Муниципальное автономное общеобразовательное учреждение муниципального образования Динской район «Основная общеобразовательная школа № 25 имени Почётного гражданина Динского района Братчиковой Марии Петровны»

Рассмотрено на заседании	Руководитель центра	« У]	ГВЕРЖД	(АЮ»	
ШМС	«Точка роста» Кардаильская Е.Н.	Директор	м МАОУ	MO	Динской
Заместитель директора по		район	ООШ	№25	имени
УВРКоваленко Ю.В.		Братчико	вой М.П		
Протокол №				Бундю	ок А .В.
от «»20г.		Приказ Л	то от	«)	»
			20]	Γ.

Рабочая программа дополнительного образования технической направленности «Школа робототехники»

Пояснительная записка

Модульная дополнительная общеобразовательная общеразвивающая модифицированная программа *технической направленности* «Школа Робототехники» разработана на основе образовательной программы «ROBOT» Павленко В. В. в соответствии с методическими рекомендациями по разработке и оформлению ДОП. - М, 2019 и на основании следующих документов:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- Проект Концепции развития дополнительного образования детей до 2030 года;
- Приказ Минпросвещения РФ от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказ от 30 сентября 2020 г. N 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015 года;
- СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи; Нормативные документы, регулирующие использование электронного обучения и дистанционных технологий:
- Приказ Министерства образования и науки РФ от 23.08.2017 года № 816 «Порядок применения организациями, осуществляющих образовательную деятельность электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»
- «Методические рекомендации от 20 марта 2020 г. по реализации образовательных программ начального общего, основного общего, среднего общего образования, образовательных программ среднего профессионального образования и дополнительных общеобразовательных программ с применением

электронного обучения и дистанционных образовательных технологий»; Локальные акты ОО

- Устав МБОУ СОШ №13 им.Е.И.Панасенковой
- Положение о проектировании ДООП в образовательной организации
- Положение о проведение промежуточной аттестации обучающихся и аттестации по итогам реализации ДООП

В наше время робототехники и компьютеризации, необходимо учить ребенка решать задачи с помощью автоматов, которые он сам может спроектировать, защитить свое решение и воплотить его в реальной модели, сконструировать и запрограммировать.

Робототехника - это проектирование и конструирование всевозможных интеллектуальных механизмов - роботов, имеющих модульную структуру и обладающих мощными микропроцессорами, один из интереснейших способов изучения компьютерных технологий и программирования.

Возникнув на основе кибернетики и механики, робототехника породила новые направления развития науки. В кибернетике это связано, прежде всего, с интеллектуальным направлением и бионикой как источником новых, заимствованных у живой природы идей, а в механике - с многостепенными механизмами типа манипуляторов.

Во время занятий учащиеся учатся проектировать, создавать и программировать роботов. В распоряжение детей предоставлены образовательные Лего-конструкторы серии LEGO Mindstorms, оснащенные специальными микропроцессорами, позволяющими создавать программируемые модели роботов. С его помощью учащийся может запрограммировать робота на выполнение определенных функций.

Командная работа над практическими заданиями способствует глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно изучить алгоритмизацию и программирование.

Дополнительность программы в отсутствии предмета робототехники в школьных программах начального образования, обеспечивающего формирование

у учащихся конструкторских навыков и опыта программирования, в необходимости организации пропедевтической подготовки младших школьников в естественнонаучном направлении для создания базы, позволяющей совершить плавный переход к дисциплинам среднего звена образовательной организации - физике, биологии, технологии, информатике, геометрии.

Актуальность программы: робототехника - прикладная наука, занимающаяся разработкой и эксплуатацией интеллектуальных автоматизированных технических систем для реализации их в различных сферах человеческой деятельности.

Программа «Школа робототехники» отвечает требованиям направления региональной политики в сфере образования - развитие научно-технического творчества детей младшего школьного возраста. Позволяет развить кругозор младшего школьника и сформировать основы инженерного мышления, создать команду единомышленников, принять участие в соревнованиях и олимпиадах по робототехнике, что значительно усиливает мотивацию учащихся к получению знаний.

Отличительные особенности программы: заключаются в занимательной форме знакомства учащегося с основами робототехники, радиоэлектроники и программирования микроконтроллеров для роботов шаг за шагом, практически с нуля. Избегая сложных математических формул, на практике, через эксперимент, обучающиеся постигают физические процессы, происходящие в роботах, включая двигатели, датчики, источники питания и микроконтроллеры NXT, EV3. А так же в инженерной направленности обучения, основанной на информационных технологиях, новых способствует развитию информационной культуры и взаимодействию с миром научно-технического творчества. Авторское воплощение замысла В автоматизированные модели и проекты особенно важно для младших школьников, у которых наиболее выражена исследовательская компетенция.

Инновационность программы: в использовании современных робототехнических систем, включающих в себя микропроцессорные системы

управления, системы движения, оснащены развитым сенсорным обеспечением и средствами адаптации к изменяющимся условиям внешней среды. В использовании комплекта LEGO Mindstorms - конструктора (набора сопрягаемых деталей и электронных блоков) для создания программируемого робота.

Программа предусматривает использование базовых датчиков и двигателей комплекта LEGO Mindstorms, а также изучение основ автономного программирования и программирования в среде NXT-G, EV3.

