Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 411 «Гармония» с углубленным изучением английского языка Петродворцового района Санкт-Петербурга

Разработана и принята решением Педагогического совета ГБОУ школы № 411 «Гармония» Петродворцового района Санкт-Петербурга Протокол от 30.08.2023 № 1

Утверждена Приказом от 30.08.2023 № 246 Директор ГБОУ школы № 411 «Гармония» Петродворцового района Санкт-Петербурга И.В. Носаева

РАБОЧАЯ ПРОГРАММА

(ID 1571963)

учебного предмета «Химия. Базовый уровень» для обучающихся 10 классов

Заместитель директора по учебно-воспитательной работе ГБОУ школы № 411 «Гармония» Петродворцового района Санкт-Петербурга ______ М.В. Щигорева 30.08.2023г.

Петергоф 2023

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по химии на уровне среднего общего образования разработана на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», требований к результатам освоения федеральной образовательной программы среднего общего образования (ФОП СОО), представленных в Федеральном государственном образовательном стандарте СОО, с учётом Концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, реализующих основные образовательные программы, и основных положений «Стратегии развития воспитания в Российской Федерации на период до 2025 года» (Распоряжение Правительства РФ от 29.05. 2015 № 996 - р.).

Основу подходов к разработке программы по химии, к определению общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Химия» для 10–11 классов на базовом уровне составили концептуальные положения ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников.

Химическое получаемое выпускниками общеобразовательной образование, является неотъемлемой образованности. организации, частью ИХ Оно завершающим этапом реализации на соответствующем ему базовом уровне ключевых ценностей, присущих целостной системе химического образования. Эти ценности касаются познания законов природы, формирования мировоззрения и общей культуры человека, а также экологически обоснованного отношения к своему здоровью и природной среде. Реализуется химическое образование обучающихся на уровне среднего общего образования средствами учебного предмета «Химия», содержание и построение которого определены в программе по химии с учётом специфики науки химии, её значения в познании природы и в материальной жизни общества, а также с учётом общих целей и принципов, характеризующих современное состояние системы среднего общего образования в Российской Федерации.

Химия как элемент системы естественных наук играет особую роль в современной цивилизации, в создании новой базы материальной культуры. Она вносит свой вклад в формирование рационального научного мышления, в создание целостного представления об окружающем мире как о единстве природы и человека, которое формируется в химии на основе понимания вещественного состава окружающего мира, осознания взаимосвязи между строением веществ, их свойствами и возможными областями применения.

Тесно взаимодействуя с другими естественными науками, химия стала неотъемлемой частью мировой культуры, необходимым условием успешного труда и жизни каждого члена общества. Современная химия как наука созидательная, как наука высоких технологий направлена на решение глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой, экологической безопасности и охраны здоровья.

В соответствии с общими целями и принципами среднего общего образования содержание предмета «Химия» (10–11 классы, базовый уровень изучения) ориентировано преимущественно на общекультурную подготовку обучающихся, необходимую им для выработки мировоззренческих ориентиров, успешного включения в жизнь социума, продолжения образования в различных областях, не связанных непосредственно с химией.

Составляющими предмета «Химия» являются базовые курсы — «Органическая химия» и «Общая и неорганическая химия», основным компонентом содержания которых

являются основы базовой науки: система знаний по неорганической химии (с включением знаний из общей химии) и органической химии. Формирование данной системы знаний при изучении предмета обеспечивает возможность рассмотрения всего многообразия веществ на основе общих понятий, законов и теорий химии.

Структура содержания курсов — «Органическая химия» и «Общая и неорганическая химия» сформирована в программе по химии на основе системного подхода к изучению учебного материала и обусловлена исторически обоснованным развитием знаний на определённых теоретических уровнях. Так, в курсе органической химии вещества рассматриваются на уровне классической теории строения органических соединений, а также на уровне стереохимических и электронных представлений о строении веществ. Сведения об изучаемых в курсе веществах даются в развитии — от углеводородов до сложных биологически активных соединений. В курсе органической химии получают развитие сформированные на уровне основного общего образования первоначальные представления о химической связи, классификационных признаках веществ, зависимости свойств веществ от их строения, о химической реакции.

Под новым углом зрения в предмете «Химия» базового уровня рассматривается изученный на уровне основного общего образования теоретический материал и фактологические сведения о веществах и химической реакции. Так, в частности, в курсе «Общая и неорганическая химия» обучающимся предоставляется возможность осознать значение периодического закона с общетеоретических и методологических позиций, глубже понять историческое изменение функций этого закона — от обобщающей до объясняющей и прогнозирующей.

