч в зоне шума 90 дБ (шум, испытываемый пешеходом на сильно загруженной транспортом улице) чтобы снизилась острота слуха. При часовой работе в условиях воздействия шума в 96 дБ наблюдается еще более резкое нарушение корковой динамики. Ухудшается работоспособность и снижается производительность труда.

Весьма ощутимо влияние шума на детей и подростков. Более значительными оказываются повышение порога слуховой чувствительности, снижение работоспособности и внимания у учащихся после воздействия шума в 60 дБ. Решение арифметических примеров требовало при шуме в 50 дБ на 15-55%, а в 60 дБ на 81-100% больше времени, чем до действия шума, а снижение внимания достигало 16% [10].

## 5.3. Возрастные особенности других сенсорных систем

Вестибулярная сенсорная система играет важную роль в регуляции положения тела в пространстве и его движений. Развитие вестибулярного аппарата у детей и подростков в настоящее время мало изучено. Существуют данные о том, что ребенок рождается с достаточно зрелыми подкорковыми отделами вестибулярного анализатора.

Проприоцептивная сенсорная система также участвует в регуляции положения тела в пространстве и обеспечивает координацию абсолютно всех движений человека — от локомоторных до сложнейших трудовых и спортивных двигательных навыков. В процессе онтогенеза формирование проприорецепции начинается с 1-3 месяцев внутриутробного развития. К моменту рождения проприорецепторы и корковые отделы достигают высокой степени зрелости и способны к выполнению своих функций. Особенно интенсивно идет совершенствование всех отделов двигательного анализатора до 6-7 лет. С 3 до 7-8 лет быстро нарастает чувствительность

проприорецепции, идет созревание подкорковых отделов двигательного анализатора и его корковых зон. Формирование проприорецепторов, расположенных в суставах и связках, заканчивается к 13-14 годам, а проприорецепторов мышц — к 12-15 годам. К этому возрасту, они уже практически не отличаются от таковых у взрослого человека.

Под соматосенсорной системой понимают совокупность рецепторных образований, обеспечивающих температурные, тактильные и болевые ощущения. Температурные рецепторы играют важную роль в сохранении постоянства температуры тела. Экспериментально показано, чувствительность температурных рецепторов первых этапах постнатального развития ниже, чем у взрослых. Тактильные рецепторы обеспечивают восприятие механических воздействий, чувство давления, прикосновения и вибрации. Чувствительность этих рецепторов у детей ниже, чем у взрослых. Уменьшение порогов восприятия происходит до 18-20 лет. Боль воспринимается специальными рецепторами, представляющими собой свободные нервные окончания. Болевые рецепторы у новорожденных детей имеют более низкую чувствительность, чем у взрослых. Особенно быстро, возрастает болевая чувствительность с 5 до 6-7 лет.

Периферическая часть вкусовой сенсорной системы — вкусовые рецепторы расположены в основном на кончике, корне и по краям языка. Новорожденный ребенок уже обладает способностью дифференцировать горькое, соленое, кислое и сладкое, хотя чувствительность вкусовых рецепторов невысока, к 6 годам она приближается к уровню взрослого.

Периферическая часть обонятельной сенсорной системы — обонятельные рецепторы располагаются в верхней части носовой полости и занимают не более 5 см. У детей обонятельный анализатор начинает функционировать уже в первые дни после рождения. С возрастом чувствительность обонятельного анализатора нарастает особенно интенсивно до 5-6 лет [6].

### Контрольные вопросы

- 1. Раскройте понятия «анализатор», «сенсорная система». Каковы общие особенности строения анализатора и сенсорной системы.
- 2. Каковы строение, значение и возрастные особенности зрительной сенсорной системы.
- 3. Каковы строение, значение и возрастные особенности слуховой сенсорной системы.
- 4. Профилактика нарушений зрения.
- 5. Профилактика нарушений слуха.

#### Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и подростков. Учебное гигиены детей И пособие ДЛЯ студентов дефектологический факультете высш. учеб. заведений. M.: пед. Издательский центр «Академия», 2008.
- 5. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.
- 6. Физиологические основы здоровья / Под ред. проф. Р.И. Айзмана и проф. А.Я. Тернера.- Новосибирск: Лада, 2001.- 524с.

## Глава 6 Возрастные особенности дыхательной системы

Дыхание — совокупность процессов, обеспечивающих потребление организмом кислорода и выделение углекислого газа.

# 6.1.Строение и функции дыхательной системы

Таблица 6. Строение у функции системы дыхания

| <b>Транспорт</b> кислорода | Путь<br>доставки<br>кислорода | Строение                                                                                                                                                                         | Функции                                                                                                                                                              |
|----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Верхние дыхательные пути   | Носовая                       | Начальный отдел дыхательного пути. От ноздрей воздух проходит по носовым ходам, выстланным слизистым и реснитчатым эпителием                                                     | Увлажнение, согревание, обеззараживание воздуха, удаление частиц пыли. В носовых ходах находятся обонятельные рецепторы                                              |
|                            | Глотка                        | Состоит из носоглотки и ротовой части глотки, переходящей в гортань                                                                                                              | Проведение согретого и очищенного воздуха в гортань                                                                                                                  |
|                            | Гортань                       | Полый орган, в стенках которого имеется несколько хрящей - щитовидный, надгортанный и др. Между хрящами находятся голосовые связки, образующие голосовую щель                    | Проведение воздуха из глотки в трахею. Защита дыхательных путей от попадания пищи. Образование звуков путем колебания голосовых связок, движения языка, губ, челюсти |
|                            | Трахея                        | Дыхательная трубка длиной около 12 см, в стенке ее находятся хрящевые полукольца.                                                                                                | Свободное продвижение воздуха                                                                                                                                        |
|                            | Бронхи                        | Левый и правый бронхи образованы хрящевыми кольцами. В легких они ветвятся на мелкие бронхи, в которых количество хрящей постепенно уменьшается. Конечные разветвления бронхов в | Свободное продвижение воздуха                                                                                                                                        |

|             |                  | легких - бронхиолы                                                                                                                                           |                                                                                                                                                                                                                          |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Легкие      | Легкие           | Правое легкое состоит из трех долей, левое - из двух. Находятся в грудной полости тела. Покрыты плеврой. Лежат в плевральных мешках. Имеют губчатое строение | Органы дыхания. Дыхательные движения осуществляются под контролем центральной нервной системы и гуморального фактора, содержащегося в крови - CO <sub>2</sub>                                                            |
|             | Альвеолы         | Легочные пузырьки, состоящие из тонкого слоя плоского эпителия, густо оплетенные капиллярами, образуют окончания бронхиол                                    | Увеличивают площадь дыхательной поверхности, осуществляют газообмен между кровью и легкими                                                                                                                               |
| Кровеносная | Капилляры        | Стенки состоят из однослойного                                                                                                                               | Транспортируют венозную кровь                                                                                                                                                                                            |
| система     | легких           | эпителия. Концентрация газов в капиллярах и альвеолах разная. Кровь в капиллярах венозная, насыщенная $CO_2$                                                 | из легочной артерии в легкие По законам диффузии О <sub>2</sub> поступает из мест большей концентрации (альвеолы) в места меньшей концентрации (капилляры),в то же время СО; диффундирует в противоположном на правлении |
|             | Легочная<br>вена | Капилляры, соединяясь в более крупные сосуды, образуют легочную вену, которая заканчивается у левого предсердия                                              | Транспортирует $O_2$ от легких к сердцу Кислород, попав в кровь, сначала растворяется в плазме, затем соединяется с гемоглобином, и кровь становится артериальной                                                        |
|             | Сердце           | Левая - артериальная - сторона сердца состоит из левого предсердия и левого желудочка, соединенных двухстворчатым клапаном                                   | Проталкивает артериальную кровь по большому кругу кровообращения                                                                                                                                                         |
|             | Артерии          | Кровеносные сосуды большого<br>круга кровообращения                                                                                                          | Обогащают кислородом все органы и ткани                                                                                                                                                                                  |

|        |                   | разветвляются на более мелкие артериолы, а затем на капилляры                                                                                                 |                                                                                                                                                                                                                                                                                                            |
|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Капилляры<br>тела | Строение такое же, как и капилляров легких, но кровь они приносят артериальную, насыщенную $O_2$                                                              | Осуществляют газообмен между кровью и тканевой жидкостью. О переходит в тканевую жидкость, а СО диффундирует в кровь. Кровь становится венозной                                                                                                                                                            |
| Клетка | Митохондрии       | Органеллы клеток, в которых содержатся дыхательные ферменты. На внутренней мембране, образующей кристы, и в матриксе, осуществляется кислородный этап дыхания | Клеточное дыхание - усвоение $O_2$ воздуха. Органические вещества благодаря $O_2$ и дыхательным ферментам окисляются (диссимиляция). Конечные продукты $H_2O$ , $CO_2$ и энергия, которая идет на синтез $AT\Phi$ . $H_2O$ и $CO_2$ , выделяются в тканевую жидкость, из которой они диффундируют в кровь. |

## Возрастные особенности органов дыхания

Легкие и воздухоносные пути начинают развиваться у эмбриона на 3-й неделе развития. В дальнейшем в процессе роста формируется долевое строение легких, после 6 месяцев образуются альвеолы. В 6 месяцев поверхность альвеол начинает покрываться белково-липидной выстилкой – сурфактантом. Его наличие является необходимым условием нормальной аэрации легких после рождения. Легкие плода как орган внешнего дыхания не функционируют. Но они не находятся в спавшем состоянии, альвеолы и бронхи плода заполнены жидкостью. У плода, начиная с 11-й недели, появляются периодические сокращения межреберных мышц и диафрагмы. В конце беременности дыхательные движения плода занимают 30-70% всего времени. Частота дыхательных движений обычно увеличивается ночью и по утрам, а также при увеличении двигательной активности матери.

Дыхательные движения необходимы для нормального развития легких. Помимо этого дыхательные движения плода представляют собой своего рода подготовку дыхательной системы к дыханию после рождения.

Рождение вызывает резкие изменения состояния дыхательного центра, расположенного в продолговатом мозгу, приводящие к началу вентиляции. Первый вдох наступает, как правило, через 15-70 сек. после рождения. Основными условиями возникновения первого вдоха являются:

- 1. повышения в крови гуморальных раздражителей дыхательного центра, CO2, H+ и недостатка O2;
- 2. резкое усиление потока чувствительных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра;
- 3. устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс ныряльщика). Поэтому сразу после появления головы плода акушеры удаляют с лица слизь и околоплодные воды.

Таким образом, возникновение первого вдоха является результатом одновременного действия ряда факторов.

Начало вентиляции легких сопряжено с началом функционирования малого круга кровообращения. Кровоток через легочные капилляры резко усиливается. Легочная жидкость всасывается из легких в кровеносное русло, часть жидкости всасывается в лимфу.

У детей раннего возраста спокойное дыхание — диафрагмальное. Это связано с особенностями строения грудной клетки. Ребра расположены под большим углом к позвоночнику, поэтому сокращение межреберных мышц менее эффективно изменяет объем грудной полости. Энергетическая стоимость дыхания ребенка гораздо выше, чем у взрослого. Причина — узкие

воздухоносные пути и их высокая аэродинамическая сопротивляемость, а также низкая растяжимость легочной ткани.

Другой отличительной особенностью является более интенсивная вентиляция легких в пересчете на килограмм массы тела с целью удовлетворения высокого уровня окислительных процессов и меньшая проницаемость легочных альвеол для О2 и СО2. Так, у новорожденных частота дыхания составляет 44 цикла в минуту, дыхательный объем — 16 мл, минутный объем дыхания — 720 мл/мин. У детей 5-8-летнего возраста частота дыхания снижается и достигает 25-22 циклов в минуту, дыхательный объем — 160-240 мл, а минутный объем дыхания — 3900-5350 мл/мин. У подростков частота дыхания колеблется от 18 до 17 циклов минуту, дыхательный объем — от 330 до 450 мл, минутный объем дыхания — от 6000 до 7700 мл/мин. Эти величины наиболее близки к уровню взрослого человека.

С возрастом увеличиваются жизненная емкость легких, проницаемость легочных альвеол для О2 и СО2. Это связано с увеличением массы тела и работающих мышц, с ростом потребности в энергетических ресурсах. Кроме того, дыхание становится более экономичным, об этом свидетельствуют снижение частоты дыхания и дыхательного объема.

Наибольшие морфофункциональные изменения в легких охватывают возрастной период до 7-8 лет. В этом возрасте отмечается интенсивная дифференцировка бронхиального дерева и увеличение количества альвеол. Рост легочных объемов связан также с изменением диаметра альвеол. В период с 7 до 12 лет диаметр альвеол увеличивается вдвое, к взрослому состоянию – втрое. Общая поверхность альвеол увеличивается в 20 раз.

Таким образом, развитие дыхательной функции легких происходит неравномерно.

В целом на развитие органов дыхания у подавляющей части детей влияют внешние факторы и образ жизни. Низкая двигательная активность ограничивает подвижность грудной клетки. Дыхание в этом случае

поверхностное, а его физиологическая ценность невелика. Необходимо учить детей правильному и глубокому дыханию, что является необходимым условием сохранения здоровья, расширения возможности адаптации к физическим нагрузкам [6]

#### 6.2 Газообмен в легких

Вентиляция легких осуществляется благодаря вдоху и выдоху. Тем самым в альвеолах поддерживается относительно постоянный газовый состав. Человек дышит атмосферным воздухом с содержанием кислорода (20,9 %) и содержанием углекислого газа (0,03 %), а выдыхает воздух, в котором кислорода 16,3 %, углекислого газа – 4 %. В альвеолярном воздухе кислорода – 14,2 %, углекислого газа – 5,2 %. Повышенное содержание углекислого газа в альвеолярном воздухе объясняется тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания и в воздухоносных путях.

У детей более низкая эффективность легочной вентиляции выражается в ином газовом составе как выдыхаемого, так и альвеолярного воздуха. Чем моложе ребенок, тем больше процент кислорода и тем меньше процент углекислого газа в выдыхаемом и альвеолярном воздухе, т. е. кислород используется детским организмом менее эффективно. Поэтому детям для потребления одного и того же объема кислорода и выделения одного и того же объема углекислого газа нужно гораздо чаще совершать дыхательные акты. В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие. В легких газообмен совершается между воздухом, содержащимся в альвеолах, и кровью. Альвеолы оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие. Для осуществления газообмена определяющими условиями являются площадь поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов.

