АНАТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ПО ФИЗИКЕ 7-9кл.

Программа разработана в соответствии с ФГОС основного общего образования и на основе авторской рабочей программы основного общего образования. Физика. 7 – 9 классы. Авторы: А.В. Перышкин., Н.В. Филонович, Е.М. Гутник, М.: Издательство «Дрофа», 2012.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» в 7-9 классе:

Изучение учебного предмета «Физика» на уровне основного общего образования должно обеспечивать достижение следующих личностных, метапредметных и предметных образовательных результатов

ВОСПИТАТЕЛЬНЫЕ ЗАДАЧИ

Патриотическое воспитание (1):

- проявление интереса к истории и современному состоянию российской физической науки;
- ценностное отношение к достижениям российских учёных-физиков

Гражданское и духовно-нравственное воспитание (2):

- готовность к активному участию в обсуждении общественно значимых и этических проблем, связанных с практическим применением достижений физики;
- осознание важности морально-этических принципов в деятельности учёного

Эстетическое воспитание (3):

— восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности

Ценности научного познания (4):

— осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры; — развитие научной любознательности, интереса к исследовательской деятельности Формирование культуры здоровья и эмоционального благополучия (5): — осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях; — сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека Трудовое воспитание (6): — активное участие в решении практических задач (в рамках семьи, школы, города, края) технологической и социальной направленности, требующих в том числе и физических знаний; — интерес к практическому изучению профессий, связанных с физикой Экологическое воспитание (7): — ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; — осознание глобального характера экологических проблем и путей их решения Адаптация обучающегося к изменяющимся условиям социальной и природной среды (8): — потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других; — повышение уровня своей компетентности через практическую деятельность;

— потребность в формировании новых знаний, в том числе формулировать

идеи, понятия, гипотезы о физических объектах и явлениях;

 осознание дефицитов собственных знаний и компетентностей в области физики; — планирование своего развития в приобретении новых физических знаний; — стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний; — оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Универсальные познавательные действия Базовые логические действия: — выявлять и характеризовать существенные признаки объектов (явлений); — устанавливать существенный признак классификации, основания для обобщения и сравнения; — выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям; – выявлять причинно-следственные связи при изучении физических явлений и процессов; делать выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин; — самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учётом самостоятельно выделенных критериев) Базовые исследовательские действия: — использовать вопросы как исследовательский инструмент познания; – проводить по самостоятельно составленному плану опыт, несложный физический эксперимент, небольшое исследование физического явления; — оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента;

— самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, опыта, исследования; — прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах Работа с информацией: — применять различные методы, инструменты и запросы при поиске и отборе информации или данных с учётом предложенной учебной физической задачи; — анализировать, систематизировать и интерпретировать информацию различных видов и форм представления; — самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями Универсальные коммуникативные действия Обшение: — в ходе обсуждения учебного материала, результатов лабораторных работ и проектов задавать вопросы по существу обсуждаемой темы и высказывать идеи, нацеленные на решение задачи и поддержание благожелательности общения; — сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; — выражать свою точку зрения в устных и письменных текстах;

Совместная деятельность (сотрудничество):

(эксперимента, исследования, проекта)

— понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы;

— публично представлять результаты выполненного физического опыта

— принимать цели совместной деятельности, организовывать действия по её достижению: распределять роли, обсуждать процессы и результаты совместной работы; обобщать мнения нескольких людей;

— выполнять свою часть работы, достигая качественного результата по своему направлению и координируя свои действия с другими членами команды; — оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия Универсальные регулятивные действия Самоорганизация: — выявлять проблемы в жизненных и учебных ситуациях, требующих для решения физических знаний; — ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой); — самостоятельно составлять алгоритм решения физической задачи или плана исследования с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений; — делать выбор и брать ответственность за решение Самоконтроль (рефлексия): — давать адекватную оценку ситуации и предлагать план её изменения; — объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту; — вносить коррективы в деятельность (в том числе в ход выполнения физического исследования или проекта) на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей; — оценивать соответствие результата цели и условиям Эмоциональный интеллект:

— ставить себя на место другого человека в ходе спора или дискуссии на научную тему, понимать мотивы, намерения и логику другого

Принятие себя и других:

— признавать своё право на ошибку при решении физических задач или в утверждениях на научные темы и такое же право другого

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.
- понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- овладение разнообразными способами выполнения расчётов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- способность использовать полученные знания, умения и навыки и в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.)

2 СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Основное содержание программы 7 класс (68 ч, 2 ч в неделю)

Введение (4 ч)

Физика — наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физических явлений. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физика и техника.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

1. Определение цены деления измерительного прибора.

Первоначальные сведения о строении вещества (6 ч)

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

2. Определение размеров малых тел.

Взаимодействия тел (23 ч)

Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил. Сила трения. Физическая природа небесных тел Солнечной системы.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Измерение силы трения с помощью динамометра.

Давление твердых тел, жидкостей и газов (21 ч)

Давление. Давление твердых тел. Давление газа Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Барометр, манометр, поршневой жидкостный насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 9. Выяснение условий плавания тела в жидкости.

Работа и мощность. Энергия (14 ч)

Механическая работа. Мощность. Простые механизмы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полезного действия (КПД). Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 10. Выяснение условия равновесия рычага.
- 11. Определение КПД при подъеме тела по наклонной плоскости.

Таблица тематического распределения количества часов 7 класс:

		Количество	часов
№ п/п	Разделы, темы	Примерная или авторская программа	Рабочая программа
1.	Введение	4	4
2.	Первоначальные сведения о строении вещества	6	6
3.	Взаимодействие тел	23	23

4.	Давление твердых тел, жидкостей и газов	21	21
5.	Работа и мощность. Энергия	14	14
	Лабораторные работы / контрольные работы	Л.р 11/к.р 4	Л.р 11/к.р 4
	ИТОГО:	68	68

Основное содержание программы 8 класс (68 ч, 2 ч в неделю)

Тепловые явления (23 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты.

Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание

кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Влажность воздуха. Удельная теплота парообразования. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2. Измерение удельной теплоемкости твердого тела.
- 3. Измерение влажности воздуха.

Предметными результатами обучения по данной теме являются:

—понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или ра-

боты внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, кипение, выпадение росы

- —умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;
- —владение экспериментальными методами исследования: зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной

температуре; давления насыщенного водяного пара; определения удельной теплоемкости вещества;

- —понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения безопасности при их использовании;
- —понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;
- —овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания топлива, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;
- —умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

Электрические явления (27 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники

тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи.

Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Регулирование силы тока реостатом.;
- 7. Измерение сопротивления проводника при помощи амперметра и вольтметра.
- 8. Измерение мощности и работы тока в электрической лампе.

Предметными результатами обучения по данной теме являются:

—понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические

явления с позиции строения атома, действия электрического тока;

- —умение измерять: силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;
- —владение экспериментальными методами исследования зависимости: силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;
- —понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца;
- —понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обеспечения безопасности при их использовании;
- —владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном

соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;

—умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).

Электромагнитные явления (5 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Предметными результатами обучения по данной теме являются:

- —понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;
- —владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;
- —умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).

Световые явления (13 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. За-

кон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

11. Получение изображения при помощи линзы.

Предметными результатами обучения по данной теме являются:

- —понимание и способность объяснять физические явления: прямолинейное распространение света, образование тени и полутени, отражение и преломление света;
- —умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- —владение экспериментальными методами исследования зависимости: изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;
- —понимание смысла основных физических законов и умение применять их на практике: закон отражения света,

закон преломления света, закон прямолинейного распространения света;

- —различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
- —умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

Таблица тематического распределения количества часов 8 класс:

№ п/п	Разделы, темы	Количество часов		
		Примерная или авторская программа	Рабочая программа	
1.	Тепловые явления	23	23	
2.	Электрические явления	27	27	
3.	Электромагнитные явления	5	5	

4.	Световые явления	13	13
	Лабораторные работы / контрольные работы	Л.р 11/к.р 4	Л.р 11/к.р 5
	ИТОГО:	68	68

Основное содержание программы 9 класс (102 ч, 3 ч в неделю)

Законы взаимодействия и движения тел (23 +7ч)

Материальная точка. Система отсчета. Перемещение, Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготе- ния. [Искусственные спутники Земли.]1 Импульс. Закон сохранения импульса. Реактивное движение.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 1. Исследование равноускоренного движения без начальной скорости.
- 2. Измерение ускорения свободного падения.

Предметными результатами обучения по данной теме являются:

- понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью;
- знание и способность давать определения/описания физических понятий: относительность движения, геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчета; физических величин: перемещение, скорость равномерного движения, мгновенная скорость и ускорение при равно- ускоренном прямолинейном движении, скорость и центро- стремительное ускорение при равномерном движении тела по окружности, импульс;

- понимание смысла основных физических законов: законы Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и умение применять их на практике;
- умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения; знание и умение объяснять устройство и действие космических ракет-носителей; умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;
- умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).

Механические колебания и волны. Звук (12+4 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Предметными результатами обучения по данной теме являются:

- понимание и способность описывать и объяснять физические явления: колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические волны, длина волны, отражение звука, эхо;
- -знание и способность давать определения физических понятий; свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин:
- амплитуда, период и частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;
- владение экспериментальными методами исследования зависимости периода я частоты колебаний маятника от длины его нити.

Электромагнитное поле (16+4 ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца, Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами, Происхождение линейчатых спектров.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного и линейчатых спектров испускания.

Предметными результатами обучения по данной теме являются:

- понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами.
- знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света; знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора; -знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур, детектор, спектроскоп, спектрограф; [понимание сути метода спектрального анализа и его возможностей].

Строение атома и атомного ядра (11+8 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра - Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. дозиметрия, Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы, Термоядерная реакция. Источники энергии Солнца и звезд. ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- б. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков продуктов распада газа радона.
- 9. Изучение треков заряженных частиц по готовым фотографиям. Предметными результатами обучения по данной теме являются:
- понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующие излучения;

знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные д. Томсоном и Э. Резерфордом; Протонно-нейтронная модель атомного ядра, модель процесса деления ядра атома урана; физических величин: поглощения доза излучения, коэффициент качества, эквивалентная доза, период полураспада;

умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;

- умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром;
- знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
- владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени; понимание сути экспериментальных методов исследования частиц; умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).

Строение и эволюция Вселенной (5+2 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселениой.

Предметными результатами обучения по данной теме являются:

- —понимание и способность объяснять физические явления
- —владение экспериментальными методами исследования
- —понимание смысла основных физических законов и умение применять их на практике.:

Резерв (1+8 ч)

Таблица тематического распределения количества часов 9 класс:

№ п/п	Разделы, темы	Количество ч Примерная или авторская программа	часов Рабочая программ а	
1.	Законы взаимодействия и движения тел	23	30	
2.	Механические колебания и волны. Звук	12	16	
3.	Электромагнитное поле	16	20	

4.	Строение атома и атомного ядра	11	20
5.	Строение и эволюция Вселенной	5	7
6.	Резерв	1	9
	Лабораторные работы / контрольные работы	Л.р 8/к.р 3	Л.р 8/к.р 3
	ИТОГО:	68	102