МУНИЦИПАЛЬНОЕ ОБРАЗОВАНИЕ АПШЕРОНСКИЙ РАЙОН

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 20

	УТВЕРЖДЕНО	
решением педагогического совета		
от20_	года протокол № <u>1</u>	
Председатель	М.А.Карартуньян	

РАБОЧАЯ ПРОГРАММА

По	ХИМИИ
Уровень образования (кла	асс) <u>среднее общее образование 10 – 11 класс</u>
Количество часов <u>68</u>	
Учитель	
Поползухина Елена Алек	сандровна, учитель химии МБОУСОШ № 20

Рабочая программа разработана в соответствии

- с Федеральным государственным образовательным стандартом среднего общего образования
- с учётом Примерной основной образовательной программы, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-3)
- с учётом УМК по химии для 10-11 классов авторов Г.Е. Рудзитиса, Ф.Г. Фельдмана издательства Просвещение, 2019.

В системе естественно-научного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, химической грамотности, необходимой для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры, формировании собственной позиции по отношению к химической информации, получаемой из разных источников.

Успешность изучения учебного предмета связана с овладением основными понятиями химии, научными фактами, законами, теориями, применением полученных знаний при решении практических задач.

Изучение химии на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

1. Планируемые результаты освоения учебного предмета.

Изучение химии в основной школе направлено на достижение обучающимися личностных, метапредметных и предметных результатов освоения учебного предмета.

Личностные результаты

Личностные результаты освоения программы основного общего образования достигаются в ходе обучения химии в единстве учебной и воспитательной деятельности МБОУСОШ № 20 в соответствии с традиционными российскими социокультурными и духовно-нравственными ценностями, принятыми в обществе правилами и нормами поведения и способствуют процессам самопознания, саморазвития и социализации обучающихся.

Личностные результаты отражают сформированность, в том числе в части:

- 1. Патриотического воспитания
- 1) ценностного отношения к отечественному культурному, историческому и научному наследию, понимания значения химической науки в жизни современного общества, способности владеть достоверной информацией о передовых достижениях и открытиях мировой и отечественной химии, заинтересованности в научных знаниях об устройстве мира и общества;
 - 2. Гражданского воспитания
- 2) представления о социальных нормах и правилах межличностных отношений в коллективе, коммуникативной компетентности в общественно полезной, учебно-исследовательской, творческой и других видах деятельности; готовности к разнообразной совместной деятельности при выполнении учебных, познавательных задач, выполнении химических экспериментов, создании учебных проектов, стремления к взаимопониманию и взаимопомощи в процессе этой учебной деятельности;

готовности оценивать своё поведение и поступки своих товарищей с позиции нравственных и правовых норм с учётом осознания последствий поступков;

- 3. Ценности научного познания
- 3) мировоззренческих представлений о веществе и химической реакции, соответствующих современному уровню развития науки и составляющих основу для понимания сущности научной картины мира; представлений об основных закономерностях развития природы, взаимосвязях человека с природной средой, о роли химии в познании этих закономерностей;
- 4) познавательных мотивов, направленных на получение новых знаний по химии, необходимых для объяснения наблюдаемых процессов и явлений;
- 5) познавательной, информационной и читательской культуры, в том числе навыков самостоятельной работы с учебными текстами, справочной литературой, доступными техническими средствами информационных технологий;
- 6) интереса к обучению и познанию, любознательности, готовности и способности к самообразованию, проектной и исследовательской деятельности, к осознанному выбору направленности и уровня обучения в дальнейшем;
 - 4. Формирования культуры здоровья
- 7) осознания ценности жизни, ответственного отношения к своему здоровью, установки на здоровый образ жизни, осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения), необходимости соблюдения правил безопасности при обращении с химическими веществами в быту и реальной жизни;
 - 5. Трудового воспитания
- 8) интереса к практическому изучению профессий и труда различного рода, уважение к труду и результатам трудовой деятельности, в том числе на основе применения предметных знаний по химии, осознанного выбора индивидуальной траектории продолжения образования с учётом личностных интересов и способности к химии, общественных интересов и потребностей; успешной профессиональной деятельности и развития необходимых умений; готовность адаптироваться в профессиональной среде;
 - 6. Экологического воспитания
- 9) экологически целесообразного отношения к природе как источнику жизни на Земле, основе её существования, понимания ценности здорового и безопасного образа жизни, ответственного отношения к собственному физическому и психическому здоровью, осознания ценности соблюдения правил безопасного поведения при работе с веществами, а также в ситуациях, угрожающих здоровью и жизни людей;