Легкие идеально соответствуют этим требованиям: при глубоком вдохе альвеолы растягиваются и их поверхность достигает 100–150 кв. м (не менее велика и поверхность капилляров в легких), существует достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови. Потребность организма в кислороде и выделение углекислого газа зависит от уровня окислительных процессов, протекающих в организме. С возрастом этот уровень снижается, а значит, величина газообмена на 1 кг массы по мере роста ребенка уменьшается [3]

## Контрольные вопросы:

- 1. Охарактеризуйте строение и функции дыхательной системы человека
- 2. Перечислите основные онтогенетические направления в развитие дыхательной системы
- 3. Каковы условия правильного развития дыхательной системы ребенка?

## Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей И подростков. Учебное пособие ДЛЯ студентов дефектологический факультете высш. учеб. заведений. M.: пед. Издательский центр «Академия», 2008.

- 5. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.
- 6. Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.

#### Глава 7. Кожа

### 7.1. Строение и функции кожи.

Кожа — самый большой орган человеческого тела. Площадь общего покрова взрослого человека 1,5-2м2. На поверхности кожи определяются складки, морщины, борозды, которые имеют возрастные, половые, индивидуальные, топографические особенности.

При микроскопии в коже можно выделить следующие основные слои: эпидермис, дерму и подкожную жировую клетчатку. Эпидермис — эпителиальный поверхностный отдел кожи, в свою очередь состоит из 5-ти клеточных слоев: рогового, блестящего, зернистого, шиповатого и базального.

Самый наружный слой — роговой — состоит из мертвых клеток в виде чешуек, не имеющих ядер. Клетки рогового слоя зарождаются как базальные и за 10-30 дней превращаются сначала в шиповатые, затем зернистые, блестящие и, наконец, в роговые. Роговой слой покрыт водно- жировым слоем, имеющим защитную функцию. Блестящий слой располагается под роговым, состоит из безъядерных клеток. Хорошо развит на ладонях, подошвах, тыльных поверхностях кистей и стоп.

Зернистый слой образуется из шиповатых клеток, состоит из 1-4 рядов овальных или веретенообразных клеток, расположенных параллельно поверхности эпидермиса. Играет важную роль в осуществлении барьерной функции эпидермиса. Шиповатый слой состоит из 3-15 рядов полигональных клеток, соединенных между собой И другими слоями эпидермиса мостиками. Клетки межклеточными имеют крупное ядро, хорошо фибриллярный содержат выраженный аппарат, пигмент. Базальный слой состоит из цилиндрических клеток, расположенных на базальной мембране. Это ростковые клетки (кератиноциты). Из них образуются все вышележащие слои эпидермиса. В базальном располагаются меланоциты, продуцирующие пигмент меланин. Меланин

состоит из трех основных красок — желтой, коричневой и черной. Преобладание той или иной краски обуславливает цвет кожи и волос. В базальном слое находятся также эпидермоциты белые отросчатые (или клетки Лангерганса), принимающие активное участие в реакциях иммунного Меркеля. ответа организма. Α также осязательные клетки Базальная мембрана — уплотненное аморфное межклеточное вещество. Здесь происходит соединение дермы и эпидермиса. Через нее происходят обменные процессы между дермой И эпидермисом, не имеющим кровоснабжения.

Дерма состоит из волокон соединительной ткани: коллагеновых, эластических, ретикулярных, а также клеточных элементов (гистиоцитов, фибробластов аморфного И др.) И основного вещества. В сосочковый слой сетчатый дерме выделяют И слой. Верхний сосочковый слой покрыт базальной мембраной, имеет волнистую поверхность, содержит тонкие коллагеновые волокна, эластические и ретикулиновые волокна, от которых зависит тургор кожи. Сетчатый слой более грубые коллагеновые волокна, расположенные имеет параллельно поверхности кожи.

Подкожная жировая основа имеет различную толщину в разных участках тела. Ее нет на веках и под ногтевыми пластинками. Состоит их жировых клеток и фиброзного каркаса. В дерме и подкожной жировой основе располагается хорошо развитая сеть кровеносных и лимфатических сосудов. Иннервация кожи. Центры кожного анализатора рассеяны по всей коре большого мозга, но основная часть расположена в задней центральной Нервы вегетативной нервной системы, цереброспинальные чувствительные нервы располагаются в дерме и подкожной жировой основе, где заканчиваются в виде инкапсулированных сплетений. В эпидермисе оканчиваются отдельные нервные волокна, лишенные оболочки. Мышцы кожи располагаются в дерме и подкожной жировой основе. Это

гладкие и поперечно-полосатые мышцы. Пучки гладких мышц связаны с фолликулами волос, а также имеются в коже волосатой части головы, на лбу, щеках, тыле кистей и стоп, в коже мошонки, крайней плоти, вокруг сосков молочных желез, заднего прохода и подмышечных ямках. Поперечно-полосатые мышцы кожи располагаются на лице, обеспечивая его мимику. Придатки кожи. Это волосы, ногти, сальные и потовые железы. Все они производные эпидермиса.

Сальные железы — это альвеолярные железы, имеются не всех участках кожи кроме ладоней и подошв. Больше всего их на волосистой части головы. Выводной проток железы, как правило, впадает в фолликул волоса. Иногда сальные железы открываются непосредственно на поверхности кожи (на лице, вокруг соска молочных желез, на крайней плоти и головке полового члена, на малых половых губах). Секрет сальных желез вместе с потом образует тонкий водно-жировой слой, предохраняющий кожу от высыхания, способствующий обладающий повышению ee эластичности И определенными бактерицидными свойствами. Последние сохраняются в течение нескольких дней (5-7), после чего жиры на поверхности кожи разлагаются и продукты их распада раздражают кожу, вызывая зуд. Потовые железы. На коже человека имеются мерокриновые (простые трубчатые) и апокриновые (альвеолярные) потовые железы. Общее количество их около 3-4 млн. В норме функционирует около 50% желез. С потом выделяются токсические, лекарственные и другие соединения. В сутки выделяется около 500-600 мл пота. Реакция его кислая. При физических нагрузках и перегревах функция потовых желез резко усиливается. Ногти — роговые пластинки, расположенные на тыльной поверхности концевых фаланг пальцев. Имеют свободный край, тело, Поверхность гладкая, блестящая. Ногтевая пластинка располагается на ногтевом ложе и окружена ногтевыми валиками.

Кожа — многофункциональный орган. Кожа защищает организм от повреждающего действия физических, химических И биологических неблагоприятных факторов внешней среды. Защитная функция обеспечивается за счет эластичности и упругости тканей дермы и подкожной основы, наличия водно- липидной пленки на поверхности эпидермиса, плохой теплопроводности, хорошей сопротивляемости электрическому току и лучевой энергии роговых клеток, наличием водно- липидной смазки на поверхности кожи. Имеет значение постоянное слущивание, отторжение и восстановление слоев эпидермиса. Наличие пигмента как защиты от УФО. Кислая реакция бактерицидные вещества в секрете потовых и сальных желез В межтканевой жидкости защищают otмикроорганизмов. В коже находится большое количество нервных окончаний, которые обеспечивают ее тактильную, болевую и температурную чувствительность. Кожа оказывает существенную роль в осуществлении терморегуляции организма за счет испарения, теплопроведения, теплоизлучения, за счет деятельности потовых желез И сосудов кожи. Кожа обладает дыхательной функцией. Через нее проникает кислород и выделяется углекислый газ.

Кожа проницаема для различных органических и неорганических веществ. Через нее могут проникать токсические вещества, оказывающие губительное влияние не только на саму кожу, но И весь организм. Важна секреторная функция кожи, которая осуществляется потовыми и сальными железами, a также через эпидермис. Кожа способна удерживать и накапливать различные вещества, участвуя в обменных процессах организма.

Кожа является депо крови и воды. В ней определяются белки, жиры, углеводы, ферменты, минеральные вещества, что указывает на ее активное участие в водном, минеральном, углеводном, белковом и жировом обмене. Клетки эпидермиса и базальная мембрана имеют важное значение в развитии

иммунных реакций в коже и играют определенную роль в общих иммунных реакциях организма [4].

Возрастные особенности строения кожи:

Кожно-мышечный анализатор развивается достаточно быстро: свободные нервные окончания в коже появляются очень рано — на 8 неделе эмбрионального развития.

Проприорецепторы развиваются с 3,5-4 месяцев эмбриональной жизни, к моменту рождения они в основном сформированы.

Миелинизация проводящих путей наиболее активно происходит с 8-9 месяцев эмбриогенеза до конца первого года жизни. Лишь с миелинизацией волокон кожно-мышечного анализатора становится возможна функция ходьбы. У детей раннего и дошкольного возраста кожа внешне отличается от кожи взрослых бархатистостью, мягкостью, более розовым светлым цветом. Эпидермис значительно тоньше, разделение на слои довольно четкое. Шиповатый и зернистый слой имеют меньшее количество рядов, роговой слой более рыхлый. У детей меньше меланоцитов, в связи с чем снижено пигментообразование.Дерма тоньше, коллагеновые ретикулярные волокна более слабее. нежные, эластическая выражена сеть Капиллярная сеть кожи детей выражена лучше, просветы более широкие. Волосяные фолликулы развиты хорошо. Сальные железы развиты недостаточно и кожа довольна чувствительна, чаще склонна к сухости.

Из всех видов кожно-мышечной чувствительности раньше всего развивается тактильная чувствительность: уже у 8-недельного плода регистрируются двигательные реакции на прикосновение к коже. К рождению степень тактильной чувствительности близка к чувствительности взрослого, но она продолжает повышаться до 17-20 лет. Условные рефлексы на прикосновения вырабатываются с 2 месяцев жизни.

Температурная чувствительность хорошо развита к моменту рождения, новорожденный реагирует на холодовые реакции гримасой неудовольствия,

криком. Тепло действует успокаивающе. Но терморегуляция развита слабо, поэтому высок риск нарушения здоровья ребенка при его переохлаждении или перегревании.

Проприоцептивная чувствительность развивается медленнее, чем выше описанные виды чувствительности. В 1,5-2 месяца младенец осуществляет лишь грубый анализ сигналов, о чем свидетельствует малая точность движений: 80-140°. Точность движений возрастает к 3 месяцам жизни, когда появляются координированные движения рук.

болевые реакции возможны даже у плода, но болевая чувствительность у ребенка остается ниже, чем у взрослого, до 6-7 лет. Такая особенность увеличивает риск травматизации детей.

Таким образом, кожно-мышечная сенсорная система достаточно хорошо развита уже к моменту рождения. Эту особенность необходимо учитывать при воспитании ребенка. Массаж, физические упражнения, воздушные и водные процедуры вызывают раздражение кожных и проприорецепторов и создают мощный поток нервных импульсов, который через неспецифический путь активирует все области коры больших полушарий, обеспечивая тем самым необходимые условия для успешной выработки условных рефлексов и развития психической деятельности ребенка [6].

#### Гигиена кожи

Кожа ребенка отличается от кожи взрослого человека нежностью, тонкостью и легкой ранимостью, поэтому уход за кожей является необходимым условием для профилактики различных заболеваний, в том числе и кожных. Кожа человека обладает бактерицидной способностью. Чистая кожа вырабатывает особое вещество — лизоцим, которое убивает микроорганизмы. Бактерицидные свойства кожи особенно заметно проявляются в осенне-весеннее время и меньше — в зимнее. На эти свойства кожи оказывает влияние состояние здоровья ребенка: чем лучше он развит

физически, тем сильнее бактерицидное действие его кожи. На чистой коже уже через 10 мин погибает до 85% попадающих на нее болезнетворных микроорганизмов, а на грязной всего около 5%.

Заболевания кожи возникают не только в результате повреждения лучевыми кожных покровов механическими, химическими или воздействиями, но и из-за несоблюдения элементарных гигиенических правил ухода за ней. С раннего детства следует приучать детей к различным гигиеническим навыкам (утреннее умывание, мытье рук в течение дня по мере загрязнения, регулярное принятие гигиенических ванн). Возникновение заболеваний кожи у детей раннего и дошкольного возраста может вызывать антисанитарное состояние школы, жилья, общественных мест, пользование общим полотенцем, одними постельными принадлежностями, мочалкой.

Профилактика кожных болезней заключается в соблюдении элементарных санитарно-гигиенических мероприятий, проводимых как в детских учреждениях, так и по месту жительства детей. Необходимо тщательно следить за санитарным состоянием помещений, бороться с пылью, грязью. При подозрении на заразное кожное заболевание ребенка следует показать врачу-специалисту.

Контрольные вопросы:

- 1. Охарактеризуйте строение кожи человека.
- 2. Раскройте основные функции кожи.
- 3. Опишите особенности строения кожи детей.
- 4. Составьте рекомендации по гигиене кожи ребенка раннего возраста. Литература:
- 1. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456с.

- 2. Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.
- 3. Физиологические основы здоровья / Под ред. проф. Р.И. Айзмана и проф. А.Я. Тернера.- Новосибирск: Лада, 2001.- 524с.

