СТАНДАРТ СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ ПО ФИЗИКЕ

Базовый уровень

Изучение физики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

- освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели; применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по физике с использованием различных источников информации и современных информационных технологий;
- воспитание убежденности в возможности познания законов природы и использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

Обязательный минимум содержания основных образовательных программ

Физика и методы научного познания

Физика как наука. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ЯВЛЕНИЙ И ПРОЦЕССОВ. Научные гипотезы. Физические законы. Физические теории. ГРАНИЦЫ ПРИМЕНИМОСТИ ФИЗИЧЕСКИХ ЗАКОНОВ И ТЕОРИЙ. ПРИНЦИП СООТВЕТСТВИЯ. Основные элементы физической картины мира.

Механика

Механическое движение и его виды. Прямолинейное равноускоренное движение. Принцип относительности Галилея. Законы динамики. Всемирное тяготение. Законы сохранения в механике. ПРЕДСКАЗАТЕЛЬНАЯ СИЛА ЗАКОНОВ КЛАССИЧЕСКОЙ МЕХАНИКИ. ИСПОЛЬЗОВАНИЕ ЗАКОНОВ МЕХАНИКИ ДЛЯ ОБЪЯСНЕНИЯ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ И ДЛЯ РАЗВИТИЯ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ. ГРАНИЦЫ ПРИМЕНИМОСТИ КЛАССИЧЕСКОЙ МЕХАНИКИ.

Проведение опытов, иллюстрирующих проявление принципа относительности, законов классической механики, сохранения импульса и механической энергии.

Практическое применение физических знаний в повседневной жизни для использования простых механизмов, инструментов, транспортных средств.

Молекулярная физика

Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. МОДЕЛЬ ИДЕАЛЬНОГО ГАЗА. Давление газа. Уравнение состояния идеального газа. Строение и свойства жидкостей и твердых тел.

Законы термодинамики. ПОРЯДОК И ХАОС. НЕОБРАТИМОСТЬ ТЕПЛОВЫХ ПРОЦЕССОВ. Тепловые двигатели и охрана окружающей среды.

Проведение опытов по изучению свойств газов, жидкостей и твердых тел, тепловых процессов и агрегатных превращений вещества.

Практическое применение в повседневной жизни физических знаний о свойствах газов, жидкостей и твердых тел; об охране окружающей среды.

Электродинамика

Элементарный электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

Электромагнитные волны. Волновые свойства света. Различные виды электромагнитных излучений и их практическое применение.

Проведение опытов по исследованию явления электромагнитной индукции, электромагнитных волн, волновых свойств света.

Объяснение устройства и принципа действия технических объектов, практическое применение физических знаний в повседневной жизни:

при использовании микрофона, динамика, трансформатора, телефона, магнитофона;

для безопасного обращения с домашней электропроводкой, бытовой электро- и радиоаппаратурой.

Квантовая физика и элементы астрофизики

ГИПОТЕЗА ПЛАНКА О КВАНТАХ. Фотоэффект. Фотон. ГИПОТЕЗА ДЕ БРОЙЛЯ О ВОЛНОВЫХ СВОЙСТВАХ ЧАСТЕЙ. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ГЕЙЗЕНБЕРГА.

Планетарная модель атома. Квантовые постулаты Бора. Лазеры.

МОДЕЛИ СТРОЕНИЯ АТОМНОГО ЯДРА. Ядерные силы. Дефект массы и энергия связи ядра. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. ДОЗА ИЗЛУЧЕНИЯ. ЗАКОН РАДИОАКТИВНОГО РАСПАДА И ЕГО СТАТИСТИЧЕСКИЙ ХАРАКТЕР. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ.

Солнечная система. Звезды и источники их энергии. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПРОИСХОЖДЕНИИ И ЭВОЛЮЦИИ СОЛНЦА И ЗВЕЗД. Галактика. Пространственные масштабы наблюдаемой Вселенной. ПРИМЕНИМОСТЬ ЗАКОНОВ ФИЗИКИ ДЛЯ ОБЪЯСНЕНИЯ ПРИРОДЫ КОСМИЧЕСКИХ ОБЪЕКТОВ.

Наблюдение и описание движения небесных тел.

Проведение исследований процессов излучения и поглощения света, явления фотоэффекта и устройств, работающих на его основе, радиоактивного распада, работы лазера, дозиметров.

В результате изучения физики на базовом уровне ученик должен: знать/понимать:

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, Солнечная система, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь:

- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; что физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио- и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
 - рационального природопользования и охраны окружающей среды;
- понимания взаимосвязи учебного предмета с особенностями профессий и профессиональной деятельности, в основе которых лежат знания по данному учебному предмету.