Адресат программы, в реализации данной дополнительной программы объединения могут участвовать учащиеся 7 - 12 лет, не имеющие противопоказаний по состоянию здоровья. Без возникновения серьезного интереса к технике, без практики самостоятельного проведения технического исследования, без приобретения умения решать технические задачи, не может сформироваться человек, способный впоследствии успешно работать в сфере техники. Учащиеся, занимающиеся в техническом объединении «Школа робототехники» совершают открытия, проводят технические опыты. Творчество детей — основа развития активности, самостоятельности, импульс для учащихся в достижении блестящих результатов в инженерной практике.

Объем и срок освоения программы: Программа рассчитана на 72 часа в год. 1 модуль обучения - 32 часа, 2 модуль обучения - 40 часов. Форма обучения: очная.

При необходимости осуществляется переход на электронное обучение с помощью видеосвязи с учащимися в приложении Сферум.

Для реализации программы используются такие педагогические технологии:

- -личностно-ориентированное обучение
- -проектная деятельность -ИКТ -

технологии -Игровые технологии

ИКТ: особенности методики - компьютерные средства обучения

называют интерактивными, они обладают способностью «откликаться» на действия ученика и учителя, «вступать» с ними в диалог, что и составляет главную особенность методик компьютерного обучения.

Технология проектного обучения: в основе метода проектов лежит развитие познавательных навыков обучающихся, умений самостоятельно конструировать свои знания и ориентироваться в информационном пространстве, развитие критического мышления. Метод проектов всегда ориентирован на самостоятельную деятельность учащихся — индивидуальную, парную, групповую, которую обучающиеся выполняют в течение определенного отрезка времени. Этот метод органично сочетается с групповым подходом к обучению. Основными принципами обучения являются:

- *Доступность* предусматривает соответствие объема и глубины учебного материала уровню общего развития обучающихся в данный период, благодаря чему знания и навыки могут быть сознательно и прочно усвоены.
- *Связь теории с практикой* обязывает вести образовательный процесс так, чтобы обучающиеся могли сознательно применять приобретенные ими знания на практике.
- Сознательность и активность обучения в процессе обучения все действия, которые отрабатывает обучающийся, должны быть обоснованы. Нужно учить детей критически осмысливать и оценивать факты, делая выводы, разрешать все сомнения с тем, чтобы процесс усвоения и наработки необходимых навыков происходили сознательно, с полной убежденностью в правильности обучения. Активность в обучении предполагает самостоятельность, которая достигается хорошей теоретической и практической подготовкой и работой педагога.
- *Наглядность* объяснение техники сборки робототехнических средств на конкретных изделиях и программных продукта. Для наглядности применяются существующие видеоматериалы, а так же материалы своего изготовления.
- Систематичность и последовательность материал дается по определенной системе и в логической последовательности с целью лучшего его освоения. Как правило, этот принцип предусматривает изучение предмета от простого к

сложному, от частного к общему.

• Личностный подход в обучении - в процессе обучения педагог исходит из индивидуальных особенностей детей

(уравновешенный,

неуравновешенный, с хорошей памятью или не очень, с устойчивым вниманием или рассеянный, с хорошей или замедленной реакцией, и т.д.), и опираясь на сильные стороны ребенка, доводит его подготовленность до уровня общих требований.

На занятиях используются различные формы организации образовательного процесса:

- -работа по подгруппам;
- -групповые;
- -индивидуальные.

Формы проведения занятий:

- -практическое занятие;
- -презентация;
- -конкурсы;
- -самостоятельная работа
- -соревнования;
- -защита проектов.

Методы обучения:

- Объяснительно-иллюстративный;
- Частично-поисковый;
- Исследовательский.

Особенности организации образовательного процесса: группа с постоянным составом учащихся организовывается в начале обучения для учащихся 7 - 12 лет, наполняемость группы 8-10 человек.

Режим занятий: занятия с учащимися проводятся 1 раз в неделю, 1 и 1 часа. Продолжительность занятий - 45 минут в соответствии с возрастными особенностями учащихся. Перерыв между занятиями 10 минут.

Уровень реализации программы: стартовый.

ЦЕЛЬ ПРОГРАММЫ: формирование интереса школьников к техническим видам творчества, развитие конструктивного мышления средствами робототехники.

Задачи программы:

обучающие:

- ознакомление с комплектом LEGO MINDSTORMS NXT 2.0; EV3
- ознакомление со средой программирования LEGO MINDSTORMS NXT- G, EV3
- получение навыков работы с датчиками и двигателями комплекта;
- получение навыков программирования;

развивающие:

- развитие конструкторских навыков;
- развитие логического мышления;
- развитие пространственного воображения; воспит ательные:
- развитие коммуникативной компетенции: навыков сотрудничества в коллективе, малой группе (в паре), участия в беседе, обсуждении;
- развитие социально-трудовой компетенции: воспитание трудолюбия, самостоятельности, умения доводить начатое дело до конца;
- формирование навыков работы с различными источниками информации, умения самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию.

Цель 1 модуля обучения: развитие навыков решения базовых задач робототехники.

Задачи:

Обучение основам автономного программирования;

Развитие мелкой моторики рук;

Воспитание у детей интереса к техническим видам творчества;

Цель 2 модуля обучения: развитие информационной компетенции.