### Глава 8. Анатомия пищеварительной системы

#### 8.1. Строение пищеварительной системы

Пищеварительный канал имеет длину около 8-10 м, на своем протяжении он образует расширения — полости и сужения. Стенка пищеварительного канала состоит из трех слоев: внутреннего, среднего, наружного. Внутренний представлен слизистым и подслизистым слоями. Клетки слизистого слоя - самые поверхностные, обращены в просвет канала и вырабатывают слизь, а в расположенном под ним подслизистом слое залегают пищеварительные железы. Внутренний слой богат кровеносными и лимфатическими сосудами. Средний слой включает гладкую мускулатуру, которая, сокращаясь, передвигает пищу по пищеварительному каналу. Наружный слой состоит из соединительной ткани, образующей серозную оболочку, к которой на протяжении тонкой кишки прикрепляется брыжейка. Таблица 7. Строение и функции пищеварительной системы

таолица 7. Строение и функции пищеварительной системы

| Пищеварительный тракт | Строение                  | Функции                |
|-----------------------|---------------------------|------------------------|
| Ротовая полость:      | Всего 32 зуба: по четыре  | Откусывание и          |
| Зубы                  | плоских резца, по два     | пережевывание пищи.    |
|                       | клыка, по четыре малых и  | Механическая обработка |
|                       | шесть больших коренных    | нищи необходима для ее |
|                       | зубов на верхней и нижней | последующего           |
|                       | челюстях. Зуб состоит из  | переваривания.         |
|                       | корня шейки и коронки.    | Измельченная пища      |
|                       | Зубная ткань - дентин.    | доступна действию      |
|                       | Коронка покрыта прочной   | пищеварительных соков  |
|                       | эмалью. Полость зуба      |                        |
|                       | заполнена пульпой,        |                        |
|                       | несущей нервные           |                        |
|                       | окончания и кровеносные   |                        |
|                       | сосуды                    |                        |

| Язык            | Мышечный орган, покрытый слизистой оболочкой. Задняя часть языка - корень, передняя свободная - тело, заканчивающееся закругленной верхушкой, верхняя сторона языка — спинка                               | языка формирует пищевой комок, корень языка участвует в глотательном движении, которое осуществляется                                                                                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Слюнные железы  | Три пары слюнных желез, образованных железистым эпителием. Пара желез - околоушные, пара - подъязычные, пара - подчелюстные. Протоки желез открываются в ротовую полость                                   | рефлекторно. Слюна смачивает пищу во время ее пережевывания,                                                                                                                                              |
| Глотка, пищевод | Верхняя часть пищеварительного канала представляющая собой трубку длиной 25 см. Верхняя треть трубки состоит из поперечно- полосатой, нижняя часть - из гладкой мышечной ткани. Выстлана плоским эпителием | Проглатывание пищи. Во время глотания пищевой комок проходит в глотку, при этом мягкое нёбо приподнимается и загораживает вход в носоглотку, надгортанник закрывает путь в гортань. Глотание рефлекторное |
| Желудок         | Расширенная часть                                                                                                                                                                                          | Переваривание пищи.                                                                                                                                                                                       |

пищеварительного канала грушевидной формы; имеются входное И отверстия. выходное Стенки состоят из гладкой мышечной ткани, выстланы железистым эпителием. Железы вырабатывают желудочный сок (содержащий фермент пепсин), соляную кислоту и слизь. Объем желудка до 3л

Сокращающиеся стенки желудка способствуют перемешиванию пищи с желудочным соком, который выделяется рефлекторно. В кислой фермент среде пепсин расщепляет сложные белки до более простых. Фермент слюны птиалин расщепляет крахмал до тех пор, пока пищевой комок не пропитается желудочным соком и не произойдет нейтрализация фермента

## Пищеварительные железы:

Печень

Самая крупная пищеварительная железа массой до 1,5 кг. Состоит многочисленных железистых клеток, образующих дольки. Между находится НИМИ соединительная ткань, желчные протоки, кровеносные лимфатические сосуды. Желчные протоки впадают в желчный пузырь, где собирается желчь (горькая, слегка щелочная прозрачная жидкость желтоватого или

Вырабатывает желчь. которая скапливается желчном пузыре ПО протоку во время пищеварения поступает в кишечник. Желчные кислоты создают щелочную эмульгируют реакцию И жиры (превращают их в эмульсию, которая подвергается расщеплению пищеварительными соками), что способствует активизации поджелудочного сока. Барьерная роль печени заключается В

|                          | зеленовато-бурого цвета -  | обезвреживании вредных и   |
|--------------------------|----------------------------|----------------------------|
|                          | окраску придает            | ядовитых веществ. В        |
|                          | расщепленный               | печени глюкоза             |
|                          | гемоглобин). Желчь         | преобразуется в гликоген   |
|                          | содержит обезвреженные     | под воздействием гормона   |
|                          | ядовитые и вредные         | инсулина                   |
|                          | вещества                   |                            |
|                          |                            |                            |
| Поджелудочная железа     | Железа гроздевидной        | Выработка поджелудочного   |
|                          | формы, 10-12 см длиной.    | сока, который по протоку   |
|                          | Состоит из головки, тела и | попадает в кишечник во     |
|                          | хвоста. Поджелудочный      | время пищеварения.         |
|                          | сок содержит               | Реакция сока щелочная. Он  |
|                          | пищеварительные            | содержит ферменты:         |
|                          | ферменты. Деятельность     | трипсин (расщепляет        |
|                          | железы регулируется        | белки), липазу (расщепляет |
|                          | вегетативной нервной       | жиры), амилазу             |
|                          | системой (блуждающий       | (расщепляет углеводы).     |
|                          | нерв) и гуморально         | Кроме пищеварительной      |
|                          | (соляной кислотой          | функции железа             |
|                          | желудочного сока)          | вырабатывает гормон        |
|                          |                            | инсулин, который           |
|                          |                            | поступает в кровь          |
| Кишечник:                |                            |                            |
| Двенадцатиперстная кишка | Начальный отдел тонкого    | Переваривание пищи.        |
| (начальный отдел тонкого | кишечника длиной до 15     | Пищевая кашица порциями    |
| кишечника)               | см. В него открываются     | поступает из желудка и     |
|                          | протоки поджелудочной      | подвергается действию      |
|                          | железы и желчного пузыря.  | трех ферментов: трипсина,  |
|                          | Стенки кишки состоят из    | амилазы и липазы, а также  |
|                          | гладких мышц,              | кишечного сока и желчи.    |
|                          | сокращаются                | Среда щелочная. Белки      |
|                          | непроизвольно.             | расщепляются до            |

|                          | Железистый эпителий         | аминокислот, углеводы - до  |
|--------------------------|-----------------------------|-----------------------------|
|                          | вырабатывает кишечный       | глюкозы, жиры - до          |
|                          | сок                         | глицерина и жирных кислот   |
| Тонкий кишечник          | Самая длинная часть         | Переваривание пищи,         |
|                          | пищеварительной системы     | разжижение пищевой          |
|                          | - 5-6 м. Стенки состоят из  | кашицы                      |
|                          | гладких мышц, способных     | пищеварительными соками,    |
|                          | к перистальтическим         | перемещение ее              |
|                          | движениям. Слизистая        | посредством                 |
|                          | оболочка образует           | перистальтических           |
|                          | ворсинки, к которым         | движений. Всасывание        |
|                          | подходят кровеносные и      | через ворсинки в кровь      |
|                          | лимфатические капилляры     | аминокислот и глюкозы.      |
|                          |                             | Глицерин и жирные           |
|                          |                             | кислоты всасываются в       |
|                          |                             | клетки эпителия, где из них |
|                          |                             | синтезируются               |
|                          |                             | собственные жиры            |
|                          |                             | организма, которые          |
|                          |                             | поступают в лимфу, затем в  |
|                          |                             | кровь                       |
| Толстый кишечник, прямая | Имеет длину до 1,5 м,       | Переваривание остатков      |
| кишка                    | диаметр в 2-3 раза больше,  | белков и расщепление        |
|                          | чем у тонкого.              | клетчатки. Образующиеся     |
|                          | Вырабатывает только         | при этом ядовитые           |
|                          | слизь. Здесь обитают        | вещества всасываются в      |
|                          | симбиотические бактерии,    | кровь, по воротной вене     |
|                          | расщепляющие клетчатку.     | поступают в печень, где     |
|                          | Прямая кишка - конечный     | обезвреживаются.            |
|                          | отдел тракта, заканчивается | Всасывание воды.            |
|                          | заднепроходным              | Образование каловых масс.   |
|                          | отверстием                  | Рефлекторное выведение их   |

|  | наружу |
|--|--------|
|  |        |

## Возрастные особенности органов пищеварения у детей

Наиболее существенные морфологические и функциональные отличия между органами пищеварения взрослого человека и ребенка наблюдаются только в первые годы постнатального развития. Функциональная активность слюнных желез проявляется с появлением молочных зубов (с 5-6 месяцев). Особенно значительное усиление слюноотделения происходит в конце первого года жизни. В течение первых двух лет интенсивно идет формирование молочных зубов. В возрасте 2-2,5 года ребенок имеет уже 20 зубов и может употреблять сравнительно грубую пищу, требующую пережевывания. В последующие годы, начиная с 5-6 лет, молочные зубы постепенно заменяются на постоянные.

В первые годы постнатального развития интенсивно идет формирование других органов пищеварения: пищевода, желудка, тонкого и толстого кишечника, печени и поджелудочной железы. Меняются их размеры, форма и функциональная активность. Так, объем желудка с момента рождения до 1 года увеличивается в 10 раз. Форма желудка у новорожденного округлая, после 1,5 лет желудок приобретает грушевидную форму, а с 6-7 лет его форма ничем не отличается от желудка взрослых.

Значительно изменяется строение мышечного слоя и слизистой оболочки желудка. У детей раннего возраста наблюдается слабое развитие мышц и эластических элементов желудка. Желудочные железы в первые годы жизни ребенка еще недоразвиты и малочисленны, хотя и способны секретировать желудочный сок, в котором содержание соляной кислоты, количество и функциональная активность ферментов значительно ниже, чем у взрослого человека. Так, количество ферментов, расщепляющих белки,

увеличивается с 1,5 до 3 лет, затем в 5-6 лет и в школьном возрасте до 12-14 лет. Содержание соляной кислоты увеличивается до 15-16 лет. Низкая концентрация соляной кислоты обусловливает слабые бактерицидные свойства желудочного сока у детей до 6-7 лет, что способствует более легкой восприимчивости детей этого возраста к желудочно-кишечным инфекциям.

В процессе развития детей и подростков существенно меняется и активность содержащихся в нем ферментов. Особенно значительно меняется в первый год жизни активность фермента — химозина, действующего на белки молока. У ребенка 1-2 месяцев его активность в условных единицах равна 16-32, а в 1 год может достигать 500 ед., у взрослых этот фермент полностью теряет свое значение в пищеварении. С возрастом нарастает также активность других ферментов желудочного сока и в старшем школьном возрасте она достигает уровня взрослого организма. Следует отметить, что у детей до 10 лет в желудке активно идут процессы всасывания, в то время как у взрослых эти процессы осуществляются в основном только в тонком кишечнике.

Поджелудочная железа развивается наиболее интенсивно до 1 года и в 5-6 лет. По своим морфофункциональным параметрам она достигает уровня взрослого организма к окончанию подросткового возраста (в 11-13 лет завершается ее морфологическое развитие, а в 15-16 лет — функциональное). Аналогичные темпы морфофункционального развития наблюдаются у печени и всех отделов кишечника.

Таким образом, развитие органов пищеварения идет параллельно с общим физическим развитием детей и подростков. Наиболее интенсивный рост и функциональное развитие органов пищеварения наблюдается в 1-й год постнатальной жизни, в дошкольном возрасте и в подростковом периоде, когда органы пищеварения по своим морфофункциональным свойствам

приближаются к уровню взрослого организма. Кроме того, в процессе жизни у детей и подростков легко вырабатываются условные пищевые рефлексы, в частности рефлексы на время приема пищи. В связи с этим важно приучить детей к строгому соблюдению режима питания.

### 8.2. Процесс пищеварения

Переваривание пищи начинается в ротовой полости, где происходит механическое раздробление и измельчение пищи при ее пережевывании. Измельченная механически пища в полости рта смешивается со слюной. В ротовую полость открываются протоки трех пар крупных слюнных желез: околоушные, поднижнечелюстные и подъязычные. Кроме того, почти по всей слизистой оболочке ротовой полости и языка расположены мелкие слюнные железки. Интенсивное слюноотделение начинается с появлением молочных зубов. В слюне содержится фермент амилаза, расщепляющий полисахариды до декстринов, а затем до мальтазы и глюкозы. Белок слюны муцин делает слюну клейкой. Благодаря муцину пропитанная слюной пища легче проглатывается. В составе слюны есть вещество белковой природы – лизоцим, обладающий бактерицидным действием. Пища, измельченная в ротовой полости и пропитанная слюной, сформованная в пищевые комки, через зев поступает в глотку, а из нее – в пищевод. Изнутри желудок выстлан слизистой оболочкой, образующей множество складок. В толще слизистой оболочки находятся железы, которые вырабатывают желудочный сок. Различают три типа клеток желудочных желез: главные (вырабатывают желудочного сока), обкладочные (вырабатывают соляную ферменты кислоту), добавочные (вырабатывают слизь). Желудочный сок человека – бесцветная жидкость кислой реакции, в состав которой входят соляная кислота (0,5 %), ферменты, минеральные вещества и слизи. Последние предохраняют слизистую оболочку желудка от механических и химических повреждений. Соляная кислота убивает бактерии, попадающие в желудок,

размягчает волокнистую пищу, вызывает набухание белков и способствует активированию пищеварительного фермента пепсина. За сутки у взрослого человека отделяется 1,2–2 л желудочного сока. В состав желудочного сока фермента – пепсин и химозин. Пепсин вырабатывается входят два желудочными железами в неактивной форме и активизируется только в кислотной среде желудка. Пепсин расщепляет белки до альбумоз и пептонов. Химозин, или сычужный фермент, вызывает створаживание молока в желудке. Обнаружить химозин в желудочном соке детей особенно просто в период молочного вскармливания. У более старших детей створаживание происходит под влиянием пепсина и соляной кислоты желудочного сока. Также в желудочном соке содержится фермент липаза, который расщепляет жиры до глицерина и жирных кислот. Желудочная липаза действует на жиры, находящиеся в состоянии эмульсии (жиры молока). В желудке пища задерживается от 4 до 11 ч и подвергается не только химической обработке с помощью желудочного сока, но и механическому воздействию. В толще стенок желудка находится мощный мышечный слой, состоящий из гладких мышц, мышечные волокна которого идут в продольном, косом и круговом направлениях. Сокращения МЫШЦ желудка способствуют лучшему перемешиванию пищи с пищеварительным соком, а также передвижению пищи из желудка в кишечник. Содержимое желудка в виде пищевой кашицы, пропитанной кислым желудочным соком, частично переварившееся мышечными сокращениями его стенок, перемещается к выходной его части (пилорическому отделу) и дозированно проходит из желудка в начальный отдел тонкого кишечника двенадцатиперстную кишку. Внутрь двенадцатиперстной кишки открывается общий желчный проток печени и проток поджелудочной железы. В двенадцатиперстной кишке происходит наиболее интенсивное и полное переваривание пищевой кашицы. Под действием сока поджелудочной железы, желчи и кишечного сока белки, жиры и углеводы перевариваются так, что становятся легкодоступными для

