Муниципальное образование Тбилисский район Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 14» имени Аксенова Виктора Антоновича

УТВЕРЖДЕНО

решением педагогического совета МБОУ «СОШ №14» от 26.08.2022 года протокол № 1

Taller Print 1

В.Н.Агаркова

Председатель

РАБОЧАЯ ПРОГРАММА

По физике

Уровень образования (класс) – среднее общее, 10-11 класс

Количество часов - 136 (10 класс – 68 часов, 11 класс – 68 часов)

Учитель – Кислякова Н.Р.

Программа разработана в соответствии с ФГОС ООО на основе Примерной программы среднего общего образования по физике («Реестр примерных ООП» https://fgosreestr.ru/node/2068)

1. Планируемые результаты освоения учебного предмета.

Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания ЭТИХ равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы

и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, величины: электрический физические заряд, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Элементы астрономии

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Личностные результаты

- Готовность и способность к саморазвитию и самообразованию, к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- Сформированность ответственного отношения к учению; уважительного отношения к труду.
 - Сформированность целостного мировоззрения.
- Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания.

Метапредметные результаты

При изучении учебного предмета обучающиеся усовершенствуют приобретенные на первом уровне навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий концептуальных диаграмм, опорных конспектов);
 - заполнять и дополнять таблицы, схемы, диаграммы, тексты.

Обучающиеся приобретут опыт проектной деятельности, разовьют способность к поиску нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

Межпредметные понятия.

Условием формирования межпредметных понятий, таких, как система, факт, закономерность, феномен, анализ, синтез является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. Приобретение навыков работы с информацией и их пополнению. Работа с текстами, их преобразование и интерпретирование содержащейся в них информации, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий концептуальных диаграмм, опорных конспектов);
 - заполнять и дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения учебного предмета обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том

числе и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

В соответствии ФГОС ООО выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные.

2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА 10 класс (68 часов, 2 часа в неделю)

Введение (1 час)

Физика — фундаментальная наука о природе. Научный метод познания. Методы исследования физических явлений. Моделирование физических явлений и процессов.

Физические величины. Погрешности измерений, физических величин.

Физические законы и границы их применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Механика (23 часа)

Кинематика (8 часов)

Механическое движение.

Системы отсчёта. Скалярные И векторные физические величины. точка. Поступательное движение. Траектория, перемещение, координата, момент времени, промежуток времени. Закон Равномерное прямолинейное относительности движения. движение. Скорость равномерного прямолинейного движения. Уравнение равномерного Графики равномерного движения. Сложение движения. скоростей. Неравномерное движение. Средняя скорость. Мгновенная скорость. Ускорение. Равноускоренное движение Свободное падение тел. Ускорение свободного падения.

Уравнение равноускоренного движения. Графики равноускоренного движения. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение.

Динамика (7 часов)

Явление инерции. Масса и сила. Инерциальные системы отсчёта. Взаимодействие тел. Сложение сил. Первый, второй и третий законы Ньютона. Закон всемирного тяготения. Гравитационная постоянная. Сила тяжести. Сила тяжести на других планетах. Первая космическая скорость. Движение небесных тел и спутников.

Вес и невесомость. Силы упругости. Закон Гука. Силы трения.

Законы сохранения в механике (8 часов)

Импульс тела. Импульс силы. Закон сохранения импульса. Реактивное движение Работа силы. Мощность. Кинетическая энергия. Работа силы тяжести. Потенциальная энергия тела в гравитационном поле. Работа силы упругости. Потенциальная энергия упруго деформированного тела. Закон сохранения механической энергии.

Основы молекулярно- кинетической теории (11 часов)

Основы МКТ (9 часов)

Молекулярно-кинетическая теория (MKT) строения eë вещества экспериментальные доказательства. Броуновское движение. Температура и тепловое равновесие. Шкалы Цельсия и Кельвина. Абсолютная температура кинетической энергии как мера средней теплового движения вещества. Силы взаимодействия молекул в разных агрегатных состояниях вещества. Модель «идеальный газ». Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа. Основное уравнение молекулярнокинетической теории идеального газа. Уравнение состояния идеального газа. Уравнение Менделеева— Клапейрона. Изопроцессы. Газовые законы.

Взаимные превращения жидкостей и газов (2 часа)

Взаимные превращения жидкости и газа. Насыщенные и ненасыщенные пары. Давление насыщенного пара. Кипение. Влажность воздуха. Модель строения жидкости. Поверхностное натяжение. Смачивание и несмачивание. Капилляры Перечислять свойства жидкости и объяснять их с помощью модели строения жидкости, созданной на основе МКТ.

Основы термодинамики (8 часа)

Внутренняя энергия. Термодинамическая система и её равновесное состояние.

Работа и теплопередача как способы изменения внутренней энергии. Количество теплоты. Теплоёмкость. *Фазовые переходы*. Уравнение теплового

баланса. Первый закон термодинамики. Адиабатный процесс. Необратимость тепловых процессов. Второй закон термодинамики и его статистическое толкование. Преобразования энергии в тепловых машинах. Цикл Карно. КПД тепловых машин. Проблемы энергетики и охрана окружающей среды

Основы электродинамики (23 часов) Электростатика (9 часов)

Электрический заряд. Закон сохранения электрического заряда. Электрическое взаимодействие. Закон Кулона. Близкодействие и дальнодействие. Напряжённость и потенциал электростатического поля, связь между ними. Линии напряжённости и эквипотенциальные поверхности. Принцип суперпозиции полей. Разность электрических потенциалов. Проводники диэлектрики электрическом uполе. Электрическая ёмкость. Конденсатор. Энергия электрического поля

Законы постоянного тока (8 часов)

Постоянный электрический ток. Сила тока. Сопротивление. Последовательное и параллельное соединения проводников. Работа и мощность тока. Закон Джоуля—Ленца. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи.