Задачи:

<u>Обучение</u> адаптации к современному технологически сложному быту; <u>Развитие</u> внимания, мышления, координации, воображения, наблюдательности, зрительной и двигательной памяти;

Воспитание умения достигать своей цели, отстаиванию своих идей. СОДЕРЖАНИЕ ПРОГРАММЫ.

Учебный план проведения занятий 1 модуль.

Название раздела, темы		Часы		Формы
	Всего	Теори	Прак	аттестац
		Я	тика	ии /
				контроля
1.Вводное занятие.	1	1		Беседа
1.1.Вводное занятие	1	1		
2.Робототехника для начинающих,	3	1	2	Тесты,
стартовый уровень				беседа,
2.1. Основы робототехники.	1		1	анализ,
2.2. Понятия: датчик, интерфейс, алгоритм и	1	1		наблюден
т.п.				ие,
2.3. Понятия: датчик, интерфейс, алгоритм и	1		1	практичес
т.п.				кая работа
3. Технология NXT, EV3	6	2	4	Тесты,
3.1. О технологии NXT.EV3 Главное меню.	1	1		беседа,
Установка батарей.				анализ,
3.2. Главное меню. Установка батарей.	1		1	наблюден
3.3. Сенсор цвета и цветная подсветка. Сенсор	1		1	ие,
нажатия.				практичес
3.4. Ультразвуковой сенсор. Интерактивные	1	1		кая работа
сервомоторы.				
3.5. Использование Bluetooth.	1		1	
3.6. Использование Bluetooth.	1		1	
4.Знакомство с конструктором.	8	3	5	Тесты,
4.1. Знакомство с конструктором	1	1		беседа,
4.2.Твой конструктор. Правила работы с	1	1		анализ,
конструктором LEGO,				наблюден
4.3. Основные детали, их название и	1	1		ие,
назначение.				практичес
4.4. Двигатели. Микрокомпьютер	1		1	кая работа
4.5. Аккумулятор (зарядка, использование).	1		1	
4.6. Датчики (назначение, единицы измерения).	1		1	
4.7. Как правильно разложить детали в наборе.	1		1	
4.8. Спецификация. Кнопки управления	1		1	
5.Начало работы	8	3	5	Тесты,
5.1.Начало работы	1	1		беседа,
5.2. Параметры моторов.	1	1		анализ,
5.3. Изучение влияния параметров на работу	1	1		наблюден
модели.				ие,
5.4. Знакомство с датчиками	1		1	практичес

5.5. Датчики и их параметры	1		1	кая работа
5.6. Датчик касания;	1		1	
Датчик освещенности.			1	
5.7. Модель «Пятиминутка». 5.8. Сборка модели.	1		1	
1			1	
б.Программное обеспечение NXT, EV3	6	3	3	беседа,
6.1. Требования к системе.	1	1		анализ,
6.2. Установка программного обеспечения.	1	1		наблюден
6.3. Интерфейс программного обеспечения.	1	1		ие,
6.4. Палитра программирования	1		1	практичес
6.5. Панель настроек. Контроллер.	1		1	кая работа
6.6. Редактор звука. Редактор изображения.	1		1	
И	ГОГО 32	13	19	

Учебный план проведения занятий 2 модуль.

Название раздела, темы		Часы	_	Формы
	Всего	Теори я	Прак тика	аттестац ии / контроля
6.Программное обеспечение NXT, EV3	5	2	3	беседа,
6.7 Передача и запуск программы.	1	_	1	анализ,
Дистанционное управление.				наблюден
6.8. Структура языка программирования NXT-	1	1		ие,
G. EV3 Установка связи с USB. Bluetooth.				практичес
Загрузка программы. Запуск программы . Память просмотр и очистка.				кая работа
6.9. Команды NXT 2.0. EV3 Изображение	1	1		
команд в программе и на схеме. 6.10. Знакомство с командами: запусти мотор	1		1	
вперед; жди; запусти мотор назад; стоп. 6.11. Моя первая программа. Составление	1		1	
простых программ на движение.				
7. Первая модель	8	2	6	беседа,
7.1. Сбор непрограммируемых моделей.	2	1	1	анализ,
7.2. Составление простейшей программы по	2	1	1	наблюден
шаблону, передача и запуск программы.				ие,
7.3. Разработка и сбор собственных моделей.	2		2	практичес кая работа
7.4. Демонстрация моделей.	2		2	
8.Модели с датчиками.	12	3	9	беседа,
8.1. Датчик касания.	1	1		анализ,