усвоения организмом. Чистый поджелудочный сок всасывания прозрачная жидкость щелочной реакции. Кишечный сок бесцветная, фермент трипсин, расщепляющий белковые содержит вещества аминокислот. Трипсин вырабатывается клетками железы в неактивной форме активируется кишечным соком. Фермент липаза, содержащийся в кишечном соке, активируется желчью и, действуя на жиры, превращает их в глицерин и жирные кислоты. Ферменты амилаза и мальтаза превращают сложные углеводы моносахариды типа глюкозы. Отделение поджелудочного сока продолжается 6-14 ч и зависит от состава и свойств принятой пищи. В двенадцатиперстную кишку поступает вырабатываемая клетками печени. И, хотя желчь не содержит в своем составе ферментов, ее роль в пищеварении огромна. Желчь переводит в активное состояние липазу, вырабатывающуюся клетками поджелудочной железы; эмульгирует превращая жиры, во взвесь мелких капелек (эмульгированные жиры легче перевариваются). Кроме того, желчь активно влияет на процессы всасывания в тонкой кишке и способствует усилению поджелудочной железы. Двенадцатиперстная отделения сока продолжается в тощий отдел тонкого кишечника, а последний – в подвздошную кишку. Длина тонкой кишки у взрослого человека – 5–6 м. Внутренняя оболочка тонкой кишки слизистая и имеет множество выростов, или ворсинок (около 4 млн у взрослого человека). Ворсинки значительно увеличивают всасывающую поверхность тонкого кишечника. Помимо трипсина и липаз, в составе кишечного сока присутствует свыше 20 ферментов, оказывающих каталитическое воздействие на расщепление пищевых веществ. В стенках тонкого кишечника имеются продольные и кольцевые мышцы, сокращения которых вызывают маятникообразные и перистальтические движения, что улучшает контакт пищевой кашицы с пищеварительными соками и способствует перемещению содержимого тонкой кишки в толстую кишку. Длина толстой кишки – 1,5–2 м. Это самый широкий отдел кишечника. В толстой кишке различают слепую кишку с червеобразным отростком (аппендикс), ободочную кишку и прямую кишку. В толстой кишке ферментативная обработка пищи весьма незначительна. Здесь происходит процесс интенсивного всасывания воды, в результате чего в конечных ее отделах формируется кал, который и выводится из организма. В толстой кишке живут многочисленные симбиотические бактерии. Одни из них расщепляют растительную клетчатку, так как пищеварительные соки человека не содержат ферментов для ее переваривания. Другие бактерии синтезируют витамин К и некоторые витамины группы В, которые затем всасываются организмом человека [3].

#### Контрольные вопросы:

- 1. Какие органы относят к пищеварительной системе?
- 1. Каково строение и функции пищевода и желудка?
- 3. Каково строение и функции кишечника?
- 4. Каковы строение и функциии пищеварительных желез?
- 2. Особенности пищеварения в полости рта.
- 3. Особенности пищеварения в желудке.
- 4. Особенности пищеварения в кишечнике.

#### Литература:

- 1. Агаджанян Н.А., Власова И.Г., Ермакова Н.В., Трошин В.И. Основы физиологии человека: Учебник М., 2009.
- 2. Анатомия человека медицинский сайт www.aopma.ru
- 3. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 4. Липченко В.Я. Атлас нормальной анатомии человека. М.: Медецина. 2009.
- 5. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.

#### Глава 9. Метаболизм

#### 9.1.Основные понятия

Метаболизм или обмен веществ — совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности.

Катаболизм – процесс распада сложных веществ на более простые. Так, поступающие с пищей белки, жиры, углеводы под действием ферментов пищеварительного тракта распадаются на более простые составные части (аминокислоты, жирные кислоты и моносахариды). При этом высвобождается энергия.

Анаболизм — обратный процесс, т. е. синтез сложных соединений из более простых. Он идет с затратой энергии. Из образовавшихся в результате пищеварения аминокислот, жирных кислот и моносахаридов в клетках синтезируются новые клеточные белки, фосфолипиды мембран и полисахариды.

Метаболический путь — это характер и последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образовавшиеся в процессе метаболизма называются метаболитами, а последнее соединение метаболического пути — конечный продукт. Существует понятие амфиболизм, когда одно соединение разрушается, но при этом синтезируется другое.

Метаболический цикл — это метаболический путь, один из конечных продуктов которого идентичен одному из соединений, вовлеченных в этот процесс.

Интенсивность метаболизма определяется потребностью клетки в тех или иных веществах или энергии.

Живые организмы представляют собой термодинамически неустойчивые системы. Для их формирования и функционирования

необходимо непрерывное поступление энергии в форме, пригодной для многопланового использования. Для получения энергии практически все живые существа на планете приспособились подвергать гидролизу одну из пирофосфатных связей АТФ. В связи с этим одна из главных задач биоэнергетики живых организмов это восполнение использованных АТФ из АДФ и АМФ.

Основной источник энергии в клетке – окисление субстратов Этот процесс осуществляется кислородом воздуха. тремя присоединением кислорода к атому углерода, отщеплением водорода или потерей электрона. В клетках окисление протекает последовательного переноса водорода и электронов от субстрата к кислороду. Кислород играет в этом случае роль восстанавливающегося (окислителя). Окислительные реакции соединения протекают биологических высвобождением энергии. Для реакций характерны сравнительно небольшие изменения энергии. Это достигается за счет дробления процесса окисления на ряд промежуточных стадий, что позволяет запасать ее небольшими порциями в виде макроэргических соединений (АТФ). Восстановление атома кислорода при взаимодействии с парой протонов и электронов приводит к образованию молекулы воды.

Клетки и ткани организма человека нуждаются в постоянном пополнении питательными веществами. Организм получает их в составе пищи, содержащей белки, жиры, углеводы, которые используются в качестве строительного материала при росте и воссоздании новых клеток взамен отмирающих. Пища служит также источником энергии, которая расходуется в процессе жизнедеятельности организма.

Большое значение для нормальной жизнедеятельности имеют витамины, минеральные соли и вода, поступающие с пищей. Витамины входят в состав разнообразных ферментных систем, а вода необходима в качестве растворителя. Перед тем как быть усвоенной организмом, пища подвергается

механической и химической обработке. Эти процессы осуществляются в органах пищеварения, которые состоят из пищевода, желудка, кишечника, желез. Расщепление пищи невозможно без ферментов, вырабатываемых пищеварительными железами. Все ферменты в живых организмах имеют белковую природу; в небольших количествах они вступают в реакцию и по Ферменты ee окончании выходят неизмененными. отличаются специфичностью: например, фермент, расщепляющий белки, не действует на молекулу крахмала, И наоборот. Bce пищеварительные ферменты способствуют растворению в воде исходного вещества, подготавливая его к дальнейшему расщеплению.

Каждый фермент действует при определенных условиях, лучше всего при температуре 38-40°С. Ее повышение подавляет активность, а иногда и разрушает фермент. На ферменты оказывает влияние и химическая среда: одни из них активны только в кислой среде (например, пепсин), другие – в щелочной (птиалин и ферменты поджелудочного сока) [9].

9.2. Обмен питательных веществ. Белковые пищевые продукты — творог, нежирное мясо, рыба, яйцо и другие, попав в пищеварительный тракт, подвергаются механической и химической обработке. В желудке белок расщепляется до пептидов, а в двенадцатиперстной кишке - до аминокислот. В тонком кишечнике аминокислоты всасываются в кровь и разносятся ко всем органам и тканям. В клетке из аминокислот синтезируются специфические для данной ткани белки. Так, в клетках мышц идет синтез белка миозина, в молочной железе — казеина и т. д. Часть белков, входящих в состав клеток органов и тканей, а также аминокислоты, поступившие в организм, но не использованные в синтезе белка, подвергаются распаду с освобождением 17,6 кДж энергии на 1 г вещества и образованием продуктов распада белка: воды, диоксида углерода, аммиака, мочевины и др. Все продукты диссимиляции белка выделяются из организма в составе мочи, пота и частично с выдыхаемым воздухом. В запас белки не откладываются. У

взрослого человека их синтезируется столько, сколько необходимо для компенсации распавшихся белков. При избытке белковой пищи она преобразуется в жиры и гликоген. Потребность белков в сутки составляет 100-118 г. В детском организме синтез белков превышает их распад, что учитывается при составлении рационов питания.

Обмен углеводов. Углеводы, входящие В состав продуктов растительного происхождения, в организме человека расщепляются до глюкозы, которая поступает в кровь и разносится по всему телу. Содержание глюкозы в крови относительно постоянно и не превышает 0.08 - 0.12%. Если глюкоза поступает в кровь в большем количестве, то этот избыток в печени превращается в животный крахмал – гликоген, который накапливается, а затем при необходимости снова распадается до глюкозы. При расщеплении 1 г углеводов освобождается 17,6 кДж энергии. Ее потребление увеличивается с возрастанием нагрузки при физической работе. Часть энергии используется для механической работы и служит источником тепла, другая часть идет на синтез молекул АТФ. При избытке углеводов в организме они превращаются в жиры. Суточная потребность углеводов составляет 450-500 г.

Обмен жиров. Жиры входят в состав растительной и животной пищи. Часть синтезированного в организме жира откладывается в запас, другая часть поступает в клетку, где вместе с жироподобными веществами (липоидами) служит пластическим материалом, из которого строятся мембраны клеток и органоидов. Жиры- важный источник энергии. При их окислении выделяются диоксид углерода, вода и освобождается энергия. Расщепление 1 г жиров сопровождается выделением 38,9 кДж энергии. Жиры могут синтезироваться в организме человека из углеводов и белков. Суточная потребность в них для взрослого человека 100 г.

Обмен жиров, белков и углеводов взаимосвязан. Отклонение от нормы обмена одного из этих веществ влечет за собой нарушение обмена других веществ. Например, при расстройстве обмена углеводов продукты их

неполного распада нарушают обмен белков и жиров, расщепление которых тоже идет не до конца, с образованием ядовитых веществ, отравляющих организм [3].

#### 9.3. Витаминно-минеральный обмен

Витамины (от лат. "вита" - жизнь) - органические соединения разнообразной химической природы, необходимые для нормального роста и развития организма. Они способствуют нормальному протеканию всех жизненных процессов в организме. Значение витаминов было доказано работами русского врача Н. И. Лунина в опытах над животными. Заболевания, развивающиеся при недостатке витаминов в организме, называются авитаминозами. Здоровому взрослому человеку требуется в сутки несколько миллиграммов различных витаминов. Экспериментально было доказано, что витамины входят в состав ферментов, которые, являясь биологическими катализаторами, ускоряют обмен веществ. При недостатке витаминов ферменты оказываются неполноценными, что обмена Витамины приводит К нарушению веществ. образуются в растительных организмах, НО имеются И В продуктах животного Обозначаются заглавными буквами происхождения. они латинского алфавита: A, B, C, D, E, K, PP, H. Некоторые буквы, например B, охватывают целые группы: от В1 до В15. Одни из них растворимы в жирах (A, D, E), другие - в воде (B, C).

Важнейший из витаминов — витамин А. Его называют витамином роста, он участвует в окислительно-восстановительных реакциях обмена. При нехватке в организме витамина А наблюдается сухость кожи, сухость роговицы глаза и ее помутнение. С недостатком витамина А связано нарушение сумеречного зрения. Наиболее богаты витамином А печень рыб, сливочное масло, молоко, морковь, абрикосы и др.

Витамин С, или аскорбиновая кислота, синтезируется в растениях и накапливается в шиповнике, лимоне, черной смородине, зеленом луке,

плодах клюквы и др. В настоящее время разработан промышленный синтез витамина С. При его недостатке развивается цинга. Особенно чувствуется нехватка витамина С к весне (у человека появляется сонливость, усталость, апатия).

Витамин D играет важную роль в обмене кальция, фосфора и в целом - в процессе образования костей. При отсутствии витамина D соли кальция и фосфора не откладываются в костях, а выводятся из организма и поэтому кости, особенно у детей, размягчаются. Под тяжестью тела ноги искривляются, на ребрах образуются утолщения - четки, задерживается развитие зубов. Наиболее богаты витамином D печень рыб, сливочное масло, икра, желток яйца. Растения содержат вещество, близкое к витамину D, - эргостерин, который под влиянием солнечных и ультрафиолетовых лучей переходит в витамин D. Эргостерин находится в коже человека, поэтому для детей необходимо пребывание на солнце.

Витамины группы В (В1, В2, В6, В12 и др.) регулируют многие ферментативные реакции обмена веществ, особенно обмена белков, аминокислот, нуклеиновых кислот. При их недостатке нарушаются функции нервной системы (например, болезнь бери-бери), желудочно-кишечного тракта (поносы), кроветворных органов (злокачественное малокровие) и др. Эти витамины содержатся в печени млекопитающих и некоторых рыб, в почках, петрушке и др.

Авитаминозы, возникающие от недостатка витаминов, могут развиться как в случае нехватки одного из витаминов, так и нескольких из них. Расстройства здоровья человека возможны и при избытке витаминов.

Макро- и микроэлементы.

Как известно, макро- и микроэлементы, или минералы, играют очень важную и существенную роль в человеческом организме. Ввиду этой важности некоторые несложные и практически применимые факты о них

должен знать не только специалист, но и любой человек, желающий сам заботиться о своем здоровье.

Макроэлементы: K, Na, Ca, Mg, P

Калий К

Суточная потребность: 2-3г

Вместе с натрием участвует в поддержании обмена веществ, стимулирует почки к выведению метаболических ядов, нормализует сердечный ритм и предупреждает токсическое влияние на сердце сердечных гликозидов (дитоксин, коргликон, строфантин К). Кроме того, участвует в регуляции кислотно-щелочного равновесия, способствует здоровой коже. Всего в организме человека содержится 170-240 г К (из них более 95% внутри клеток).