- 10) способности применять знания, получаемые при изучении химии, для решения задач, связанных с окружающей природной средой, повышения уровня экологической культуры, осознания глобального характера экологических проблем и путей их решения посредством методов химии;
- 11) экологического мышления, умения руководствоваться им в познавательной, коммуникативной и социальной практике.

Метапредметные результаты

В составе метапредметных результатов выделяют значимые для формирования мировоззрения общенаучные понятия (закон, теория, принцип, гипотеза, факт, система, процесс, эксперимент и др.), которые используются в естественно-научных учебных предметах и позволяют на основе знаний из этих предметов формировать представление о целостной научной картине мира, и универсальные учебные действия (познавательные, коммуникативные, регулятивные), которые обеспечивают формирование готовности к самостоятельному планированию и осуществлению учебной деятельности.

Метапредметные результаты освоения образовательной программы по химии отражают овладение универсальными познавательными действиями, в том числе:

Базовыми логическими действиями

- 1) умением использовать приёмы логического мышления при освоении знаний: раскрывать смысл химических понятий (выделять их характерные признаки, устанавливать взаимосвязь с другими понятиями), использовать понятия для объяснения отдельных фактов и явлений; выбирать основания и критерии для классификации химических веществ и химических реакций; устанавливать причинно-следственные связи между объектами изучения; строить логические рассуждения (индуктивные, дедуктивные, по аналогии); делать выводы и заключения;
- 2) умением применять в процессе познания понятия (предметные и метапредметные), символические (знаковые) модели, используемые в химии, преобразовывать широко применяемые в химии модельные представления химический знак (символ элемента), химическая формула и уравнение химической реакции при решении учебно-познавательных задач; с учётом этих модельных представлений выявлять и характеризовать существенные признаки изучаемых объектов химических веществ и химических реакций; выявлять общие закономерности, причинно-следственные связи и противоречия в изучаемых процессах и явлениях; предлагать критерии для выявления этих закономерностей и противоречий; самостоятельно выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев);

- 3) умением использовать поставленные вопросы в качестве инструмента познания, а также в качестве основы для формирования гипотезы по проверке правильности высказываемых суждений;
- 4) приобретение опыта по планированию, организации и проведению ученических экспериментов: умение наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы по результатам проведённого опыта, исследования, составлять отчёт о проделанной работе;

Работой с информацией

- 5) умением выбирать, анализировать и интерпретировать информацию различных видов и форм представления, получаемую из разных источников (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета); критически оценивать противоречивую и недостоверную информацию;
- 6) умением применять различные методы и запросы при поиске и отборе информации и соответствующих данных, необходимых для выполнения учебных и познавательных задач определённого типа; приобретение опыта в области использования информационно-коммуникативных технологий, овладение куль турой активного использования различных поисковых систем; самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, другими формами графики и их комбинациями;
- 7) умением использовать и анализировать в процессе учебной и исследовательской деятельности информацию о влиянии промышленности, сельского хозяйства и транспорта на состояние окружающей природной среды;

Универсальными коммуникативными действиями

- 8) умением задавать вопросы (в ходе диалога и/или дискуссии) по существу обсуждаемой темы, формулировать свои предложения относительно выполнения предложенной задачи;
- 9) приобретение опыта презентации результатов выполнения химического эксперимента (лабораторного опыта, лабораторной работы по исследованию свойств веществ, учебного проекта);
- 10) заинтересованность в совместной со сверстниками познавательной и исследовательской деятельности при решении возникающих проблем на основе учёта общих интересов и согласования позиций (обсуждения, обмен мнениями, «мозговые штурмы», координация совместных действий, определение критериев по оценке качества выполненной работы и др.);

Универсальными регулятивными действиями

11) умением самостоятельно определять цели деятельности, планировать, осуществлять, контролировать и при необходимости

корректировать свою деятельность, выбирать наиболее эффективные способы решения учебных и познавательных задач, самостоятельно составлять или корректировать предложенный алгоритм действий при выполнении заданий с учётом получения новых знаний об изучаемых объектах — веществах и реакциях; оценивать соответствие полученного результата заявленной цели;

12) умением использовать и анализировать контексты, предлагаемые в условии заданий.