8.2. Датчик касания.	1		1	наблюден
	1 1	1	1	
8.3. Знакомство с командами: жди нажато, жди	1	1		ие,
отжато, количество нажатий. 8.4. Датчик освещенности	1		1	практичес кая работа
8.5. Влияние	1	1	1	кал раоота
	1	1		
предметов разного цвета на показания датчика 8.6.	4		4	
Знакомство с командами: жди темнее, жди	1		I	
светлее	1		1	
8.7. Разработка собственных моделей.	1		1	}
8.8. Сборка собственных моделей	1		1	
8.9. Сборка собственных моделей	1		1	
8.10. Сборка собственных моделей	1		1	
8.11. Сборка собственных моделей	1		1	
8.12 Сборка собственных моделей	1		1	
9.Программы	11	3	8	беседа,
9.1 Составление программы	1	1		анализ,
9.2. Составление программы	1		1	наблюден
9.3. Сборка модели с использованием мотора.	1	1		ие,
9.4. Сборка модели с использованием мотора.	1		1	практичес
9.5. Сборка модели с использованием мотора.	1		1	кая работа
9.6. Сборка модели с использованием мотора.	1		1	
9.7. Линейная и циклическая программа.	1		1	
9.8. Составление программы с использованием	1	1		
параметров, зацикливание программы.				
9.9. Составление программы с использованием	1		1	
параметров, зацикливание программы. 9.10.				
Составление программы с	1		1	
использованием параметров, зацикливание				
программы.				
9.11. Работа с датчиками. Условие, условный				
переход.	1		1	
10. День показательных соревнований по	3	1	2	практичес
категориям				кая работа
10.1 День показательных соревнований по			1	_
•			1	
категориям.				
10.2. Разработка моделей роботов для соревнований.			1	
10.3 Программирование модели группой			_	
Разработчиков		1		
11.Итоговое занятие	1		1	практичес
11.1 Выставка.	1		1	кая работа
ИТОГО	40	11	29	r 22.0
MIOIO	40	11	29	

СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА ПРОВЕДЕНИЯ ЗАНЯТИЙ 1 МОДУЛЬ

• Вводное занятие.

Теория: Рассказ о развитии робототехники в мировом сообществе и в частности в России. Показ видео роликов о роботах и роботостроении. Правила техники безопасности.

Практика: входящая диагностика (тестирование).

• Робототехника для начинающих, стартовый уровень.

Теория: Основы робототехники. Понятия: датчик, интерфейс, алгоритм и т.п. Алгоритм программы представляется по принципу LEGO. Из визуальных блоков составляется программа.

Практика: Каждый блок включает конкретное задание и его выполнение. По такому же принципу собирается сам робот из различных комплектующих узлов (датчик, двигатель, зубчатая передача и т.д.) узлы связываются при помощи интерфейса (провода, разъемы, системы связи, оптику и т.д.).

• Технология NXT.

Теория: О технологии NXT. EV3. NXT, EV3 является «мозгом» робота MINDSTORMS. Это интеллектуальный, управляемый компьютером элемент конструктора LEGO, позволяющий роботу ожить и осуществлять различные действия. Различные сенсоры необходимы для выполнения определенных действий. Определение цвета и света. Обход препятствия. Движение по траектории и т.д. Главное меню. Установка батарей. Сенсор цвета и цветная подсветка. Сенсор нажатия. Ультразвуковой сенсор. Интерактивные сервомоторы.

Практика: Использование Bluetooth.

Знакомство с конструктором.

Теория: Твой конструктор (состав, возможности). Основные детали (название и назначение). Датчики (назначение, единицы измерения). Двигатели.

Микрокомпьютер NXT. EV3. Аккумулятор (зарядка, использование). Как правильно разложить детали в наборе.

Практика: В конструкторе MINDSTORMS NXT, EV3 применены новейшие технологии робототехники: современный 32 - битный программируемый микроконтроллер; программное обеспечение, с удобным интерфейсом на базе образов и с возможностью перетаскивания объектов, а так же с поддержкой интерактивности; чувствительные сенсоры и интерактивные сервомоторы; разъемы для беспроводного Bluetooth и USB подключений. Различные сенсоры необходимы для выполнения определенных действий: определение цвета и света, обхода препятствия, движения по траектории и т.д.

• Начало работы.

Теория: Включение \ выключение микрокомпьютера (аккумулятор, батареи, включение, выключение). Подключение двигателей и датчиков (комплектные элементы, двигатели и датчики). Тестирование (Тгу ме). Мотор. Датчик освещенности. Датчик звука. Датчик касания. Ультразвуковой датчик. Структура меню . Снятие показаний с датчиков (view).

Практика: Для начала работы заряжаем батареи. Учимся включать и выключать микроконтроллер. Подключаем двигатели и различные датчики с последующим тестирование конструкции робота. Модель «Пятиминутка». Сборка модели.

• Программное обеспечение NXT. EV3

Теория: Требования к системе. Установка программного обеспечения. Интерфейс программного обеспечения. Палитра программирования. Панель настроек.

Практика: Разъяснение всей палитры программирования содержащей все блоки для программирования, которые понадобятся для создания программ. Каждый блок задает возможные действия или реакцию робота. СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА ПРОВЕДЕНИЯ ЗАНЯТИИ 2 МОДУЛЬ

• Программное обеспечение NXT. EV3

Теория: Контроллер. Редактор звука. Редактор изображения. Дистанционное управление. Структура языка программирования ИХТ-G. EV3. Установка связи с USB. Bluetooth. Загрузка программы. Запуск программы . Память просмотр и очистка. Моя первая программа (составление простых программ на движение).

Практика: Путем комбинирования блоков в различной последовательности можно создаются программы, которые «оживят» робота.

• Первая модель.

Теория: Сборка модели по технологическим картам. Составление простой программы для модели, используя встроенные возможности NXT, EV3 (программа из ТК + задания на понимание принципов создания программ). **Практика:** Сборка модели ВомаВоt или «пятиминутка».

• Модели с датчиками.