Дефицит К: нарушения в нервной (депрессия), нервно-мышечной (дискоординация движений, мышечная гипотония, гипорефлексия, разрушение мышц) и сердечно-сосудистой (артериальная гипотония, брадикардия) систем; повышается токсичность сердечных гликозидов.

Избыток К: параличи, парестезии, боли в икрах ног, диспепсические расстройства, нарушения работы сердца вплоть до остановки, нарушения функции почек.

Натрий Na

Суточная потребность: ок. 4г.

Вместе с калием участвует в поддержании кислотно-щелочного равновесия посредством буферных систем. Один из главных регуляторов обмена веществ в почках и осмотического давления плазмы крови. Необходим для поддержания мембранного потенциала всех клеток и генерации возбуждения в нервных и мышечных клетках. В организме содержится в биологических жидкостях, в клетках, а также в хрящах и костях.

Дефицит Na: слабость, апатия, головные боли, расстройства сознания, тошнота, рвота, гипотония, мышечные подергивания.

Избыток Na: возбуждение, гипертермия, жажда, возможны судороги, нарушения сознания.

Кальций Са

Суточная потребность: 1-1.5г

Строит и укрепляет кости и зубы, участвует в регуляции сердечного ритма, помогает питательным веществам проникать через клеточную мембрану, участвует в свертывающей системе крови, в функционировании нервной и мышечной систем, важен для нормальной работы почек, снижает уровень холестерина в крови. Обычно потребление человеком Са недостаточно, особенно это ощутимо у беременных и уже имеющих детей. Поэтому во время беременности и после нее потребление Са необходимо увеличить.

Дефицит Са: спазмы мыщц рук и ног, судороги (тетания) мышц ног и спины, размягчение костей, остеопороз, разрушение зубов, депрессия.

Избыток Са: снижение аппетита, запоры, жажда, повышенный диурез, гипотония мыщц, снижение рефлексов, повышение давления. Длительно существующая гиперкальциемия приводит к задержкам роста, отложениям кальция в стенках сосудов, поражениям почек.

Магний Мд

Суточная потребность: 0.3г

Играет важную роль в регуляции нервномышечной активности сердца, укрепляет нормальный сердечный ритм, необходим для метаболизма кальция и витамина С, участвует в превращении углеводов в энергию. Всего в организме содержится около 20 г Mg, в основном в костях и внутри клеток.

Дефицит Mg: снижение концентрации Ca и отложение Ca в тканях, тремор, мышечная слабость, сердечные спазмы, нервозность, трофические язвы, камни в почках.

Избыток Mg: седативный эффект, может быть угнетение дыхательного центра.

Фосфор Р

Суточная потребность: 1,5-3г

В виде фосфата занимает одно из центральных мест в процессах обмена веществ и энергии, входит в состав костей и зубов, является частью многих биологических веществ.

Дефицит Р: заторможенность, нарушения системы крови (гемолитическая анемия, тромбоцитопения и другие), мышечные нарушения вплоть до параличей, нарушения костной ткани и сердечной деятельности.

Избыток Р: гипотония, снижение концентрации Са в крови.

Микроэлементы: Fe, Cu, I, Zn, Mn

Микроэлементами называются такие химические элементы, содержание которых в организме человека менее 0,001%. Около двадцати из них являются жизненно необходимыми.

Железо Fe

Суточная потребность: 15 мг

В организме у железа три важнейшие функции: обуславливает транспорт и депонирование кислорода (входит в состав гемоглобина и миоглобина), входит в состав ферментов энергетического обмена и формирует активные центры многих других ферментов. Также предупреждает ожирение и защищает хороший цвет кожи. Всего в организме содержится 3 - 5 г Fe.

Дефицит Fe: слабость, бледность, запоры, анемии, гастрит, воспаления органов рото- и носоглотки.

Избыток Fe: поражения сердца и печени, легких и поджелудочной железы, нарушение зрения.

Медь Си

Суточная потребность: 2-5 мг

Необходима для абсорбции и утилизации железа, участвует в формировании эритроцитов, синтезе соединительной ткани, формировании и укреплении костей, передаче нервных импульсов. Обладает противовоспалительными свойствами. Требуется для регуляции гормональных механизмов. Всего в организме содержится до 80 г Си.

Дефицит Сu: общая слабость, угнетение дыхания, кожные язвы, нарушения сердечно-сосудистой системы, скелета, соединительной ткани, поражение центральной нервной системы, возможна гиперхолестеринемия.

Избыток Си: возможны медная лихорадка, заболевания легких.

Иод I

Суточная потребность: около 0.2 мг

Важен для развития и функционирования щитовидной железы, входит в состав секретируемых ей гормонов, через эти гормоны стимулирует метаболизм всего организма в сторону распада жиров и углеводов и продукции энергии; необходим для нормального развития головного мозга, кожи, волос и зубов.

Дефицит I: увеличение щитовидной железы (эндемический зоб), заторможенные реакции человека, кретинизм (при дефиците I в детском возрасте), замедление обменных процессов и снижение температуры тела, сухая кожа, снижение физических и умственных возможностей.

Избыток I: возможны аллергические реакции.

Цинк Zn

Суточная потребность: 100 мг

Антиоксидант, необходим для синтеза белка, стабилизации ДНК и РНК, роста и деления клеток, способствует заживлению ран, участвует в процессах развития репродуктивных органов, управляет сократимостью мышц, важен для стабилизации системы крови (гомеостаза), участвует во всасывании и метаболизме фосфора, входит в состав многих ферментов. Неорганический цинк может вызвать нарушения в желудочно-кишечном

тракте, поэтому лучше принимать хелатный цинк. Всего в организме содержится до 2 г Zn.

Дефицит Zn: задержка роста и полового созревания, замедление заживления ран, белые пятнышки на ногтях, полнота, возприимчивость к инфекциям.

Избыток Zn: быстро выводится из организма, но возможен небольшой токсический эффект.

Марганец Мп

Суточная потребность: 3-5 мг

Антиоксидант, важен для распада аминокислот и продукции энергии, для метаболизма витаминов В1 и Е. Активирует различные ферменты для переваривания и утилизации питательных веществ, катализирует распад жиров и холестерина. Участвует в нормальном развитии скелета, поддерживает продукцию половых гормонов. Всего в организме 10-20 г Мп.

Дефицит Mn: параличи, конвульсии, головокружение, ослабление слуха, глухота и слепота у детей, нарушения пищеварения, снижение уровня холестерина, может приводить к развитию неинсулинзависимого диабета.

Избыток Мп: двигательные и психические нарушения [10].

Контрольные вопросы:

- 1. Метаболизм основные понятия и значение
- 2. Особенности белкового, углеводного и жирового обмена у детей.
- 3. Витамины и минеральные вещества, их роль в обмене веществ.

Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
  - 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.

- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Учебное пособие для студентов дефектологический факультете высш. пед. учеб. заведений. М.: Издательский центр «Академия», 2008.
- 5. Физиологические основы здоровья / Под ред. проф. Р.И. Айзмана и проф. А.Я. Тернера.- Новосибирск: Лада, 2001.- 524с.

### Глава 10. Сердечно-сосудистая система

### 10.1 Строение и функции сердечно-сосудистой системы

Основное значение сердечно-сосудистой системы состоит в снабжении кровью органов и тканей. Сердечно-сосудистая система состоит из сердца, кровеносных и лимфатических сосудов.

Сердце человека – это полый мышечный орган, разделенный вертикальной перегородкой на левую и правую половины, а горизонтальной на четыре полости: два предсердия и два желудочка. Сердце окружено как соединительнотканной оболочкой - перикардом. мешком клапанов: атриовентрикулярные (отделяющие существуют два вида предсердия от желудочков) и полулунные (между желудочками и крупными сосудами - аортой и легочной артерией). Основная роль клапанного аппарата состоит в препятствии обратному току крови. В камерах сердца берут свое начало И заканчиваются два круга кровообращения. Большой круг начинается аортой, которая отходит от левого желудочка. Аорта переходит в артерии, артерии в артериолы, артериолы в капилляры, капилляры в венулы, венулы в вены. Все вены большого круга собирают свою кровь в полые вены: верхнюю – от верхней части туловища, нижнюю от нижней. Обе вены впадают В правое предсердие. Из правого предсердия кровь поступает в правый желудочек, где начинается малый круг кровообращения. Кровь из правого желудочка поступает в легочный ствол, который несет кровь в легкие. Легочные артерии ветвятся до капилляров, затем кровь собирается в венулы, вены и поступает в левое предсердие где и заканчивается малый круг кровообращения. Основная роль большого круга – это обеспечение обмена веществ организма, основная роль малого круга – насыщение крови кислородом.

Основными физиологическими функциями сердца являются: возбудимость, способность проводить возбуждение, сократимость, автоматизм.

Под сердечным автоматизмом понимают способность сердца сокращаться под воздействием импульсов возникающих в нем самом. Эту функцию выполняет атипичная сердечная ткань которая состоит из: синоаурикулярного узла, атриовентрикулярного узла, пучка Гисса. Под сердечным циклом понимают одно полное сокращение сердца. Сердечный цикл состоит из систолы (период сокращения) и диастолы (период расслабления). Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, продолжается в течение всей систолы желудочков. Во время диастолы желудочки наполняются кровью.

Ритм сердца – это количество сердечных сокращений за одну минуту. Аритмия – нарушение ритма сердечных сокращений, тахикардия - учащение частоты сердечных сокращений (ЧСС), возникает часто при усилении влияния симпатической нервной системы, брадикардия – урежение ЧСС, возникает часто при усилении влияния парасимпатической нервной системы. Экстрасистолия ЭТО внеочередное сердечное сокращение. Сердечные блокады – нарушение функции проводимости сердца, обусловленные поражением атипичных сердечных клеток. К показателям сердечной деятельности относят: ударный объем - количество крови, которое выбрасывается в сосуды при каждом сокращении сердца. Минутный объем – это количество крови, которое сердце выбрасывает в легочный ствол и аорту в течение минуты. Минутный объем сердца увеличивается при физической нагрузке. При умеренной нагрузке минутный объем сердца повышается как за счет роста силы сердечных сокращений, так и за счет частоты. При нагрузках большой мощности только за счет роста ЧСС. Регуляция сердечной деятельности осуществляется счет нейрогуморальных воздействий, изменяющих интенсивность сокращений сердца и приспосабливающих его деятельность к потребностям организма и условиям существования. Влияние нервной системы на деятельность сердца

осуществляется за счет блуждающего нерва (парасимпатический отдел ЦНС) и за счет симпатических нервов (симпатический отдел ЦНС). Окончания этих нервов изменяют автоматизм синоаурикулярного узла, скорость проведения возбуждения по проводящей системе сердца, интенсивность сердечных сокращений. Блуждающий нерв при возбуждении уменьшает ЧСС и силу сердечных сокращений, снижает возбудимость и тонус сердечной мышцы, скорость проведения возбуждения. Симпатические нервы наоборот учащают ЧСС, увеличивают силу сердечных сокращений, повышают возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения. Гуморальные влияния на сердце реализуются гормонами, электролитами, и другими биологически активными веществами, являющимися продуктами жизнедеятельности органов и систем. Ацетилхолин (АЦХ) и норадреналин (НА) – медиаторы нервной системы – оказывают выраженное влияние на работу сердца. Действие АЦХ аналогично действию парасимпатической, а действию симпатической норадреналина нервной системы. Кровеносные сосуды. В сосудистой системе различают: магистральные (крупные эластические артерии), резистивные (мелкие артерии, артериолы, прекапиллярные сфинктеры и посткапиллярные сфинктеры, венулы), капилляры (обменные сосуды), емкостные сосуды (вены и венулы), шунтирующие сосуды.

Под артериальным давлением (АД) понимают давление в стенках кровеносных сосудов. Величина давления в артериях ритмически колеблется, достигая наиболее высокого уровня в период систолы и снижается в момент диастолы. Это объясняется тем, что выбрасываемая при систоле кровь встречает сопротивление стенок артерий и массы крови, заполняющей артериальную систему, давление в артериях повышается и возникает некоторое растяжение их стенок. В период диастолы АД понижается и поддерживается на определенном уровне за счет эластического сокращения стенок артерий и сопротивления артериол, благодаря чему продолжается

продвижение крови в артериолы, капилляры и вены. Следовательно, величина АД пропорциональна количеству крови, выбрасываемой сердцем в аорту (т.е. ударному объему) и периферическому сопротивлению. Различают систолическое (САД), диастолическое (ДАД), пульсовое и среднее АД. Систолическое АД – это давление обусловленное систолой левого желудочка (100 - 120 мм рт.ст.). Диастолическое давление — определяется тонусом резистивных сосудов в период диастолы сердца (60-80 мм рт.ст.). Разность между САД и ДАД называется пульсовым давлением. Среднее АД равняется сумме ДАД и 1/3 пульсового давления. Среднее АД выражает энергию непрерывного движения крови и постоянно для данного организма. Повышение артериального давления называют гипертензией. Понижение АД называют гипотензией. АД выражают в миллиметрах ртутного столба. Нормальное систолическое давление колеблется в пределах 100-140 мм рт.ст., диастолическое давление 60-90 мм рт.ст.

Пульсом называют ритмические колебания стенки артерий, обусловленные сокращением сердца, выбросом крови в артериальную систему и изменением ней В давления течение систолы И диастолы. Распространение пульсовой волны связано со способностью стенок артерий к эластическому растяжению и спадению. Как правило, пульс начинают исследовать на лучевой артерии, поскольку она располагается поверхностно, непосредственно под кожей и хорошо прощупывается между шиловидным отростком лучевой кости и сухожилием внутренней лучевой мышцы У здорового человека сокращения сердца и пульсовой волны следуют друг за другом через равные промежутки времени, т.е. пульс ритмичен. В нормальных условиях частота пульса соответствует частоте сердечных сокращений и равна 60-80 ударов в минуту. Частоту пульса подсчитывают в течении 1 мин. В положении лежа пульс в среднем на 10 ударов меньше, чем стоя. У физически развитых людей частота пульса ниже 60 уд/мин, а у тренированных спортсменов до 40-50 уд/мин, что указывает на экономичную

работу сердца. В состоянии покоя частота сердечных сокращений (ЧСС) зависит от возраста, пола, позы. С возрастом она уменьшается. Пульс у находящегося в состоянии покоя здорового человека ритмичный, без перебоев, хорошего наполнения и напряжения. Ритмичным считается такой пульс, когда количество ударов за 10 с отмечается от предыдущего подсчета за такой же период времени не более, чем на один удар[6].