Предметные результаты

В составе предметных результатов по освоению обязательного содержания, установленного данной рабочей программой, выделяют: освоенные обучающимися научные знания, умения и способы действий, специфические для предметной области «Химия», виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных и новых ситуациях. Предметные результаты представлены по годам обучения и отражают сформированность у обучающихся следующих умений:

- 1) раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;
- 2) демонстрировать на примерах взаимосвязь между химией и другими естественными науками;
- 3) раскрывать на примерах положения теории химического строения А.М. Бутлерова;
- 4) понимать физический смысл Периодического закона Д.И. Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;
- 5) объяснять причины многообразия веществ на основе общих представлений об их составе и строении;
- 6) применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- 7) составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- 8) характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- 9) приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;

- 10) прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;
- 11) использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;
- 12) приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);
- 13) проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров, глюкозы, крахмала, белков в составе пищевых продуктов и косметических средств;
- 14) владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- 15) устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- 16) приводить примеры гидролиза солей в повседневной жизни человека;
- 17) приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- 18) приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ металлов и неметаллов;
- 19) проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;
- 20) владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- 21) осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- 22) критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- 23) представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем.

2. Содержание учебного предмета.

10 класс.

Основы органической химии

Тема 1. Теория химического строения органических соединений. Природа химических связей.

Органические вещества. Органическая химия. Становление органической химии как науки. Теория химического строения веществ. Углеродный скелет. Изомерия. Изомеры.

Состояние электронов в атоме. Энергетические уровни и подуровни. Электронные орбитали. s-электроны и p-электроны. Спин электрона. Спаренные электроны. Электронная конфигурация. Графические электронные формулы.

Электронная природа химических связей, л-связь и о-связь. Метод валентных связей.

Классификация органических соединений. Функциональная группа.

Тема 2. Углеводороды.

Предельные углеводороды (алканы). Возбуждённое состояние атома углерода. Гибридизация атомных орбиталей. Электронное и пространственное строение алканов.

Гомологи. Гомологическая разность. Гомологический ряд. Международная номенклатура органических веществ. Изомерия углеродного скелета.

Метан. Получение, физические и химические свойства метана. Реакции замещения (галогенирование), дегидрирования и изомеризации алканов. Цепные реакции. Свободные радикалы. Галогенпроизводные алканов.

Кратные связи. Непредельные углеводороды. Алкены. Строение молекул, гомология, номенклатура и изомерия. sp²-Гибридизация. Этен (этилен). Изомерия положения двойной связи. Пространственная изомерия (стереоизомерия).

Получение и химические свойства алкенов. Реакции присоединения (гидрирование, галогенирование, гидратация), окисления и полимеризации алкенов. Правило Марковникова. Высокомолекулярные соединения. Качественные реакции на двойную связь.

Алкадиены (диеновые углеводороды). Изомерия и номенклатура. Дивинил (бутадиен-1,3). Изопрен (2-метилбутадиен-1,3). Сопряжённые двойные связи. Получение и химические свойства алкадиенов. Реакции присоединения (галогенирование) и полимеризации алкадиенов.

Алкины. Ацетилен (этин) и его гомологи. Изомерия и номенклатура. Межклассовая изомерия. Химические свойства алкинов. Реакции присоединения, окисления и полимеризации алкинов.

Арены (ароматические углеводороды). Изомерия и номенклатура. Бензол. Бензольное кольцо. Толуол. Изомерия заместителей.

Химические свойства бензола и его гомологов. Реакции замещения (галогенирование, нитрование), окисления и присоединения аренов. Пестициды. Генетическая связь аренов с другими углеводородами.

Природные источники углеводородов. Природный газ. Нефть. Попутные нефтяные газы. Каменный уголь.

Переработка нефти. Перегонка нефти. Ректификационная колонна. Бензин. Лигроин. Керосин. Крекинг нефтепродуктов. Термический и каталитический крекинг. Пиролиз.

