Принято	Утверждаю
педагогическим советом	И.о директора МОУ СОШ №7
МОУ СОШ №7	/Е.С. Андреева/
Протокол от 29.08.2025 г. №3	Приказ от 01.09.2025 года № 1/10

Управление образованием Качканарского муниципального округа Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №7» Дополнительная общеразвивающая программа технической направленности «Робототехника»

Срок реализации - 1 год Возраст учащихся: 11-13 лет

Составитель программы: Мельников Вадим Валерьевич, учитель высшей квалификационной категории.

1. Пояснительная записка

Дополнительная общеразвивающая программа технической направленности «Робототехника», разработана в соответствии со следующими законодательными актами:

- Федеральный закон от 29.12.2012 N 273-ФЗ «Об образовании в Российской Федерации»;
- Концепция развития дополнительного образования детей до 2030 года, утверждена распоряжением правительства РФ от 31 марта 2022 года № 678-р;
- Стратегия развития воспитания в Российской Федерации на период до 2025 года, утверждена распоряжением правительства РФ от 29 мая 2015 года № 996-р;
- Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержден Приказом Министерства просвещения РФ от 09.11.2018 г. № 196;
- СП 2.4.3648-20 «Санитарно- эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- Устав Муниципального общеобразовательного учреждения «Средняя общеобразовательная школа №7».

Реализация программы осуществляется на базе Центра образования цифрового и гуманитарного профилей «Точка роста», созданного в целях развития и реализации основных и дополнительных общеобразовательных программ цифрового, естественнонаучного и гуманитарного профилей, формирования социальной культуры, проектной деятельности, направленной не только на расширение познавательных интересов школьников, но и на стимулирование активности, инициативы и исследовательской деятельности обучающихся.

Развитие робототехники обусловлено социальным заказом общества. По данным Международной федерации робототехники, прогнозируется резкое увеличение оборота отрасли. Новостные программы СМИ нас ежедневно знакомят с новыми роботизированными устройствами в домашнем секторе, в медицине, в общественном секторе и на производстве. Это инвестиции в будущие рабочие места. Однако сейчас в России наблюдается острая нехватка инженерных кадров, а это серьезная проблема, тормозящая развитие экономики страны. Необходимо вернуть массовый интерес молодежи к научно-техническому творчеству. Наиболее перспективный путь в этом направлении – робототехника, позволяющая в игровой форме знакомить детей с наукой.

Развитие навыков в области робототехники способствует формированию у детей интереса к техническим специальностям, а также развитию их творческого потенциала и логического мышления. Реализация дополнительной общеразвивающая программы «Робототехника» направлена на знакомство обучающихся с основами робототехники, программирования и конструирования. В процессе обучения дети научатся создавать и программировать роботов, будут развивать навыки работы в команде, приобретать умения по решению сложных технических задач.

Особенностью программы является изучение основ алгоритмизации и программирования на основе использования реальных механизмов, сконструированных учащимися. Это позволяет включить учащихся в увлекательную деятельность, повышает интерес к изучению естественных наук, информационных технологий.

Данная образовательная программа предназначена для учащихся 11-13 лет, в том числе имеющих статус ребенка с OB3, желающих получить первоначальные знания по практическому программированию и конструированию роботов, предназначенных для робототехнических соревнований и выполнения робототехнических проектов в категории образовательные конструкторы.

Наполняемость группы – 18 человек.

Платформой для организации практической деятельности учащихся является образовательный конструктор Lego Mindstorms.

Режим занятий: два спаренных занятия в неделю с перерывами между занятиями 10 минут.

Объем общеразвивающей программы - 68 час. (2ч в неделю).

Срок освоения: с 01.09.2024 года по 25.05.2025 г.

Для достижения поставленных целей и задач программа «Робототехника» использует следующие формы и методы обучения:

- практические занятия с использованием конструктора LEGO Mindstorms;
- проектная деятельность, направленная на создание собственных робототехнических систем;
- работа в команде, обсуждение идей и решений;
- решение задач и головоломок, связанных с робототехникой и программированием.

2. Цель и задачи

Цель программы — создание условий для привития интереса учащихся к занятиям робототехникой, научно-техническим творчеством, а также развитие конструктивного мышления средствами робототехники.