### 10.2 Кровообращение

Кровь движется по сосудам, образующим большой и малый круги кровообращения.

Большой круг кровообращения начинается из левого желудочка аортой, от которой отходят артерии более мелкого диаметра, несущие артериальную (богатую кислородом) кровь к голове, шее, конечностям, органам брюшной и грудной полостей, таза. По мере удаления от аорты артерии разветвляются на более мелкие сосуды — артериолы, а затем капилляры, через стенку которых происходит обмен между кровью и тканевой жидкостью. Кровь отдает кислород и питательные вещества, а забирает углекислый газ и продукты метаболизма клеток. В результате кровь становится венозной (насыщенной углекислым газом). Капилляры соединяются в венулы, затем в вены. Венозная кровь от головы и шеи собирается в верхнюю полую вену, а от нижних конечностей, органов таза, грудной и брюшной полостей — в нижнюю полую вену. Вены впадают в правое предсердие. Таким образом, большой круг кровообращения начинается от левого желудочка и закачивается в правом предсердии.

Малый круг кровообращения начинается легочной артерией от правого желудочка, которая несет венозную (бедную кислородом) кровь. Разветвляясь на две ветви, идущие к правому и левому легким, артерия делится на более мелкие артерии, артериолы и капилляры, из которых в альвеолах удаляется углекислый газ и происходит обогащение кислородом, поступившим с воздухом при вдохе.

Легочные капилляры переходят в венулы, затем образуют вены. По четырем легочным венам богатая кислородом артериальная кровь поступает в левое предсердие. Таким образом, малый круг кровообращения начинается от правого желудочка и заканчивается в левом предсердии.

Внешними проявлениями работы сердца являются не только сердечный толчок и пульс, но и кровяное давление. Кровяное давление — давление, которое оказывает кровь на стенки кровеносных сосудов, по которым она движется. В артериальной части кровеносной системы это давление называется артериальным [9].

## 10.3 Кровь и ее форменные элементы крови

Таблица 8. Строение и функции форменных элементов крови

| Форменн<br>ые<br>элементы | <b>Строение</b> клетки                                                              | Место<br>образования                                 | Продолжи - тельность функцион и- рования | <b>Место</b> отмирания                                            | Содержан<br>ие в 1 мм <sup>3</sup><br>крови | Функции                                                        |
|---------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|
| Эритроцит                 | Красные безъядерные клетки крови двояковогнут ой формы, содержащие белок-гемоглобин | Красный костный мозг                                 | 3-4 мес                                  | Селезенка.<br>Гемоглобин<br>разрушается в<br>печени               | 4,5-5 млн.                                  | Перенос $O_2$ из легких в ткани и $CO_2$ из тканей в легкие    |
| Лейкоциты                 | кровяные<br>амебообразны                                                            | Красный костный мозг, селезенка, лимфатическ ие узлы | 3-5 дней                                 | Печень, селезенка, а также места, где идет воспалительный процесс | 6-8 тыс.                                    | Защита организма от болезнетворн ых микробов путем фагоцитоза. |

|           |             |              |          |           |         | Вырабатываю т антитела, создавая иммунитет |
|-----------|-------------|--------------|----------|-----------|---------|--------------------------------------------|
| Тромбоцит | Кровяные    | Красный      | 5-7 дней | Селезенка | 300-400 | Участвуют в                                |
| Ы         | безъядерные | костный мозг |          |           | тыс.    | свертывании                                |
|           | тельца      |              |          |           |         | крови при                                  |
|           |             |              |          |           |         | повреждении                                |
|           |             |              |          |           |         | кровеносного                               |
|           |             |              |          |           |         | сосуда,                                    |
|           |             |              |          |           |         | способствуя                                |
|           |             |              |          |           |         | преобразовани                              |
|           |             |              |          |           |         | ю белка                                    |
|           |             |              |          |           |         | фибриногена в                              |
|           |             |              |          |           |         | фибрин -                                   |
|           |             |              |          |           |         | волокнистый                                |
|           |             |              |          |           |         | кровяной                                   |
|           |             |              |          |           |         | сгусток                                    |
|           |             |              |          |           |         |                                            |

Возрастные особенности сердечно-сосудистой системыб

ССС развивается поэтапно, гетерохронно включая в свою деятельность различные звенья системы.

ССС имеет три критических периода: эмбриональный, ранний постнатальный и пубертатный (подростковый). Во время критических периодов гетерохронность выражена в наибольшей степени. Цель каждого критического периода — включить дополнительные приспособительные механизмы в работу ССС.

Основной направленностью онтогенетического развития ССС является совершенствование морфофункциональной организации самой ССС и способов ее регуляции. Регуляция обеспечивает более экономичное и адаптивное реагирование на возмущающие воздействия. Это обусловлено постепенным вовлечением более высоких уровней регуляции. Так, в

эмбриональный период сердце подчинено внутренним механизмам регуляции, на уровне плода — внешним факторам. В неонатальный период основную регуляцию осуществляет продолговатый мозг; в период второго детства (9-10 лет) возрастает роль гипоталамо-гипофизарной системы.

Многие изменения свойств сердца и его сосудов обусловлены закономерными морфологическими процессами. С первого вдоха ребенка начинается перераспределение масс левого и правого желудочков: для правого желудочка сопротивление кровотока уменьшается, так как с началом дыхания сосуды легких открываются, а для левого — сопротивление увеличивается. возрастом продолжительность сердечного цикла увеличивается за счет диастолы. Это позволяет растущим желудочкам наполняться большим количеством крови.

Некоторые изменения функции сердца связаны не только с морфологическими, но и с биохимическими трансформациями. Например, с возрастом появляется такое важное свойство, как адаптация: в сердце увеличивается роль анаэробного (бескислородного) обмена.

Плотность капилляров к зрелому возрасту увеличивается, а затем снижается, их объем и поверхность в каждой последующей возрастной группе уменьшаются. Происходит и некоторое ухудшение проницаемости капилляров, увеличивается толщина базальной мембраны и эндотелиального слоя, возрастает межкапиллярное расстояние. Увеличивается также объем митохондрий, что является своеобразной компенсацией уменьшения капилляризации.

На протяжении жизни толщина стенки артерий и ее строение медленно Утолщение артерий изменяются. стенки определяется основном разрастанием эластических пластин. Этот процесс утолщением И заканчивается с наступлением зрелости. Именно эластические элементы стенок артерий первыми изнашиваются, фрагментируются, подвергаются обызвествлению. Количество коллагеновых волокон увеличивается, они замещают гладкомышечные клетки в одних слоях стенок артерий и разрастаются в других. В итоге стенка становится менее растяжимой. Такое увеличение жесткости затрагивает как крупные, так и средние артерии.

Развитие сосудов сердца и их регуляция отражается на многих функциях. Например, V детей из-за незрелости сосудосуживающих механизмов и расширенных сосудов кожи повышена теплоотдача, поэтому переохлаждение организма может произойти очень быстро. К моменту системе кровообращения есть овальное рождения окно В между предсердиями и артериальным протоком.

Изменения в сердечной деятельности, начиная с момента первого вдоха, вызваны снижением сопротивления в сосудах легких, повышением сопротивления в сосудах большого круга кровообращения, а также улучшением притока к левому предсердию. Теряется необходимость перехода крови из правого предсердия в левое и из легочного ствола в аорту. Возникают предпосылки закрытия артериального протока и овального отверстия.

Функциональная атрофия (уменьшение размера и ослабление функции) артериального протока начинается через 10-15 мин после рождения, а морфологическая атрофия длится неделями. Закрытию артериального способствует повышение напряжения протока кислорода крови, избыточное содержание адреналина И норадреналина, разрастание внутреннего слоя (эндотелия) и образование тромбов. Например, если содержание кислорода в крови снижено (как бывает при гипоксии новорожденного) или во вдыхаемой смеси много азота, то артериальный проток остается открытым. Механизм закрытия, особенно овального окна, срабатывает не приводит нарушению всегда, ЭТО К системы кислородообеспечения во всем организме.

Относительная масса сердца новорожденного почти вдвое больше чем у взрослого, составляет 0,9 % массы тела. Сердечная мышца устойчива к гипоксии и способна переключаться на анаэробный путь обмена.

У новорожденного минутный объем кровообращения (МОК) и масса циркулирующей крови значительно больше, чем у взрослых, поскольку организму необходим более быстрый обмен веществ.

После рождения в большом круге кровообращения сопротивление увеличивается, а в малом круге, наоборот, падает. Постепенно меняется толщина стенок. желудочков. Толще становятся стенки левого желудочка, хотя на стадии плода толще были стенки правого желудочка.

Уровень периферического сопротивления складывается из двух разнонаправленных сил. Одна направлена на повышение сопротивления (например, сосудистый тонус), другая — на снижение сопротивления (например, вязкость крови). Последнее связано с уменьшением количества эритроцитов в крови, поскольку новорожденный попадает в условия относительной гипероксии. При этом АД растет, так как факторы, направленные на снижение сопротивления, уступают возросшему сопротивлению в большом круге кровообращения.

На состояние системы кровообращения новорожденных влияют особенности телосложения ребенка. Размер головы составляет 1/4 от размеров тела, кроме того, голова тяжелее других частей тела. Длина нижних конечностей вдвое меньше, чем у взрослых, поэтому доля МОК в сосудах системы нисходящей аорты у новорожденных равна 40 %, тогда как у взрослых — 75 %.

У новорожденных ортостатическая проба не влияет на АД, так как при перераспределении крови между относительно большой головой и маленькими ногами повышается центральное венозное давление, а пульсовое АД не только не снижается, но может немного повыситься.

У новорожденного вдвое больше, чем у взрослых, коэффициент капиллярной фильтрации. У незрелых новорожденных капиллярная фильтрация может быть еще выше при низком кровотоке и охлаждении тела.

Причины высокой капиллярной фильтрации: расширение артериол, высокое венозное давление, относительно большой объем плазмы, высокий уровень обмена веществ и др.

У новорожденных детей отмечаются морфофункциональные особенности вен. Например, высокое венозное давление, причинами которого являются слабая растяжимость вен, их узкий просвет, большой объем плазмы и межтканевой жидкости, высокая ЧСС и недостаточная растяжимость правого желудочка. На самом начальном этапе постнатального онтогенеза венозное давление снижается. Этому способствует снизившееся сопротивление в малом круге кровообращения, выключение пупочного кровообращения и малая активность желудочно-кишечного тракта. В этот период венам свойственна спонтанная активность, что свидетельствует об установлении функциональных связей с созревающими гладкомышечными клетками.

Таким образом, у новорожденного ребенка регуляция ССС становится более разнообразной, усиливается роль нервных влияний, происходит перераспределение баланса между симпатическими и парасимпатическими влияниями. Такие преобразования позволяют организму ребенка приспосабливаться к постоянно меняющейся среде.

Характеристика ССС детского возраста

В период детства отмечается низкое АД, что обусловлено низким периферическим сопротивлением.

Имеющиеся у детей низкое сопротивление сосудов кровотоку, слабо выраженные реакции их тонуса на внешние стимулы не способствуют поддержаниюгомеостаза. В частности, даже при небольшом охлаждении теплоотдача резко возрастает, так как кожные сосуды остаются

расширенными. Совершенствование со-судодвигательных реакций на внешние стимулы начинается с 6-летнего возраста. Их развитие можно ускорить закаливающими процедурами.

В процессе роста и развития организма увеличивается АД. Абсолютная величина МОК также повышается, но МОК, отнесенный к массе тела, уменьшается. Уменьшение происходит за счет снижения уровня энергетических процессов, физиологического урежения ЧСС и сужения артериол.

В результате нарушенного баланса между симпатическими и парасимпатическими влияниями и высокой чувствительности к расширению периферических сосудов у детей в раннем возрасте высокие показатели ЧСС.

С возрастом у детей отмечается урежение ЧСС вследствие стимуляции нарастающим уровнем АД механорецепторов сосудов.

В детском возрасте сохраняется высокое венозное давление, а также большой объем кровообращения по отношению к единице массы тела.

Отмечается подъем АД, который связан с увеличением массы тела детей.

У ребенка в процессе роста происходит постепенный переход от режима новорожденное<sup>тм</sup> с высоким кровотоком и низким АД к режиму взрослого человека с низким кровотоком и высоким АД.

Каждому ребенку присуща индивидуальная норма АД, которая зависит от особенностей телосложения, возраста, расы, пола, климатогеографических условий, времени суток, особенностей генотипа и феномена акселерации, степени ожирения, содержания гемоглобина в крови, полового созревания и даже образовательного уровня родителей. Влияние длины тела на АД до 16 лет постепенно снижается.

С 7-8 лет у детей отмечается предстартовая реакция ССС: еще до начала мышечной работы учащается сердцебиение и повышается АД. Это свидетельствует о появлении в системе кровообращения

условнорефлекторных реакций, которые в процессе дальнейшего онтогенетического развития становятся более выраженными. Однако организм ребенка даже в условиях систематической физической тренировки не приобретает той экономизации функции ССС, которая характерна для взрослых [6].

### Контрольные вопросы:

- 1. Значение ССС, ее строение и функции.
- 2. Основные онтогенетические направления в развитие ССС: изменение структуры, функциональных параметров, ЧСС, артериального давления и т.д.
- 3. Особенности ССС ребенка от рождения до 7 лет.

### Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены летей И подростков. Учебное пособие ДЛЯ студентов дефектологический факультете высш. учеб. заведений. M.: пед. Издательский центр «Академия», 2008.
- 5. Физиологические основы здоровья / Под ред. проф. Р.И. Айзмана и проф. А.Я. Тернера.- Новосибирск: Лада, 2001.- 524с.