Тема 3. Кислородсодержащие органические соединения.

Кислородсодержащие органические соединения. Одноатомные предельные спирты. Функциональная группа спиртов. Изомерия и номенклатура спиртов. Метанол (метиловый спирт). Этанол (этиловый спирт). Первичный, вторичный и третичный атомы углерода. Водородная связь.

Получение и химические свойства спиртов. Спиртовое брожение. Ферменты. Водородные связи. Физиологическое воздействие метанола и этанола. Алкоголизм.

Многоатомные спирты. Этиленгликоль. Глицерин. Химические свойства предельных многоатомных спиртов. Качественная реакция на многоатомные спирты.

Фенолы. Ароматические спирты. Химические свойства фенола. Качественная реакция на фенол.

Карбонильные соединения. Карбонильная группа. Альдегидная группа. Альдегиды. Кетоны. Изомерия и номенклатура.

Получение и химические свойства альдегидов. Реакции окисления и присоединения альдегидов. Качественные реакции на альдегиды.

Карбоновые кислоты. Карбоксильная группа (карбоксогруппа). Изомерия и номенклатура карбоновых кислот. Одноосновные предельные карбоновые кислоты. Получение одноосновных предельных карбоновых кислот. Муравьиная кислота. Уксусная кислота. Ацетаты.

Сложные эфиры. Номенклатура. Получение, химические свойства сложных эфиров. Реакция этерификации. Щелочной гидролиз сложного эфира (омыление).

Жиры. Твёрдые жиры, жидкие жиры. Синтетические моющие средства.

Углеводы. Моносахариды. Глюкоза. Фруктоза. Олигосахариды. Дисахариды. Сахароза.

Полисахариды. Крахмал. Гликоген. Реакция поликонденсации. Качественная реакция на крахмал. Целлюлоза. Ацетилцеллюлоза. Классификация волокон.

Тема 4. Азотсодержащие органические соединения.

Азотсодержащие органические соединения. Амины. Аминогруппа. Анилин. Получение и свойства анилина.

Аминокислоты. Изомерия и номенклатура. Биполярный ион. Пептидная (амидная) группа. Пептидная (амидная) связь. Химические свойства аминокислот. Пептиды. Полипептиды. Глицин.

Белки. Структура белковой молекулы (первичная, вторичная, третичная, четвертичная). Химические свойства белков. Денатурация и гидролиз белков. Цветные реакции на белки.

Азотсодержащие гетероциклические соединения. Пиридин. Пиррол. Пиримидин. Пурин. Азотистые основания.

Химия и здоровье человека. Фармакологическая химия.

Тема 5. Химия полимеров.

Полимеры. Степень полимеризации. Мономер. Структурное звено. Термопластичные полимеры. Стереорегулярные полимеры. Полиэтилен. Полипропилен. Политетрафторэтилен.

Термореактивные полимеры. Фенолформальдегидные смолы. Пластмассы. Фенопласты. Аминопласты. Пенопласты.

Природный каучук. Резина. Эбонит.

Синтетические каучуки.

Синтетические волокна. Капрон. Лавсан.

11 класс.

Повторение основных вопросов курса химии 10 класса.

Теория химического строения органических соединений. Изомерия. Гомология. Классификация органических соединений. Химические свойства основных классов органических соединений.

Входная контрольная работа.

Тема 1. Теоретические основы химии.

Важнейшие химические понятия и законы. Химический элемент. Атомный номер. Массовое число. Нуклеотиды. Радионуклиды. Изотопы.

Закон сохранения массы веществ. Закон сохранения и превращения энергии. Дефект массы.

Периодический закон. Электронная конфигурация. Графическая электронная формула. Распределение электронов в атомах химических элементов малых и больших периодов. s-, p-, d- и f-элементы. Лантаноиды. Актиноиды. Искусственно полученные элементы. Валентность. Валентные возможности атомов. Водородные соединения.

Строение вещества. Ионная связь. Ковалентная (полярная и неполярная) связь. Электронная формула. Металлическая связь. Водородная связь.

Гибридизация атомных орбиталей.

Кристаллы: атомные, молекулярные, ионные, металлические. Элементарная ячейка.