Задачи:

- Формирование первоначальных знаний об основах: робототехники, конструирования, программирования, принципах построения механизмов.
- Формирование умений: применять знания основ конструирования для создания моделей реальных объектов и процессов, мыслить логически, творчески подходить к решению поставленной задачи, создавать модели, проводить презентацию итогов собственного труда; работать в содружестве с другими учащимися.
- Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе создания моделей, образного и технического мышления, мелкой моторики, речи учащихся в процессе анализа проделанной работы.
- Мотивация к изучению наук естественно-научного цикла: физики, технологии, информатики, математики.
- Внедрение современных технологий в учебных процесс, содействие развитию детского научно-технического творчества, популяризации профессии инженера и достижений в области робототехники.

3. Содержание общеразвивающей программы «Робототехника»

Учебный (тематический) план

	учесный (тематический) план					
№ п/п	Наименование разделов, тем	Теоретическая часть	Практическая часть	Кол-во часов	Форма контроля	
1.	Техника безопасности на занятии.	1		1		
	Раздел 1. Введение					
2.	Введение в Робототехнику. Области использования роботов.	1		1		
3.	Архитектура робототехнического конструктора LEGO MINDSTORMS EV3. Способы соединения деталей конструктора.	1	2	3		

	Раздел 2. Основы конструирования				
4.	Зависимость устойчивости и жесткости конструкции от способов соединения узлов и деталей	1	2	3	
5.	Виды механических передач. Расчет передаточных чисел. Передача тягового усилия при использовании механических передач.	1	1	2	
6.	Конструирование колесных и гусеничных платформ	1	3	4	Представление ходовых качеств сконструированных платформ
7.	Конструирование захватывающих и удерживающих устройств	1	3	4	Презентация собранных моделей
	Раздел 3. Основы программирования				
8.	Изучение встроенной среды программирования микроконтроллера LEGO MINDSTORMS EV3	1	1	2	
9.	Программирование простейших действий с помощью внутренней среды программирования.		2	2	
10.	Программирование в среде LabVIEW. Алгоритмы программ. Виды алгоритмов.	2	2	4	
11.	Организация передачи информации между микроконтроллерами	1	1	2	
Раздел 4. Движение робота. Сервоприводы.					
12.	Линейное движение	1	1	2	
13.	Управление скоростью вращения моторов. Поворот и разворот	1	3	4	
14.	Правила расчета параметров для прогнозируемого результата движения робота	1	2	3	
15.	Использование сервоприводов в качестве датчиков угла поворотов, числа оборотов.	0,5	2,5	3	

16.	Синхронизация моторов при совместном использовании	0,5	1,5	2	Соревнование «Движение по заданной траектории».
	Раздел 5. Датчики				
17.	Датчик «Касания».	0,5	1,5	2	
18.	Датчик «Ультразвуковой».	0,5	3,5	4	
19.	Датчик цвета.	0,5	3,5	4	
20	Движение по линии с использованием одного или двух датчиков цвета.	0,5	3,5	4	
21	Гироскопический датчик.	0,5	1,5	2	
22	Инфракрасный датчик.	0,5	3,5	4	Соревнования «Шорттрек»
Раздел 6. Переменные и функции					
23.	Использование блоков операции с данными для программирования роботов.	0,5	1,5	2	
24.	Переменные и функции	0,5	1,5	2	
25.	Принципы автоматического регулирования робота	0,5	1,5	2	презентация созданных проектов
	Итого	19,5	48,5	68	

Содержание учебного курса

1. Техника безопасности на занятии

Теория: обучение приемам безопасной работы с конструкторами LEGO MINDSTORMS EV3. Знакомство с правилами, позволяющими обеспечить целостность и сохранность оборудования.

2. Введение в Робототехнику. Области использования роботов.

Теория: понятие «робототехника», «робот». История развития робототехники. Возможности современных роботов и области их применения.

3. Архитектура робототехнического конструктора LEGO MINDSTORMS EV3. Способы соединения деталей конструктора.

Теория: знакомство с архитектурой конструктора LEGO MINDSTORMS EV3. Правила соединения узлов конструктора между собой, правила соединения датчиков и сервоприводов с модулем EV3.

Практика: закрепления навыков по соединению деталей конструктора между собой, датчиков и сервоприводов с модулем EV3. Сборка моделей робота по инструкции.

4. Зависимость устойчивости и жесткости конструкции от способов соединения узлов и деталей.

Теория: устойчивость твердого тела, жесткость конструкции. Способы соединения деталей конструктора между собой с целью придания наибольшей жесткости изделию. Особенности конструкции, обеспечивающих наибольшую устойчивость изделию.