Теория: Сборка моделей и составление программ из ТК. Датчик звука. Датчик касания. Датчик света. Подключение лампочки. Выполнение дополнительных заданий и составление собственных программ. Соренования. Составление простых программ по алгоритмам, с использованием ветвлений и циклов». Соревнования.

Практика: Проводится сборка моделей роботов и составление программ по технологическим картам, которые находятся в комплекте с комплектующими для сборки робота. Далее составляются собственные программы.

Датчики цвета (сенсоры) являются одним из двух датчиков, которые заменяют роботу зрение (другой датчик - ультразвуковой). У этого датчика совмещаются три функции. Датчик цвета позволяет роботу различать цвета и отличать свет от темноты. Он может различать 6 цветов, считывать интенсивность света в помещении, а также измерять цветовую интенсивность окрашенных поверхностей. Датчик нажатия позволяет

роботу осуществлять прикосновения. Датчик нажатия может определить момент нажатия чего- либо, а так же момент освобождения. Ультразвуковой датчик позволяет роботу видеть и обнаруживать объекты. Его также можно использовать для того, чтобы робот мог обойти препятствие, оценить и измерить рас стояние, а также зафиксировать движение объекта. В каждый серво мотор встроен датчик вращения. Он позволяет точнее вести управление движениями робота.

• Программы.

Теория: Учитывая, что при конструировании робота из данного набора существует множество вариантов его изготовления и программирования, начинаем с программ, предложенных в инструкции и описании конструктора. **Практика:** Составление простых программ по линейным и псевдолинейным алгоритмам. Сборка модели с использованием мотора. Линейная и циклическая программа. Составление программы с использованием параметров, зацикливание программы. Знакомство с датчиками. Условие, условный переход. Соревнования.

• День показательных соревнований по категориям.

Теория: Различные категории соревнований. Использование видео материалов соревнований по конструированию роботов.

Практика: Разработка моделей роботов для соревнований. Программирование модели группой разработчиков.

• Итоговое занятие.

Теория: Презентация моделей. Подведение итогов, награждение и поощрение обучающихся по итогам учебного года.

Практика: Итоговое тестирование, выставка. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

По окончании обучения 1 модуля обучения учащиеся должны знать:

- основные понятия робототехники;
- основы алгоритмизации;

• умения автономного программирования;

Учащиеся должны уметь:

- собирать базовые модели роботов;
- составлять алгоритмические блок-схемы для решения задач;
- использовать датчики и двигатели в классических задачах.

По окончании обучения 2 модуля обучения учащиеся должны знать:

- среды LEGO MINDSTORMS ИХТ-G; EV3
- основы программирования на ИХТ-G; EV3
- умения подключать и задействовать датчики и двигатели;
- навыки работы со схемами.

Учащиеся должны уметь:

- программировать на NXT; EV3
- использовать датчики и двигатели в сложных задачах,
 предусматривающих многовариантность решения;
- проходить все этапы проектной деятельности, создавать творческие работы.

Личностные результаты освоения общеобразовательной программы должны отражать:

- 1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое многообразие современного мира;
- 3) формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
- 4) формирование коммуникативной компетентности в общении и

сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно исследовательской, творческой и других видов деятельности;

- 5) формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах;
- б) формирование основ экологической культуры соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

Метапредметные результаты освоения общеобразовательной программы должны отражать:

- 1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- 2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 4) умение оценивать правильность выполнения учебной задачи, собственные возможности её решения;
- 5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- 6) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- 8) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее

решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;

9) формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Предметные результаты:

- 1. получение первоначальных представлений о созидательном и нравственном значении труда в жизни человека и общества; о мире профессий и важности правильного выбора профессии;
- 2. усвоение правил техники безопасности;
- 3. использование приобретенных знаний и умений для творческого решения несложных конструкторских, художественно-конструкторских (дизайнерских), технологических и организационных задач;
- 4. приобретение первоначальных навыков совместной продуктивной деятельности, сотрудничества, взаимопомощи, планирования и организации;
- 5. приобретение первоначальных знаний о правилах создания предметной и информационной среды и умений применять их для выполнения учебно познавательных и проектных художественно-конструкторских задач.

КАЛЕНЛАРНЫЙ УЧЕБНЫЙ ГРАФИК 1 МОЛУЛЬ

	Месяц	Число	Время	Форма	Кол-во	Тема занятия
п/п			проведен	занятия	часов	
			ия			
			занятия			
1				Беседа,	1	
				Инструк		Вводное занятие.
				таж		Рассказ о развитии робототехники в
						мировом сообществе и в частности в
						России. Показ видео роликов о роботах и
						роботостроении. Правила техники
						безопасности. Входящая диагностика.
2				Беседа	1	Робототехника для начинающих,
						стартовый уровень. Основы
						робототехники.
3				Беседа	1	Понятия: датчик, интерфейс, алгоритм и
					1	т.п.