# Глава 11. Мочевыделительная система

# 11.1 Строение и функции органов выделения.

Таблица 9. Строение и функции органов выделения.

| Органы | Строение                    | Функции                      |
|--------|-----------------------------|------------------------------|
| Почки  | Кора почек - темный         | В нефроне образуется         |
|        | наружный слой, в который    | первичная моча. Почечная     |
|        | погружены микроскопически   | артерия приносит кровь,      |
|        | маленькие почечные тельца - | подлежащую очистке от        |
|        | нефроны. Нефрон             | конечных продуктов           |
|        | представляет собой капсулу, | жизнедеятельности            |
|        | состоящую из однослойного   | организма и избытка воды. В  |
|        | эпителия, и извитой         | клубочке создается           |
|        | почечный канадец. В капсулу | повышенное кровяное          |
|        | погружен клубочек           | давление, благодаря чему     |
|        | капилляров, образованный    | через стенки капилляров в    |
|        | разветвлением почечной      | капсулу фильтруются вода,    |
|        | артерии                     | соли, мочевина, глюкоза, где |
|        |                             | они находятся в меньшей      |
|        |                             | концентрации                 |
|        | Мозговое вещество           | По извитым почечным          |
|        | представлено                | канальцам, густо             |
|        | многочисленными извитыми    | оплетенным капиллярами, из   |
|        | канальцами, идущими от      | капсулы проходит первичная   |
|        | капсул нефронов и           | моча. Из первичной мочи в    |
|        | возвращающимися в кору      | капилляры возвращается       |
|        | почек. Светлый внутренний   | (реабсорбируется) часть      |
|        | слой состоит из             | воды, глюкоза. Оставшаяся    |
|        | собирательных трубок,       | более концентрированная      |
|        | образующих пирамидки,       | вторичная моча поступает в   |
|        | обращенные вершинами        | пирамидки                    |
|        | внутрь и заканчивающиеся    |                              |

|                          | отверстиями                               |                               |
|--------------------------|-------------------------------------------|-------------------------------|
|                          | Почечная лоханка имеет                    | По трубочкам пирамидок,       |
|                          | форму воронки, широкой                    | через сосочки, вторичная      |
|                          | стороной обращенной к                     | моча просачивается в          |
|                          | пирамидкам, узкой - к                     | почечную лоханку, где         |
|                          | воротам почки                             | собирается и проводится в     |
|                          |                                           | мочеточник                    |
|                          | Ворота почки - вогнутая                   | По мочеточнику вторичная      |
|                          | сторона почки, от которой                 | моча постоянно стекает в      |
|                          | отходит мочеточник. Здесь                 | мочевой пузырь. По            |
|                          | же в почку входит почечная                | почечной артерии              |
|                          | артерия и отсюда же выходит               | непрерывно приносится         |
|                          | почечная вена                             | кровь, подлежащая очистке     |
|                          |                                           | от конечных продуктов         |
|                          |                                           | жизнедеятельности. После      |
|                          |                                           | прохождения через             |
|                          |                                           | сосудистую систему почки      |
|                          |                                           | кровь из артериальной         |
|                          |                                           | становится венозной и         |
|                          |                                           | выносится в почечную вену     |
| Мочеточники              | Парные трубки 30 - 35 см                  | Соединяют почечную            |
|                          | длиной состоят из гладкой                 | лоханку с мочевым пузырем     |
|                          | мускулатуры, выстланы                     |                               |
|                          | эпителием, снаружи покрыты                |                               |
|                          | соединительной тканью                     |                               |
| Мочевой пузырь           | Мешок, стенки которого                    | Накапливает в течение 3-3,5   |
|                          | состоят из гладкой                        | ч мочу, при сокращении        |
|                          | мускулатуры, выстланной                   | стенок моча выделяется        |
|                          | эпителием                                 | наружу                        |
|                          |                                           |                               |
| Мочеиспускательный канал | Трубка, стенки которой                    | Выводит мочу во внешнюю       |
| Мочеиспускательный канал | Трубка, стенки которой состоят из гладкой | Выводит мочу во внешнюю среду |

эпителием

### Возрастные особенности мочевыделительной системы у детей

К моменту рождения созревание почек еще не закончено. Клубочки у новорожденных значительно меньше, чем у взрослых, их фильтрующая поверхность составляет 30% нормы взрос лого. Канальцы короче и уже. По сравнению со взрослыми ре абсорбция мочи у детей снижена.

С возрастом органы мочевыделения меняются. У детей младшего возраста размеры почек относительно больше, отношение их массы к массе тела новорожденного составляет 1 : 100, у взрос лого человека — 1 : 200.

Верхний полюс почки находится на уровне XI—XII грудно го позвонка, нижний — на уровне IV поясничного позвонка. К 2 годам эти особенности расположения почек исчезают. В по следующие годы рост почек соответствует росту тела.

Почки в первые годы жизни имеют дольчатое строение. Кор ковый слой развит недостаточно. Клубочки у новорожденного располагаются компактно. Количество клубочкового фильтра та у детей в первые месяцы жизни понижено по причине того, что фильтрующая поверхность у них значительно меньше, чем у взрослых

Для выведения шлаков детям требуется больше воды, чем взрослым. Обезвоживание у детей наступает значительно быст рее. Дети, получающие грудное молоко, полностью усваивают его, и продуктов, удаляемых через почки, очень мало. В связи с этим при низких функциональных возможностях, несовер шенстве систем, регулирующих водносолевой обмен, ребенок поддерживает постоянство внутренней среды. При замене груд ного молока другими продуктами нагрузка на почки возрастает, увеличивается количество продуктов, подлежащих удалению, почки работают с большим напряжением, изменяется кислотность мочи.

Почки участвуют в поддержании осмотической регуляции об мена крови и внеклеточной жидкости, поддержании кислотно щелочного равновесия.

Моча образуется в результате активной функции нефрона, с помощью которой происходит ультрафильтрация плазмы в капиллярах клубочков, в канальцах происходят обратное всасывание воды, глюкозы, синтез и секреция необходимых для организма соединений. Через фильтрующую мембрану клубочков из плазмы крови проходят низкомолекулярные водорастворимые соединения. Почечный фильтр не пропускает клеточные элементы и белки.

Регуляция мочеобразования происходит через гипофиз, над почечники, гуморальным и нервным путями. Выведение воды регулируется антидиуретическим гормоном. Альдостерон — гормон коры надпочечников — повышает обратное всасывание натрия и выведение калия. В первые 3 месяца выделяется 90 мл мочи на 1 кг веса, в возрасте 10 лет — 25—35 мл на 1 кг веса в сутки.

Мочеточники. Мочеточники у детей раннего возраста относительно шире, более извилисты, чем у взрослых. Стенки мочеточников снабжены плохо сформированными мышечными и эластичными волокнами.

Мочевой пузырь. У новорожденных мочевой пузырь — овальной формы и находится выше, чем у взрослых. Его слизистая оболочка полностью сформирована. С возрастом ребенка утолщаются его мышечный слой и эластические волокна. Емкость мочевого пузыря у новорожденного составляет 50 мл, в 1 год — 200 мл.

#### КОНТРОЛЬНЫЕ ВОПРОСЫ:

- 1. Какие органы относятся к выделительной системе?
- 2. Раскройте строение почек.
- 3. Каковы возрастные особенности строения и функционирования органов выделения у детей?

### Литература:

- 1. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 2. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 3. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 4. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей И подростков. Учебное пособие ДЛЯ студентов дефектологический факультете высш. учеб. заведений. M.: пед. Издательский центр «Академия», 2008.
- 5. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.
- 6. Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.

### Глава 12 Эндокринная система.

## 12.1 Строение и функции желез внутренней секреции.

Железы внутренней секреции (эндокринные) не имеют выводных протоков и выделяют секрет непосредственно во внутреннюю среду – кровь, лимфу, тканевую и спинно-мозговую жидкость. Эта особенность отличает их от желез внешней секреции (пищеварительных) и экскреторных желез (почек и потовых), выделяющих образуемые ими продукты во внешнюю среду. Строение и функции основных желез внутренней секреции человека представлено в таблице

Таблица 10. Железы внутренней секреции

| Железы     | Расположение    | Строение      | Гормоны          | Функция         |
|------------|-----------------|---------------|------------------|-----------------|
| Гипофиз    | Ниже            | Мозговой      | Ростовые         | Регулируют рост |
|            | моста головного | придаток,     | Регуляторные     | организма в     |
|            | мозга           | состоящий из  |                  | молодом         |
|            |                 | трех частей:  |                  | возрасте        |
|            |                 | передней,     |                  |                 |
|            |                 | промежуточной |                  |                 |
|            |                 | и задней доли |                  |                 |
|            |                 |               |                  | Регулируют      |
|            |                 |               |                  | деятельность    |
|            |                 |               |                  | половых и       |
|            |                 |               |                  | щитовидной      |
|            |                 |               |                  | желез и         |
|            |                 |               |                  | надпочечников   |
| Щитовидная | Поверх          | Две доли,     | Тироксин, содер- | С кровью        |
|            | щитовидного     | соединенные   | жащий йод        | разносится по   |
|            | хряща гортани   | перемычкой и  |                  | организму,      |
|            |                 | состоящие из  |                  | регулируя обмен |
|            |                 | пузырьков     |                  | веществ.        |
|            |                 |               |                  | Повышает        |
|            |                 |               |                  | возбудимость    |

|               |              |                 |            | нервной системы  |
|---------------|--------------|-----------------|------------|------------------|
| Надочечники   | Над верхней  | Двухслойные.    | Кортикоиды | Регулируют       |
|               | частью почек | Наружный слой - |            | обмен            |
|               |              | корковый,       |            | минеральных и    |
|               |              | внутренний -    |            | органических     |
|               |              | мозговой        |            | веществ,         |
|               |              |                 |            | выделение        |
|               |              |                 |            | половых          |
|               |              |                 |            | гормонов         |
|               |              |                 | Адреналин  | Ускоряет работу  |
|               |              |                 |            | сердца, сужает   |
|               |              |                 |            | кровеносные      |
|               |              |                 |            | сосуды, тормозит |
|               |              |                 |            | пищеварение,     |
|               |              |                 |            | расщепляет       |
|               |              |                 |            | гликоген         |
| Поджелудочная | Брюшная      | "Островки"      | Инсулин    | Регулирует       |
| железа        | полость тела | клеток,         |            | содержание       |
|               | ниже желудка | расположенные в |            | глюкозы в крови, |
|               |              | разных местах   |            | синтез гликогена |
|               |              | железы          |            | из избытка       |
|               |              |                 |            | глюкозы          |

# 12.2. Основные гормоны и их воздействие на организм

Гормоны — химические вещества, продуцируемые эндокринными железами. Гормоны действуют на обмен веществ в ничтожно малых количествах, они служат катализаторами, осуществляя свое воздействие через кровь и нервную систему. Гормоны оказывают огромное влияние на умственное и физическое развитие, рост, изменение строения организма и его функции, определяют половые различия.

Гормоны характеризуются специфичностью действия: оказывают избирательное действие только на определенную функцию (или функции). Влияние гормонов на обмен веществ осуществляется в основном через изменения активности определенных ферментов, причем гормоны влияют либо непосредственно на их синтез, либо на синтез других веществ, участвующих в конкретном ферментативном процессе. Действие гормона зависит от дозы и может тормозиться разными соединениями (иногда их называют антигормонами).

Гормоны активно влияют на формирование организма уже на ранних стадиях внутриутробного развития. Например, у зародыша функционируют щитовидная, половые железы и гонадотропные гормоны гипофиза. Существуют возрастные особенности функционирования и строения желез внутренней секреции. Так, некоторые эндокринные железы особенно интенсивно функционируют в детском возрасте, другие – в зрелом [3].

Таблица 11. Гормоны и их воздействие на организм.

| Гормон       | Воздействие в        | Гиперфункция          | Гипофункция           |
|--------------|----------------------|-----------------------|-----------------------|
|              | норме                |                       |                       |
| Ростовые     | Регулируют рост      | В молодом возрасте    | Задерживают рост      |
|              | организма в молодом  | вызывают гигантизм,   | (карликовость), при   |
|              | возрасте             | у взрослых - болезнь  | этом пропорции тела и |
|              |                      | акромегалию           | умственное развитие   |
|              |                      |                       | остаются              |
|              |                      |                       | нормальными           |
| Регуляторные | Регулируют           | Усиливают             | Усиливают отделение   |
|              | деятельность половых | гормональную          | воды при образовании  |
|              | и щитовидной желез и | активность всех желез | вторичной мочи        |
|              | надпочечников        |                       | (потеря воды)         |
| Тироксин     | С кровью разносится  | Базедова болезнь,     | Микседема,            |
|              | по организму,        | выражающаяся в        | выражающаяся в        |
|              | регулируя обмен      | повышении обмена      | понижении обмена      |
|              | веществ. Повышает    | веществ,              | веществ,              |
|              | возбудимость нервной | возбудимости нервной  | возбудимости нервной  |

|            | системы               | системы, развитии    | системы, отечности. В |
|------------|-----------------------|----------------------|-----------------------|
|            |                       | зоба                 | молодом возрасте -    |
|            |                       |                      | карликовость и        |
|            |                       |                      | кретинизм             |
| Кортикоиды | Регулируют обмен      | Раннее половое       | Бронзовая болезнь     |
|            | минеральных и         | созревание с быстрым | (бронзовый оттенок    |
|            | органических веществ, | прекращением роста   | кожи, слабость,       |
|            | выделение половых     |                      | похудение). Удаление  |
|            | гормонов              |                      | коры надпочечников    |
|            |                       |                      | вызывает смерть       |
|            |                       |                      | вследствие потери     |
|            |                       |                      | большого количества   |
|            |                       |                      | натрия                |
| Адреналин  | Ускоряет работу       | Учащенное            | Количество            |
|            | сердца, сужает        | сердцебиение,        | регулируется нервной  |
|            | кровеносные сосуды,   | повышение пульса и   | системой, поэтому его |
|            | тормозит              | кровяного давления,  | недостатка            |
|            | пищеварение,          | особенно при испуге, | практически не бывает |
|            | расщепляет гликоген   | страхе, гневе        |                       |
| Инсулин    | Регулирует            | Шок,                 | Сахарный диабет, при  |
|            | содержание глюкозы в  | сопровождающийся     | котором уровень       |
|            | крови, синтез         | судорогами и потерей | глюкозы в крови       |
|            | гликогена из избытка  | сознания при падении | повышается,           |
|            | глюкозы               | уровня глюкозы в     | появляется сахар в    |
|            |                       | крови                | моче                  |

### Возрастные особенности эндокринной системы.

В онтогенезе происходит смена форм регуляции функций клеток, органов и систем: от неспецифической химической (гуморальной) к более совершенной, строго адресованной, срочной и координированной — нервной. Уже в эмбриогенезе связь между клетками осуществляется не только с помощью продуктов обмена веществ — метаболитов, но и через специфические биологически активные вещества, выделяемые нервными клетками, — медиаторы: ацетилхолин, норадреналин, серотонин и т. д.,

которые являются регуляторами биологических процессов. Затем реакция клеток на местные химические раздражители уменьшается, совершенствуется способность реагировать на нервный импульс. Обшей закономерностью онтогенеза эндокринной системы является: - первоначальное прогрессивное развитие желез, их становление и развитие в эмбриональном периоде раннем постнатальном онтогенезе; И более или менее длительное сохранение максимальной функциональной активности (иногда зрелом) возрасте; В молодом В - выраженная в различной степени их старческая регрессия.