Практика: конструирование устройств заранее заданными требованиями к жесткости устройства и его устойчивости.

5. Виды механических передач. Расчет передаточных чисел.

Теория: виды механических передач. Расчет передаточных чисел. Преобразование силы при использовании механических передач.

Практика: формирование навыка сборки механизмов с использованием ременной, фрикционный, цепной, червячной, зубчатой и реечной передач.

6. Конструирование колесных и гусеничных платформ.

Теория: основные принципы конструирования с помощью конструктора LEGO MINDSTORMS EV3 подвижных платформ на колесном и гусеничном ходу.

Практика: конструирование самодвижущихся тележек на колесном и гусеничном ходу.

7. Конструирование захватывающих и удерживающих устройств.

Теория: характерные особенности конструкции механических манипуляторов. Особенности сборки механических манипуляторов на основе деталей конструктора LEGO MINDSTORMS EV3.

Практика: сборка манипулятора по готовой инструкции. Конструирование и испытание механического манипулятора собственной конструкции.

8. Изучение встроенной среды программирования микроконтроллера LEGO MINDSTORMS EV3.

Теория: встроенная среда программирования микроконтроллера LEGO MINDSTORMS EV3. Алгоритм работы при написании программы робота с помощью встроенной среды.

Особенности встроенной среды программирования. Перечень ограничений при использовании встроенной блочной среды программирования.

Практика: формирование умения составления простейших линейных программ с помощью встроенной среды программирования.

9. Программирование простейших действий с помощью внутренней среды программирования.

Практика: написание простейших программ перемещения робота и подачи звуковых, световых сигналов с помощью встроенной среды программирования.

10. Программирование в среде LabVIEW. Алгоритмы программ. Виды алгоритмов.

Теория: интерфейс программного обеспечения для составления программ робототехнического конструктора. Обзор основных блоков, используемых для программирования. Алгоритм, виды алгоритмов. Организация основных видов алгоритмов с помощью блочной среды программирования.

Практика: создание простейших программ на основе линейного, циклического и ветвящегося алгоритмов.

11. Организация передачи информации между микроконтроллерами.

Теория: способы организации проводной и беспроводной передачи и приема информации между микроконтроллерами EV3. Алгоритмы написания программы для передачи и приема информации между микроконтроллерами.

Практика: формирования умения передачи информации между микроконтроллерами.

12. Линейное движение.

Теория: примеры программ, обеспечивающих линейное движение приводной платформы.

Практика: сборка «базовой тележки», программирование робота с целью организации линейного движения.

13. Управление скоростью вращения моторов. Поворот и разворот.

Теория: организация поворота и разворота приводной платформы с помощью управления сервоприводами конструкции.

Практика: программирование приводной платформы с целью обеспечения криволинейного движения.

14. Правила расчета параметров для прогнозируемого результата движения робота.

Теория: длина окружности, расчет длины окружности через ее диаметр. Связь диаметра колеса с пройденным расстоянием. Расчет необходимого количества оборотов сервопривода для организации перемещения на заданное расстояние.

Практика: программирование приводной платформы для организации ее перемещения по заранее заданное расстояние.

15. Использование сервоприводов в качестве датчиков угла поворотов, числа оборотов (вертушка).

Теория: сервопривод как датчик угла поворотов и числа оборотов. Ввод информации с помощью сервопривода.

Практика: программирование перемещения робота на основе использования возможностей сервопривода по заранее построенному маршруту.

16. Синхронизация моторов при совместном использовании.

Теория: синхронизация моторов при совместном использовании для обеспечения прямолинейного перемещения тележки.

Практика: программирование перемещения робота по заранее построенной траектории.

17. Датчик «Касания». Программирование робота с использованием блока «датчик касания».

Теория: датчик касания (назначение, принцип действия). Использование датчиков касания для управления движением робота. Примеры использования блока программирования датчик «касания» при написании программ.

Практика: создание программы управления движением робота с использованием блока «датчик касания».

18. Датчик «Ультразвуковой». Программирование робота с использованием блока «ультразвуковой датчик».

Теория: ультразвуковой датчик (назначение, принцип действия, факторы внешней среды, влияющие на его работу, границы измерений). Примеры использования блока «ультразвуковой датчик» в программах.

Практика: создание программы управления роботом с использованием блока «ультразвуковой датчик».

19. Датчик цвета. Программирование робота с использованием блока «датчик цвета».