Полиморфизм. Полиморфные модификации. Аллотропия. Изомерия. Гомология. Химический синтез.

Химические реакции. Окислительно-восстановительные реакции. Реакции разложения, соединения, замещения, обмена. Экзотермические и эндотермические реакции. Обратимые и необратимые реакции. Тепловой эффект реакции. Закон Гесса. Термохимические уравнения. Теплота образования. Теплота сгорания.

Скорость химической реакции. Активированный комплекс. Закон действующих масс. Кинетическое уравнение реакции.

Катализ. Катализатор. Ингибитор. Гомогенный и гетерогенный катализ. Каталитические реакции.

Химическое равновесие. Принцип Ле Шателье.

Растворы. Дисперсные системы. Растворы. Грубодисперсные системы (суспензии и эмульсии). Коллоидные растворы (золи). Аэрозоли.

Способы выражения концентрации растворов. Молярная концентрация (молярность).

Электролиты. Электролитическая диссоциация. Степень диссоциации. Константа диссоциации. Водородный показатель. Реакции ионного обмена.

Гидролиз органических веществ. Гидролиз солей.

Электрохимические реакции. Гальванический элемент. Электроды. Анод. Катод. Аккумулятор. Топливный элемент. Электрохимия.

Ряд стандартных электродных потенциалов. Стандартные условия. Стандартный водородный электрод.

Коррозия металлов. Химическая и электрохимическая коррозия. Электролиз. Электролиз водных растворов. Электролиз расплавов.

Тема 2. Неорганическая химия.

Металлы. Способы получения металлов. Легкие и тяжелые металлы. Легкоплавкие и тугоплавкие металлы. Металлические элементы А- и Б-групп. Медь. Цинк. Титан. Хром. Железо. Никель. Платина.

Сплавы. Легирующие добавки. Черные металлы. Цветные металлы. Чугун. Сталь. Легированные стали.

Оксиды и гидроксиды металлов.

Неметаллы. Простые вещества – неметаллы. Углерод. Кремний. Азот. Фосфор. Кислород. Сера. Фтор. Хлор.

Кислотные оксиды. Кислородсодержащие кислоты. Серная кислота. Азотная кислота.

Водородные соединения неметаллов.

Генетическая связь неорганических и органических веществ.

Тема 3. Химия и жизнь.

Химическая промышленность. Химическая технология.

Химико-технологические принципы промышленного получения металлов. Черная металлургия. Производство чугуна. Доменная печь. Агломерация. Производство стали. Кислородный конвертер. Безотходное производство.

Химия в быту. Продукты питания. Бытовая химия. Отделочные материалы. Лекарственные препараты. Экологический мониторинг. Предельно-допустимые концентрации.

3. Тематическое планирование

Приложение 1.

Рабочая программа по химии для 10 – 11 классов составлена на основе:

- 1. Закона «Об образовании в Российской Федерации» от 29.12.2012г. № 273-Ф3 (с изменениями);
- 2. Федеральный государственный образовательный стандарт среднего общего образования (утв. <u>приказом</u> Министерства образования и науки РФ от 17 мая 2012 г. N 413)
- 3. Основной образовательной программы школы;
- 4. Учебного плана школы;
- 5. Годового учебного календарного графика на текущий учебный год;
- 6. Рабочей программы предметной линии учебников Г. Е. Рудзитиса, Ф. Г. Фельдмана. ФГОС. Химия. 10 11 классы: пособие для учителей общеобразовательных учреждений, сост. Афанасьева М.Н., М. «Просвещение», 2017 г.;
- 7. Учебника: Рудзитис Г. Е., Фельдман Ф. Г. Химия. 10 класс. ФГОС: учебник для общеобразовательных учреждений / Рудзитис Г. Е. М.: Просвещение, 2020.
- 8. Учебника: Рудзитис Г. Е., Фельдман Ф. Г. Химия. 11 класс. ФГОС: учебник для общеобразовательных учреждений / Рудзитис Г. Е. М.: Просвещение, 2020.

Приложение 2.

Критерии оценки образовательных результатов обучающихся по химии. Система оценивания в предмете химия:

1. Оценка устного ответа.