### Развитие гипофиза

Гипофиз у взрослого человека весит примерно 0,5 г. В момент рождения его масса не превышает 0,1 г, но уже к 10 годам она увеличивается до 0,3 г и в подростковом возрасте достигает уровня взрослого. Гипофиз расположен в углублении основания черепа — турецком седле. Различают переднюю, промежуточную и заднюю доли гипофиза. Передняя и промежуточная доли аденогипофиз, нейрогипофизом. составляют заднюю называют Вырабатывание гормонов в гипофизе начинается в зародышевом периоде развития организма. В гипофизе вырабатывается соматотропный гормон, регулирующий рост и развитие организма, а также гормоны, влияющие на функции других эндокринных желез: щитовидной, половых И надпочечников.

### Развитие эпифиза

Эпифиз расположен вблизи гипоталамуса. Основными гормонами эпифиза являются адреногломерулотропин, стимулирующий экскрецию альдостерона в клубочковой зоне коры надпочечников, и мелатонин — ингибитор развития и функционирования половых желез. Эпифиз человека достигает своей максимальной активности в раннем детстве. К этому периоду эпифиз сдерживает развитие половых желез. Позднее эпифиз подвергается значительной инволюции: в 1 год 2 мес. появляется так называемый

эпифизарный песок, который до 15-летнего возраста не всегда обнаруживается в железе. В возрасте 15-20 лет он занимает 0,35 % площади ткани железы.

### Развитие щитовидной железы

Щитовидная железа является одним из важнейших органов внутренней секреции человека. Особенно велико ее значение для растущего организма. Расположена щитовидная железа В передней области щитовидного хряща гортани. В детском возрасте щитовидная железа имеет строение фолликулярное малым содержанием c коллоида слизеподобная жидкость). Масса нормальной щитовидной железы с возрастом резко меняется. Так, у новорожденных она весит 1 г, у детей с 11 дней до 6 мес. — 2 г, в 6-12 мес. — 3 г, 1-2 года — 4 г, 3-4 года — 7 г, 5-10 лет — 10 г, 11-15 лет — 15 г, 16-20 лет — 25 г, 21 год и старше — 39-47 г. В железистой ткани щитовидной железы синтезируются тиреоидные гормоны (тироксин, трийодтиронин, кальцитонин), влияющие на обмен веществ и энергии. Тироксин содержит в составе молекулы 4 атома йода, после отщепления одного из них образуется трийодтиронин, который в 4-5 раз активнее тироксина.

В кровь из щитовидной железы поступают оба гормона, они являются мощными стимуляторами метаболических процессов в организме: ускоряют обмен белков, жиров И углеводов, активируют окислительное фосфорилирование в митохондриях, что ведет к усилению энергетического обмена. Эти гормоны необходимы уже в период внутриутробной жизни, так обеспечивают рост, развитие и дифференциацию тканей через поддержание равновесия между процессами ассимиляции и диссимиляции. Большую роль тиреоидные гормоны играют в дифференциации нервной И образовании миелиновой оболочки ткани нервных волокон. Тиреоидные гормоны участвуют в регуляции деятельности нервной системы (повышение возбудимости); сердечно-сосудистой (усиление работы сердца).

У новорожденного ребенка высокая тиреоидная активность (физиологический гипертиреоз), которая длится около недели. Второй подъем этой активности происходит в 12-15 лет, что связано с большими потребностями организма в энергии, необходимой для интенсивного роста.

Развитие паращитовидных желез

Паращитовидные железы — четыре самые маленькие железы внутренней секреции, общая масса которых всего 0,1 г. После рождения масса паращитовидных желез увеличивается до 30 лет у мужчин и до 45-50 лет у женщин. Они располагаются в непосредственной близости от щитовидной железы (а иногда в ее ткани) и вырабатывают паратгормон, регулирующий обмен фосфора организме. Паратгормон кальция И В повышает концентрацию кальция в крови, увеличивает его всасывание в кишечнике, способствует распаду костной ткани, повышает содержание фосфора в моче. Паращитовидные железы у эмбриона появляются на ранней стадии развития (1,5 мес.). У новорожденных уровень кальция и фосфора в крови несколько снижен, что иногда приводит к возникновению приступов: посинению кожных покровов, тремору (подергиванию) и напряжению мышц и т. д. До конца подросткового периода содержание паратгормона в плазме детей выше, чем у взрослых, но наиболее интенсивный синтез его происходит в 4-7 лет. В период первого и даже второго детства возможна относительная гипофункция паращитовидных желез, в связи с чем усиливается жажда, пропадает аппетит, повышается нервно-мышечная возбудимость, дети на различные раздражители реагируют подергиванием отдельных групп мышц.

Развитие вилочковой железы (тимуса)

Тимус выполняет иммунорегуляторные функции. Лимфоциты, образовавшиеся в костном мозгу и лимфоидных органах, с током крови поступают в тимус, откуда они распределяется по всей лимфоидной системе.При рождении вилочковая железа составляет 4,2 % массы тела, у 2-летнего ребенка — 2,2 % и у взрослого — 0,3 %. Максимальная

относительная масса железы наблюдается в 2-3-летнем возрасте, а абсолютная — в период полового созревания. Затем железа начинает уменьшаться, масса у взрослого человека составляет 6 г. Гормоны вилочковой железы тормозят активность половых желез, а половые гормоны вызывают постепенное уменьшение массы вилочковой железы, резко снижая ее функции.

### Развитие поджелудочной железы

Поджелудочная железа находится рядом с желудком и двенадцатиперстной кишкой, относится к смешанным железам. В ней образуется поджелудочный сок, играющий важную роль в пищеварении, и происходит секреция гормонов, принимающих участие в регуляции углеводного обмена, — инсулина и глюкагона.

Эндокринную функцию осуществляют клетки поджелудочной железы, расположенные в виде островков (островки Лангерганса). Отровки обнаруживаются 44-миллиметрового Лангерганса уже эмбриона. Интенсивное развитие поджелудочной железы начинается с 6,5 мес. внутриутробной жизни и продолжается в течение первого периода жизни ребенка. У доношенных новорожденных поджелудочная железа в среднем весит 2,84 г, к концу 1 года масса поджелудочной железы превышает таковую у новорожденного в 4 раза. Второй скачок в развитии поджелудочной железы наблюдается В 5-6-летнем возрасте. К 13-15 лет масса и размеры поджелудочной железы такие же, как и у взрослого человека. Островки Лангерганса продуцируют два гормона инсулин и глюкагон. Глюкагон повышает уровень caxapa крови (способствует превращению гликогена печени в глюкозу и выхода ее в кровь), поэтому в период недостатка пищи в клетку поступает глюкоза.

#### Развитие надпочечников

Надпочечники рано закладываются в эмбриогенезе. Они представляют собой парные железы массой 4-7 г каждая, располагаются на верхних полюсах

почек. Каждый надпочечник состоит из двух слоев, имеющих разное происхождение и строение, различные функции: наружного — коркового и внутреннего — мозгового. Во внутреннем, мозговом слое надпочечников образуются два гормона — адреналин и норадреналин. Адреналин и норадреналин очень рано появляются в мозговом веществе надпочечников. Они увеличивают силу и частоту сердечных сокращении, повышают АД, усиливают обмен веществ, тормозят работу пищеварительной системы. Возрастные изменения в экскреции адреналина и норадреналина у человека практически не исследованы. Уже при рождении уровень экскреции этих гормонов равен уровню взрослого организма.

Активность надпочечников наблюдается в 7-8 лет, 10 лет и особенно в пубертатный период. Андростероидная функция надпочечников созревает значительно позже в результате позднего развития сетчатой зоны коры, которая отвечает за экскрецию андростероидов. У детей до 8-10 лет андрогенов в крови практически нет, затем их количество постепенно увеличивается, с 20 до 30 лет происходит резкое возрастание, в дальнейшем их количество уменьшается[9].

#### Развитие половых желез

В развитии половых органов мужского и женского организма имеется общность зачатков. На ранней стадии развития эмбриона различить пол по строению половых желез и наружных половых органов невозможно (бесполая стадия). Первые зачатки наружных половых органов появляются в начале 2 месяца внутриутробного развития.

Женские половые железы. В женском организме специфическую половую эндокринную функцию выполняют яичники, регулируемые фолликуло-стимулирующим (ФСГ), лютеинизирующим и лютеотропным гормонами гипофиза.

В яичниках новорожденных девочек примерно 300-400 тыс фолликулов (пузырьков). В некоторых фолликулах образуется полость, заполненная

фолликулярной жидкостью, содержащей гормон эстрон. Полного развития фолликулы яичника достигают в период половой зрелости (13-15 лет). После первой овуляции в яичнике образуется еще один гормон — прогестерон, продуцируемый клетками желтого тела (временная железа, образующаяся из лопнувшего фолликула). Таким образом, яичники выполняют внешнесекреторную (в них созревают яйцеклетки), и внутрисекреторную функции (секретируют гормоны). Размеры И масса яичников новорожденных девочек крайне малы. К 1 году их масса увеличивается в 2,5 раза. В 5-6 лет масса каждого яичника достигает 1 г, к 12 годам масса вновь увеличивается вдвое, к 20 годам яичник достигает предельной массы — 6,63 г. Эстрогены влияют на рост и развитие женских половых органов и развитие вторичных половых признаков, а также стимулируют многие процессы обмена.

Мужские половые железы (яички, или семенники) располагаются в кожно-мышечном мешке — мошонке. Они выполняют две функции: в них развиваются мужские половые клетки — сперматозоиды; в них образуются мужские половые гормоны — тестостерон и ингибин. Тестостерон обусловливает специфические черты строения мужского организма, ингибин тормозящим образом действует на секрецию фолликулостимулирующего гормона передней доли гипофиза.

Интенсивный рост яичек совершается:

- от рождения до 1 года (размер увеличивается в 3,7 раза, а масса в 3,6 раза);
- от 10 до 15 лет (размер увеличивается в 7,5 раза, а масса в 9,5 раза). Простата (предстательная железа) и семенные пузырьки выполняют функцию добавочных желез полового аппарата. До наступления половой зрелости простата мала и представляет собой мышечный орган. Железистая часть ее развивается ко времени полового созревания и достигает взрослого строения к 17 годам. Андрогены способствуют развитию вторичных половых

признаков, стимулируют рост и развитие наружных половых органов, определяют рост волос на лице, стимулируют сперматогенез (созревание сперматозоидов)[9].

### Контрольные вопросы

- 1. Понятие желез внутренней секреции, гормонов.
- 2. Роль гипоталамо-гипофизарной системы в регуляции эндокринных желез.
  - 3. Возрастные изменения гипофиза и его роль.
  - 4. Особенности возрастных изменений функций эпифиза.
  - 5. Роль щитовидной железы в развитии организма.
  - 6. Возрастные изменения строения и функций вилочковой железы.
  - 7. Развитие поджелудочной железы и ее роль для организма.
  - 8. Развитие женских половых желез.
  - 9. Развитие мужских половых желез.

### Литература:

- 1. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 2. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 3. Липченко В.Я. Атлас нормальной анатомии человека. М.: Медецина. 2009.
- 4. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 5. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Учебное пособие для студентов дефектологический факультете высш. пед. учеб. заведений. М.: Издательский центр «Академия», 2008.

### Список литературы

- 6. Агаджанян Н.А., Власова И.Г., Ермакова Н.В., Трошин В.И. Основы физиологии человека: Учебник М., 2009.
- 7. Анатомия человека медицинский сайт www.aopma.ru
- 8. Антонова В.А. Возрастная анатомия и физиология. М.: Высшее образование. 192 с. 2006.
- 9. Воробьева Е.А. Анатомия и физиология. М.: Медицина, 2007.
- 10. Липченко В.Я. Атлас нормальной анатомии человека. М.: Медецина. 2009.
- 11. Лысова Н. Ф., Айзман Р. И., Завьялова Я. Л., Ширшова В. М. Возрастная анатомия, физиология и школьная гигиена. Новосибирск: Сибирское университетское издательство, 2010.
- 12. Обреумова Н.И., Петрухин А.С. Основы анатомии, физиологии и гигиены детей и подростков. Учебное пособие для студентов дефектологический факультете высш. пед. учеб. заведений. М.: Издательский центр «Академия», 2008.
- 13. Сапин, М.Р. Анатомия и физиология детей и подростков: учеб. пособие для вузов / М.Р. Сапин и др. М. Академия, 2002. 456c.
- 14.Учебник по курсу "Возрастная анатомия, физиология и гигиена" Составители: кандидат биологических наук О.В. Григорьева; кандидат биологических наук Р.М.Хаматова.
- 15. Физиологические основы здоровья / Под ред. проф. Р.И. Айзмана и проф. А.Я. Тернера.- Новосибирск: Лада, 2001.- 524с.