4	Беседа	1	Понятия: датчик, интерфейс, алгоритм и
5	Беседа, демонстра ция	1	т.п. Технология NXTEV3 О технологии NXT.EV3 Главное меню. Установка батарей.
6	Беседа, демонстра ция	1	Главное меню. Установка батарей.
7	Беседа, демонстра ция	1	Сенсор цвета и цветная подсветка. Сенсор нажатия.
8	Беседа, демонстра ция	1	Ультразвуковой сенсор. Интерактивные сервомоторы.
9	Беседа, демонстра ция	1	Использование Bluetooth.
10	Беседа, демонстра ция	1	Использование Bluetooth.
11	Беседа, демонстра ция	1	Знакомство с конструктором.
12	Беседа, демонстра ция	1	Твой конструктор. Правила работы с конструктором LEGO,
13	Беседа, демонстра ция	1	Основные детали, их название и назначение.
14	Беседа, демонстра ция	1	Двигатели. Микрокомпьютер
15	Беседа, демонстра ция	1	Аккумулятор (зарядка, использование).
16	Беседа, демонстра ция	1	Датчики (назначение, единицы измерения).
17	Беседа, демонстра ция	1	Как правильно разложить детали в наборе
18	Беседа, демонстра ция	1	Спецификация. Кнопки управления

19	Беседа	1	Начало работы.
19 20	Беседа, демонстра ция	1	Параметры моторов.
21	Беседа, демонстра ция	1	Изучение влияния параметров на работу модели.
22	Беседа, демонстра ция	1	Знакомство с датчиками.
23	Беседа, демонстра ция	1	Датчики и их параметры.
24	Беседа, демонстра ция	1	Датчик касания; Датчик освещенности.
25	Занятие- практик ум	1	Модель «Пятиминутка».
26	Беседа, демонстра ция		Сборка модели.
27	Беседа, демонстра ция	1	Программное обеспечение NXT. EV3 Требования к системе.
28	Беседа, демонстра ция	1	Установка программного обеспечения.
29	Беседа, демонстра ция	1	Интерфейс программного обеспечения.Каб. №2
30	Беседа, демонстра ция	1	Палитра программирования.
31	Беседа, демонстра ция	1	Панель настроек. Контроллер.
32	Беседа, демонстра ция	1	Редактор звука. Редактор изображения.

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК 1 МОДУЛЬ

33	Гасата	1	
33	Беседа, демонстра ция	1	Программное обеспечение NXT.EV3 Передача и запуск программы. Дистанционное управление.
34	Беседа, демонстра ция	1	Структура языка программирования NXT- G. EV3 Установка связи с USB. Bluetooth. Загрузка программы. Запуск программы. Память просмотр и очистка.
35	Беседа, демонстра ция	1	Команды NXT 2.0. EV3 Изображение команд в программе и на схеме.
36	Беседа, демонстра ция	1	Знакомство с командами: запусти мотор вперед; жди; запусти мотор назад; стоп.
37	Беседа, демонстра ция	1	Моя первая программа. Составление простых программ на движение.
38 39	Занятие- практик ум	2	Первая модель. Сбор непрограммируемых моделей.
40 41	Занятие- практик ум	2	Составление простейшей программы по шаблону, передача и запуск программы.
42 43	Занятие- практик ум	2	Разработка и сбор собственных моделей.
44 45	Занятие- практик ум	2	Демонстрация моделей.
46	Беседа, демонстра ция	1	Модели с датчиками.
47	Беседа, демонстра ция	1	Датчик касания.
48	Беседа, демонстра ция	1	Знакомство с командами: жди нажато, жди отжато, количество нажатий.
49	Беседа, демонстра	1	Датчик освещенности.

	ция		
50	Беседа, демонстра ция	1	Влияние предметов разного цвета на показания датчика.
51	Беседа, демонстра ция	1	Знакомство с командами: жди темнее, жди светлее
52	Занятие- практик ум	1	Разработка собственных моделей.
53	Занятие- практик ум	1	Сборка собственных моделей
54	Занятие- практик ум	1	Сборка собственных моделей
55	Занятие- практик ум	1	Сборка собственных моделей
56	Занятие- практик ум	1	Сборка собственных моделей
57	Занятие- практик ум	1	Сборка собственных моделей
58	Занятие- практик ум	1	Программы. Составление программы.
59	Занятие- практик ум	1	Составление программы.
60	Занятие- практик ум	1	Сборка модели с использованием мотора.
61	Занятие- практик ум	1	Сборка модели с использованием мотора.
62	Занятие- практик ум	1	Сборка модели с использованием мотора.

63	Занятие- практик ум	1	Сборка модели с использованием мотора.
64	Беседа, демонстра ция	1	Линейная и циклическая программа.
65	Беседа, демонстра ция	1	Составление программы с использованием параметров, зацикливание программы.
66	Беседа, демонстра ция	1	Составление программы с использованием параметров, зацикливание программы.
67	Занятие- практик ум	1	Составление программы с использованием параметров, зацикливание программы
68	Занятие- практик ум	1	Работа с датчиками. Условие, условный переход
69	Занятие- практик ум	1	День показательных соревнований по категориям.
70	Занятие- практик ум	1	Разработка моделей роботов для соревнований.
71	Занятие- практик ум	1	Программирование модели группой Разработчиков.
72.	Занятие- практик ум	1	Итоговое занятие. Выставка.