Отметка «5»:

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, литературным языком;
- ответ самостоятельный.

Отметка «4»:

- ответ полный и правильный на сновании изученных теорий;

- материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.

Отметка «3»:

- ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Отметка «2»:

- при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя, отсутствие ответа.

2. Оценка экспериментальных умений.

Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Отметка «5»:

- работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы;
- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- проявлены организационно трудовые умения, поддерживаются чистота рабочего места и порядок (на столе, экономно используются реактивы).

Отметка «4»:

- работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием.

Отметка «3»:

- работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента в объяснении, в оформлении работы, в соблюдении правил техники безопасности на работе с веществами и оборудованием, которая исправляется по требованию учителя.

Отметка «2»:

- допущены две (и более) существенные ошибки в ходе: эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя;
- работа не выполнена, у учащегося отсутствует экспериментальные умения.

3. Оценка умений решать расчетные задачи.

Отметка «5»:

- в логическом рассуждении и решении нет ошибок, задача решена рациональным способом;

Отметка «4»:

- в логическом рассуждении и решения нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Отметка «3»:

- в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Отметка «2»:

- имеется существенные ошибки в логическом рассуждении и решении.
- отсутствие ответа на задание.

4. Оценка письменных контрольных работ.

Отметка «5»:

- ответ полный и правильный, возможна несущественная ошибка.

Отметка «4»:

- ответ неполный или допущено не более двух несущественных ошибок.

Отметка «3»:

- работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Отметка «2»:

- работа выполнена меньше чем наполовину или содержит несколько существенных ошибок.
- работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

5. Оценка тестовых работ.

При оценивании используется следующая шкала: для теста из 5 - вопросов

- 90% и более правильных ответов оценка «5»;
- 70 89% правильных ответов оценка «4»;
- 50 69% правильных ответов оценка «3»;
- менее 50% правильных ответов оценка «2».

6. Оценка проекта.

Проект оценивается по следующим критериям:

- соблюдение требований к его оформлению;
- необходимость и достаточность для раскрытия темы приведенной в тексте проекта информации;
- умение обучающегося свободно излагать основные идеи, отраженные в проекте;
- способность обучающегося понять суть задаваемых членами аттестационной комиссии вопросов и сформулировать точные ответы на них.

Приложение 3.

Перечень лабораторных опытов и практических работ, типов расчетных задач.

Лабораторные опыты.

- 1. Изготовление моделей молекул углеводородов.
- 2. Ознакомление с образцами продуктов нефтепереработки
- 3. Окисление этанола оксидом меди (II).
- 4. Растворение глицерина в воде и реакция его с гидроксидом меди (II).
- 5. Химические свойства фенола.

- 6. Окисление метаналя (этаналя) оксидом серебра (I).
- 7. Окисление метаналя (этаналя) гидроксидом меди (II).
- 8. Растворимость жиров, доказательство их непредельного характера, омыление жиров.
- 9. Сравнение свойств мыла и синтетических моющих средств.
- 10.Свойства глюкозы как альдегидоспирта.
- 11. Взаимодействие сахарозы с гидроксидом кальция.
- 12. Приготовление крахмального клейстера и взаимодействие его с иодом.
- 13. Гидролиз крахмала.
- 14.Ознакомление с образцами природных и искусственных волокон.
- 15. Цветные реакции на белки.
- 16.Свойства капрона.
- 17.Изучение влияния различных факторов на скорость химической реакции.
- 18. Определение реакции среды универсальным индикатором.
- 19. Гидролиз солей.

Практические работы

- 1. Получение этилена и опыты с ним.
- 2. Получение и свойства карбоновых кислот.
- 3. Решение экспериментальных задач на получение и распознавание органических веществ.
- 4. Распознавание пластмасс и волокон.
- 5. Приготовление растворов с заданной молярной концентрацией.
- 6. Решение экспериментальных задач по теме «Металлы».
- 7. Решение экспериментальных задач по теме «Неметаллы».

СОГЛАСОВАНО	СОГЛАСОВАНО
Протокол заседания методического	Заместитель директора по УВР
объединения учителей естественно-	Е.В.Уханёва
математического цикла СОШ № 20	20 года
от20 года № 1	2010да
Л.Д.Шахбабян	