Электрический ток в различных средах (6 часов)

Электронная проводимость металлов. Зависимость сопротивления проводника от температуры. Сверхпроводимость. Электрический ток в полупроводниках. Собственная и примесная проводимости. р—n-Переход. Полупроводниковый диод, транзистор. Полупроводниковые приборы. Электрический ток в электролитах. Электролиз. Электрический ток в вакууме и газах. Плазма

Итоговое повторение (2 часа)

11 класс

(68 часов, 2 часа в неделю)

Основы электродинамики (13 часов)

Магнитное поле (7 часов)

Магнитное поле. Индукция магнитного поля. Вектор магнитной индукции. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера. Сила Лоренца. Правило левой руки. Магнитные свойства вещества. Магнитная запись информации. Электроизмерительные приборы.

Электромагнитная индукция (6 часов)

Явление электромагнитной индукции. Магнитный поток. Правило Ленца Закон электромагнитной индукции. Электромагнитное поле. Вихревое электрическое поле. Практическое применение закона электромагнитной индукции. Возникновение ЭДС индукции в движущихся проводниках. Явление самоиндукции. Индуктивность. Энергия магнитного поля тока.

Колебания и волны (11 часов)

Механические колебания (2 часа)

Механические колебания. Свободные колебания. Математический и пружинный маятники. Превращения энергии при колебаниях. Амплитуда, период, частота, фаза колебаний. Вынужденные колебания, резонанс.

Электромагнитные колебания (5 часов)

колебания. Колебательный Свободные Электромагнитные контур. электромагнитные колебания. Автоколебания. Вынужденные электромагнитные колебания. Переменный ток. Конденсатор и катушка в цепи переменного тока. Резонанс в цепи переменного тока. Производство, электрической энергии. передача потребление Элементарная теория И трансформатора.

Механические волны (1 час)

Механические волны. Поперечные и продольные волны. Энергия волны.

Интерференция и дифракция волн. Звуковые волны.

Электромагнитные волны (3 часа)

Электромагнитное поле. Электромагнитные волны. Вихревое электрическое поле. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения.

Оптика (16 часов)

Световые волны. (13 часов)

Геометрическая и волновая оптика (10 часов)

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное отражение. Оптические приборы. Волновые свойства света. Скорость света. Интерференция света. Когерентность. Дифракция света. Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений

Излучение и спектры (3 часа)

Виды излучений. Источники света. Спектры. Спектральный анализ. Тепловое излучение. Распределение энергии в спектре абсолютно чёрного тела. Шкала электромагнитных волн. Наблюдение спектров.

Квантовая физика (14 часов)

Основы специальной теории относительности (3 часа)

Причины появления СТО. Постулаты СТО: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна. Пространство и время в специальной теории относительности. Энергия и импульс свободной частицы. Связь массы и энергии свободной частицы. Энергия покоя

Световые кванты (3 часа)

Предмет и задачи квантовой физики. Гипотеза М. Планка о квантах. Фотоэффект. Фотон. Уравнение А. Эйнштейна для фотоэффекта. Опыты А. Г. Столетова, законы фотоэффекта. Корпускулярно-волновой дуализм. Дифракция электронов. Давление света. Опыты П. Н. Лебедева и С. И. Вавилова. Соотношение неопределённостей Гейзенберга

Атомная физика (3 часа)

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора. Спонтанное и вынужденное излучение света.

Физика атомного ядра Элементарные частицы (8 часов)

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра. Радиоактивность. Виды радиоактивных превращений атомных ядер. Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез. Применение ядерной энергии. Биологическое действие радиоактивных излучений. Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц

Строение и эволюция Вселенной (7 часов)

Видимые движения небесных тел. Законы Кеплера. Солнечная система: планеты и малые тела, система Земля—Луна. Строение и эволюция Солнца и звёзд. Классификация звёзд. Звёзды и источники их энергии. Галактика. Современные представления о строении и эволюции Вселенной. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов. Тёмная материя и тёмная энергия.

Итоговое повторение (4 часа)

3. Таблица тематического распределения количества часов.

No	Класс	Разделы, темы	Количество часов	
Π/Π			Примерная	Рабочая
			программа	программа
1	10	Введение		1
2		Механика		23
3		Основы молекулярно-кинетической теории		11
4		Основы термодинамики		8
5		Основы электродинамики		23
6		Итоговое повторение		2
	Итого:			68

No	Класс	Разделы, темы	Количество часов	
п/п			Примерная	Рабочая
			программа	программа
1	11	Основы электродинамики		13
2		Колебания и волны		11
3		Оптика		16
4		Основы специальной теории		3
		относительности		
5		Квантовая физика		14
6		Строение и эволюция Вселенной		7
7		Итоговое повторение		4
	Итого:			68

СОГЛАСОВАНО

Протокол заседания методического объединения естественноматематического цикла МБОУ «СОШ № 14» от 25.08.2022 года № 1

round

Н.Г. Гонтарь

СОГЛАСОВАНО

Заместитель директора по УВР

_ Гюнтер Д.С.

от 25.08.2022 года