Виды контроля (форма аттестации)

Процесс обучения и освоения данной общеобразовательной программы предусматривает следующие виды контроля:

- 1. Вводный это контроль, который проводится перед началом работы и предназначен для определения уровня первоначальных знаний, умений и навыков. Целью такого контроля определение первоначальных знаний и навыков по данной общеобразовательной программе. Периодичность данного вида контроля определяет педагог, как правило, он производится на старте освоения программы, либо в ходе отдельных занятий и мероприятий. Вводный контроль успеваемости носит безотметочный характер и предполагает качественную характеристику (оценку) сформированности у обучающихся соответствующих компетенций.
- 2. Текущий контроль это контроль, целью которого является определение уровня достижения планируемых предметных и личностных результатов в процессе

освоения образовательной программы. Данный вид контроля проводится два раза в течение учебного года: в декабре - по итогам полугодия, в мае - по итогам года. Также в течение всего учебного года после изучения каждого модуля, проводятся викторины, разгадывание кроссвордов, тестирование. Такой внеплановый контроль позволит выявить, как обучающиеся усвоили материал и при необходимости что -то повторить.

3. Итоговая аттестация - подтверждение уровня достигнутых предметных результатов по итогам освоения образовательной программы, проводимая на добровольной основе. К итоговой аттестации допускаются обучающиеся, успешно прошедшие промежуточную аттестацию.

Формы подведения итогов реализации программы:

- организация открытых занятий с целью демонстрации изученного материала и полученных в процессе занятий навыков;
- выставки работ обучающихся.

План мероприятий по воспитанию

План мероприятии по воспи	Илан мероприятий по воспитанию						
Патриотическое - в его основе лежат ценности Родины и природы							
Наименование	Сроки	Участники	Ответственный				
мероприятия	проведения						
беседа-занятие «Пионеры	октябрь	учащиеся	Педагог				
герои ВОВ»							
беседа "Патриот" в рамках	февраль	учащиеся	Педагог				
празднования Дня							
защитника							
Познавате	льное - в его осн	ове лежит ценность зн	нания				
Наименование	Сроки	Участники	Ответственный				
мероприятия	проведения						
	сентябрь	учащиеся	Педагог				
участие в муниципальном							
фестивале							
дополнительного							
образования «Первы							
старт»							
Этико-эстетическо	е - в его основе л	ежат ценности культу	ры и красоты.				
Наименование	Сроки	Участники	Ответственный				
мероприятия	проведения						
Участие в акции	Декабрь	Учащиеся	Педагог				
«Новогодние окна».							

Трудовое - в его основе лежит ценность труда			
Наименование	Сроки	Участники	Ответственный
мероприятия	проведения		
Практические занятия по		Учащиеся	Педагог
профориентации	В течение года		

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ.

1. Материально- техническое обеспечение программы:

- Рабочий кабинет для программирования робототехнических средств, программирования контроллеров конструкторов, настройки самих конструкторов, отладки программ, проверка совместной работоспособности программного продукта и модулей конструкторов LEGO.
- Наборы конструкторов:
- LEGO Mindstorms NXT -2 шт;
- программный продукт по количеству компьютеров в классе;
- поля для проведения соревнования роботов 3 шт.;
 - LEGO Mindstorms EV3 5 шт.
 - LEGO Mindstorms EV3 вспомогательный 1шт.
- ноутбук 1 шт.
- **2.** *Информационное обеспечение:* Обучающиеся в первый день занятий проходят инструктаж по правилам техники безопасности и расписываются в журнале. Педагог на каждом занятии напоминает учащимся об основных правилах соблюдения техники безопасности (Приложение 1).
 - памятка
- Использование инструкций сборки моделей роботов, алгоритма их программирования;
- Электронный образовательный <u>pecypc http://cmit-</u> superlab.ru/assets/uploa d/files/19-dajdzhest- aktualnyix-materialov- po-

obrazovatelnoj- robototexnike.pdf

3. *Кадровое обеспечение:* занятия проводит педагог дополнительного образования.

В случае перехода на электронное обучение, педагог должен технично овладеть базовыми навыками работы с компьютерной техникой и программным обеспечением, базовыми навыками работами со средствами коммуникаций, изучить и применить опыт обучения с использованием цифровых образовательных ресурсов.

- **4.** *Психолого-педагогические:* занятия проводятся с учетом возрастных особенностей физического и психического развития учащихся; важным условием реализации программы является взаимосвязь теории с практикой.
- 5. Учебно-методические: для методического сопровождения занятий используются презентации, обучающие видео, протоколы соревнований, индивидуальные проекты, личные разработки учащихся.

Формы контроля: собеседование, тестирование, наблюдение, самостоятельная работа, практическая работа, выставка, презентация модели, соревнования.

Формы представления и демонстрации результатов освоения программы:

- -соревнования;
- -подготовка буклетов о проделанной работе;
- -отзывы родителей учащихся на сайте учреждения;
- -анкетирование учащихся и их родителей;
- выступление с проектами, мастер-классами.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Входящий контроль осуществляется в начале обучения с помо<u>ш</u>ью собеседования, тестирования и наблюдения за процессом сборки модели по следующим показателям:

- Умение работать с инструкцией, схемами, технической документацией;
- Проработка алгоритмов действия;
- Качество сборки;
- Новизна и оригинальность технического решения робота или роботизированного устройства;
- Техническая сложность (сложные геометрические конструкции, движущиеся механизмы, различные соединения деталей и т.д.)

Показатели оцениваются по десятибалльной шкале. Результаты тестирования фиксируются, высчитывается средний балл группы. Полученные данные оформляются в таблице (Таблица 1).