Теория: датчик цвета (назначение, принцип действия, факторы внешней среды, влияющие на его работу, границы измерений). Использование блока «датчик цвета» для создания программ. Примеры использования блока «датчик цвета» в программах.

Практика: создание программы управления роботом с использованием блока «датчика цвета».

20. Движение по линии с использованием одного или двух датчиков цвета.

Практика: создание программы «следование по линии» с использованием одного или двух датчиков цвета.

21. Гироскопический датчик.

Теория: гироскопический датчик (назначение, принцип действия, факторы внешней среды, влияющие на его работу, границы измерений). Примеры использования блока «гироскопический датчик» в программах.

Практика: создание программ управления роботом с использованием блока «гидроскопический датчик».

22. Инфракрасный датчик.

Теория: инфракрасный датчик (назначение, принцип действия, факторы внешней среды, влияющие на его работу, границы измерений). Программирование робота с использованием блока «инфракрасный датчик». Использование инфракрасного пульта дистанционного управления.

Практика: создание программы управления роботом с помощью инфракрасного пульта на основе использования инфракрасного датчика. Создание программы по ориентированию робота в пространстве на основе использования инфракрасного маяка и инфракрасного датчика. Создание программы по ориентированию робота в пространстве на основе использования инфракрасного датчика для определения препятствий.

23. Использование блоков операции с данными для программирования роботов.

Теория: использование блоков «логические операции» и «сравнение» при реализации ветвящихся алгоритмов. Примеры написания программ с использованием блоков «логические операции» и «сравнение».

Практика: программирование робота на основе использования блоков «логические операции» и «сравнение» при реализации ветвящихся алгоритмов.

24. Переменные и функции.

Теория: использование блоков «переменная», «константа», «математика» для обработки информации полученной с помощью датчиков различного типа.

Практика: программирование робота на основе использования блоков «переменная», «константа», «математика» для обработки информации полученной с помощью датчиков различного типа.

25. Принципы автоматического регулирования робота.

Теория: использование блоков операции с данными для автоматического управления сервоприводами на основе цифровых данных получаемых с датчика.

Практика: написание программ, обеспечивающих автоматическую саморегуляцию робота.

4. Планируемые результаты

В результате изучения курса, обучающиеся должны знать/понимать:

- правила техники безопасности при работе в кабинете робототехники;
- основные соединения деталей LEGO конструктора;
- конструкцию и функции микрокомпьютера EV3;
- возможные неисправности микрокомпьютера EV3и способы их устранения;
- основные алгоритмические конструкции;
- основные типы данных и формы их представления для обработки на компьютере;
- отличие понятий «ввод и вывод данных»;

В результате изучения программы, обучающиеся должны уметь:

- создавать действующие модели роботов, отвечающих потребностям конкретной задачи;
- с помощью датчиков управлять роботами;
- уметь записывать на языке программирования алгоритм решения учебной задачи и отлаживать ее;
- планировать, тестировать и оценивать работу сделанных ими роботов;
- объяснять сущность алгоритма, его основных свойств, иллюстрировать их на конкретных примерах действий робота;
- определять возможность применения исполнителя для решения конкретной задачи по системе его команд;
- применять алгоритмические конструкции для построения алгоритмов;

• составлять программы в графической среде программирования Lego Mindstorms.

Личностные результаты освоения дополнительной общеразвивающей программы:

- овладение начальными навыками адаптации в динамично изменяющемся и развивающемся мире;
- принятие и освоение социальной роли обучающегося, развитие мотивов учебной деятельности и формирование личностного смысла учения;
- развитие самостоятельности и личной ответственности за свои поступки, в том числе в информационной деятельности, на основе представлений о нравственных нормах, социальной справедливости и свободе;
- формирование эстетических потребностей, ценностей и чувств;
- развитие этических чувств, доброжелательности и эмоционально-нравственной отзывчивости, понимания и сопереживания чувствам других людей;
- развитие навыков сотрудничества со взрослыми и сверстниками в разных социальных ситуациях, умения не создавать конфликтов и находить выходы из спорных ситуаций.