Критерии оценивания:

Таблица 1

ву (8-10 баллов) - высокий уровень (модель полностью отвечает заданию) су (5-7 баллов) - средний уровень (модель имеет несколько недостатков) ну (1-4 баллов) - низкий уровень (узлы модели не соответствует заданию и не отвечает технологическим требованиям)

Промежуточный контроль проводится в середине обучения и во время участия в

соревнованиях среди учащихся объединения.

Итоговый контроль осуществляется в конце обучения по тем же показателям.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ:

Обеспечение программы предусматривает наличие следующих методических видов продукции:

- экранные видео лекции, Screencast (экранное видео записываются скриншоты (статические кадры экрана) в динамике);
- видеоролики;
- информационные материалы на сайте, посвященном данной дополнительной образовательной программе;
- мультимедийные интерактивные домашние работы, выдаваемые обучающимся на каждом занятии;
- результат работы всей труппы оформляется как мультимедийное интерактивное издание для использования не только в качестве отчетности о проделанной работе, но и как учебный и наглядный материал для занятий.

АЛГОРИТМ УЧЕБНОГО ЗАНЯТИЯ

Теоретические занятия строится следующим образом:

- 1. Оргмомент;
- 2. Раздача материалов для самостоятельной работы и повторения материала;
- 3. Объяснение нового материала. Теоретический материал педагог дает учащимся, помимо вербального, классического метода преподавания, при помощи различных современных технологий в образовании (презентации, интернет, электронные учебники);
- 4. Проверка полученных знаний.

Практические занятия проводятся таким образом:

1. Практические занятия начинаются с правил техники безопасности при работе с различным инструментом и с электричеством и разбора допущенных ошибок во

время занятия в обязательном порядке;

- 2. Педагог показывает конечный результат занятия, т.е. заранее готовит (собирает робота или его часть) практическую работу;
- 3. Педагог показывает, используя различные варианты, последовательность сборки узлов робототехнических устройств;
- 4. Педагог отдает обучающимся, ранее подготовленные мультимедийные материалы по изучаемой теме, либо показывает где они размещены на сайте, посвященном именно этой теме;
- 5. Обучающиеся самостоятельно (и, или) в группах проводят сборку узлов робототехнических устройств.

Самостоятельная работа по сборке моделей роботов осуществляется по собственному замыслу и проекту учащихся, где они собирают различные устройства и программируют модели на определенные задания.

ЛИТЕРАТУРА:

Для педагога:

- Алгоритмизация и языки программирования: Pascal, C+, Basic: Учебно-справочное пособие. / Под ред. Ю.А. Аляев, О.А. Козлов 2002.
- Basic 6.0: Учебное пособие / Под ред. Т.В. Литвиненко. М.: «Горячая линия-Телеком», 2001.
- Каляев, И. А. Однородные нейроподобные структуры в системах выбора действий интеллектуальных роботов / И.А. Каляев, А.Р. Гайдук. Москва: Гостехиздат, 2009. 280 с.
- Корсункий, В. А. Выбор критериев и классификация мобильных робототехнических систем на колесном и гусеничном ходу. Учебное пособие / В.А. Корсункий, К.Ю. Машков, В.Н. Наумов. М.: МГТУ им. Н.
 Э. Баумана, 2014. 862 с.
- Корягин, А. В. Образовательная робототехника Lego WeDo. Сборник

- методических рекомендаций и практикумов / А.В. Корягин. М.: ДМК Пресс, 2016. 254 с.
- Краснова, С. А. Блочный синтез систем управления роботами- манипуляторами в условиях неопределенности / С.А. Краснова, В.А. Уткин, А.В. Уткин. М.: Ленанд, 2014. 208 с.
- Крейг, Джон Введение в робототехнику. Механика и управление: моногр. / Джон Крейг. М.: Институт компьютерных исследований, 2013. 564 с.
- Тывес, Л. И. Механизмы робототехники. Концепция развязок в кинематике, динамике и планировании движений / Л.И. Тывес. М.: Ленанд, 2014. 208 с.

Для учащихся и родителей:

- Занимательное программирование «Basic». / Под ред. С. Симоновича и Т. Евсеева. - М.: «АСТ-Пресс Книга», 2001.
- Конструируем роботов на ScratchDuino. Первые шаги. Москва: Мир, 2016. 183 с.

Инструктаж по технике безопасности на занятиях по робототехнике

- 1. Работу начинать только с разрешения учителя. Когда учитель обращается к тебе, приостанови работу. Не отвлекайся во время работы.
- 2. Не пользуйся инструментами и предметами, правила обращения, с которыми не изучены.
- 3. Работай с деталями только по назначению. Нельзя глотать, класть детали конструктора в рот и у<u>ш</u>и.
- 4. При работе держи инструмент так, как указанно в инструкции или показал учитель.
- 5. Детали конструктора и оборудование храни в предназначенном для этого месте. Нельзя хранить инструменты навалом.
- 6. Содержи в чистоте и порядке рабочее место.
- 7. Раскладывай оборудование в указанном порядке.
- 8. Не разговаривай во время работы.
- 9. Выполняй работу внимательно, не отвлекайся посторонними делами.
- 10. При работе с ПК нельзя открывать программы, включать, выключать ПК без разрешения учителя.
- 11. Во время работы за компьютером нужно сидеть прямо напротив экрана, чтобы верхняя часть экрана находилась на уровне глаз на расстоянии 45 -60 см.