Метапредметными результатами освоения курса является формирование следующих универсальных учебных действий (УУД):

Познавательные УУД:

- перерабатывать полученную информацию: делать выводы в результате совместной работы в группе, сравнивать и группировать полученных роботов с образами.
- определять наиболее эффективные способы достижения результата;
- проводить сравнение, классификацию по разным критериям;
- устанавливать причинно-следственные связи;
- строить рассуждения об объекте;

Регулятивные УУД:

- формирование умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее реализации;
- формирование умения понимать причины успеха/неуспеха учебной деятельности и способности конструктивно действовать даже в ситуациях неуспеха;
- овладение способностью принимать и сохранять цели и задачи учебной деятельности, поиска средств ее осуществления;

Коммуникативные УУД:

Научится:

- допускать существование различных точек зрения;
- учитывать разные мнения, стремиться к координации;
- формулировать собственное мнение и позицию;
- договариваться, приходить к общему решению;
- соблюдать корректность в высказываниях;

- задавать вопросы по существу;
- использовать речь для регуляции своего действия;
- контролировать действия партнера;
- владеть монологической и диалогической формами речи.

Сможет научиться:

- учитывать разные мнения и обосновывать свою позицию;
- аргументировать свою позицию и координировать ее с позицией партнеров при выработке общего решения в совместной деятельности;
- с учетом целей коммуникации достаточно полно и точно передавать партнеру необходимую информацию как ориентир для построения действия;

В ходе достижения поставленных задач по робототехнике у школьников могут быть сформированы следующие способности:

- рефлексировать (видеть проблему; анализировать сделанное почему получилось, почему не получилось, видеть трудности, ошибки);
- целеполагать (ставить и удерживать цели);
- планировать (составлять план своей деятельности);
- проявлять инициативу при поиске способа (способов) решения задачи;
- вступать в коммуникацию (взаимодействовать при решении задачи, отстаивать свою позицию, принимать или аргументировано отклонять точки зрения других).

5. Организационно- педагогические условия

Условия реализации программы

В качестве базового стандарта программного обеспечения рассматривается: ОС Windows 10, программы просмотра изображения, офисные программы MicrosoftWord и PowerPoint, ПО EV3. Количество компьютеров – 9 штук, по одному компьютеру на группу из двух обучающихся. Для ведения образовательного процесса необходимо использование проекционного оборудования. Программное обеспечение LEGO MINDSTORMS EV3.

Для реализации программы необходимы:

- кабинет для конструирования и занятий робототехникой, учебно-наглядные пособия, наборы конструкторов LEGO MINDSTORMS EV3;
- электронные задания;
- раздаточный материал по темам модуля в электронном или печатном виде;
- книга для педагога;
- презентации к занятиям;
- компьютер для педагога, проектор, маркерная доска;
- компьютеры для обучающихся.

Методы и педагогические приёмы работы с учащимися:

- Объяснительно иллюстративный предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др);
- Эвристический метод творческой деятельности (создание творческих моделей и т.д.)

- Проблемный постановка проблемы и самостоятельный поиск её решения обучающимися;
- Программированный набор операций, которые необходимо выполнить в ходе выполнения практических работ (форма: компьютерный практикум, проектная деятельность);
- Репродуктивный воспроизводство знаний и способов деятельности (форма: собирание моделей и конструкций по образцу, беседа, упражнения по аналогу),
- Частично поисковый решение проблемных задач с помощью педагога;
- Поисковый самостоятельное решение проблем;
- Метод проблемного изложения постановка проблемы педагогам, решение ее самим педагогом, соучастие обучающихся при решении.

Используются такие педагогические технологии как обучение в сотрудничестве, индивидуализация и дифференциация обучения, проектные методы обучения, технологии использования в обучении игровых методов, информационно-коммуникационные технологии.

Формы аттестации/контроля и оценочные материалы:

педагогическое наблюдение, презентация созданных проектов, соревнования.

6. Список литературы

- Белиовский Н. А., Белиовская Л. Г. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход. М.: ДМК-пресс, 2015.
- Бельков, Д.М. Задания турнира по робототехнике.- М.:Автошкола, 2015.
- Бельков Д.М., М.Е. Козловских М.Е., И.Н. Слинкина // Информатика в школе. 2019. № 8. С. 25-35.
- Емельянова Е.Н.Интерактивный подход в организации учебного процесса с использованием технологии образовательной робототехники // Педагогическая информатика. 2018. № 1. С. 22-32.
- Тарапата В.В. Робототехника. Уроки 1-5 / В.В. Тарапата В.В. // Информатика. 2014. № 11. С. 12-25.
- Филиппов С.А. Робототехника для детей и родителей. 3-е изд. СПб.: Наука, 2014.
- http://lego.rkc-74.ru/
- http://9151394.ru/?fuseaction=proj.lego
- http://9151394.ru/index.php?fuseaction=konkurs.konkurs
- http://www.lego.com/education/