Единая система знаний о важнейших веществах, их составе, строении, свойствах и применении, а также о химических реакциях, их сущности и закономерностях протекания дополняется в курсах 10 и 11 классов элементами содержания, имеющими культурологический и прикладной характер. Эти знания способствуют пониманию взаимосвязи химии с другими науками, раскрывают её роль в познавательной и практической деятельности человека, способствуют воспитанию уважения к процессу творчества в области теории и практических приложений химии, помогают выпускнику ориентироваться в общественно и личностно значимых проблемах, связанных с химией, критически осмысливать информацию и применять её для пополнения знаний, решения интеллектуальных и экспериментальных исследовательских задач. В целом содержание учебного предмета «Химия» данного уровня изучения ориентировано на формирование у обучающихся мировоззренческой основы для понимания философских идей, таких как: материальное единство неорганического и органического мира, обусловленность свойств веществ их составом и строением, познаваемость природных явлений путём эксперимента и решения противоречий между новыми фактами и теоретическими предпосылками, осознание роли химии в решении экологических проблем, а также проблем сбережения энергетических ресурсов, сырья, создания новых технологий и материалов.

В плане решения задач воспитания, развития и социализации обучающихся принятые программой по химии подходы к определению содержания и построения предмета предусматривают формирование универсальных учебных действий, имеющих базовое значение для различных видов деятельности: решения проблем, поиска, анализа и обработки информации, необходимых для приобретения опыта практической и исследовательской деятельности, занимающей важное место в познании химии.

В практике преподавания химии как на уровне основного общего образования, так и на уровне среднего общего образования, при определении содержательной характеристики целей изучения предмета направлением первостепенной значимости традиционно признаётся формирование основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры. С методической точки зрения такой подход к определению целей изучения предмета является вполне оправданным.

Согласно данной точке зрения главными целями изучения предмета «Химия» на базовом уровне (10-11 кл.) являются:

- формирование системы химических знаний как важнейшей составляющей естественно-научной картины мира, в основе которой лежат ключевые понятия, фундаментальные законы и теории химии, освоение языка науки, усвоение и понимание сущности доступных обобщений мировоззренческого характера, ознакомление с историей их развития и становления;
- формирование и развитие представлений о научных методах познания веществ и химических реакций, необходимых для приобретения умений ориентироваться в мире веществ и химических явлений, имеющих место в природе, в практической и повседневной жизни;
- развитие умений и способов деятельности, связанных с наблюдением и объяснением химического эксперимента, соблюдением правил безопасного обращения с веществами.

Наряду с этим, содержательная характеристика целей и задач изучения предмета в программе по химии уточнена и скорректирована в соответствии с новыми приоритетами в системе среднего общего образования. Сегодня в преподавании химии в большей степени отдаётся предпочтение практической компоненте содержания обучения, ориентированной на подготовку выпускника общеобразовательной организации, владеющего не набором знаний, а функциональной грамотностью, то есть способами и умениями активного получения знаний и применения их в реальной жизни для решения практических задач.

В связи с этим при изучении предмета «Химия» доминирующее значение приобретают такие цели и задачи, как:

адаптация обучающихся к условиям динамично развивающегося мира, формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному принятию грамотных решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

формирование у обучающихся ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности: решения проблем, поиска, анализа и обработки информации, необходимых для приобретения опыта деятельности, которая занимает важное место в познании химии, а также для оценки с позиций экологической безопасности характера влияния веществ и химических процессов на организм человека и природную среду;

развитие познавательных интересов, интеллектуальных и творческих способностей обучающихся: способности самостоятельно приобретать новые знания по химии в соответствии с жизненными потребностями, использовать современные информационные технологии для поиска и анализа учебной и научно-популярной информации химического содержания;

формирование и развитие у обучающихся ассоциативного и логического мышления, наблюдательности, собранности, аккуратности, которые особенно необходимы, в частности, при планировании и проведении химического эксперимента;

воспитание у обучающихся убеждённости в гуманистической направленности химии, её важной роли в решении глобальных проблем рационального природопользования, пополнения энергетических ресурсов и сохранения природного равновесия, осознания необходимости бережного отношения к природе и своему здоровью, а также приобретения опыта использования полученных знаний для принятия грамотных решений в ситуациях, связанных с химическими явлениями.

В учебном плане среднего общего образования предмет «Химия» базового уровня входит в состав предметной области «Естественно-научные предметы».

Общее число часов, отведённых для изучения химии, на базовом уровне среднего общего образования, составляет 34 часа в 10 классе (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

Теоретические основы органической химии

Предмет органической химии: её возникновение, развитие и значение в получении новых веществ и материалов. Теория строения органических соединений А. М. Бутлерова, её основные положения. Структурные формулы органических веществ. Гомология, изомерия. Химическая связь в органических соединениях – одинарные и кратные связи.

Представление о классификации органических веществ. Номенклатура органических соединений (систематическая) и тривиальные названия важнейших представителей классов органических веществ.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами органических веществ и материалами на их основе, моделирование молекул органических веществ, наблюдение и описание демонстрационных опытов по превращению органических веществ при нагревании (плавление, обугливание и горение).

Углеводороды

Алканы: состав и строение, гомологический ряд. Метан и этан – простейшие представители алканов: физические и химические свойства (реакции замещения и горения), нахождение в природе, получение и применение.

Алкены: состав и строение, гомологический ряд. Этилен и пропилен – простейшие представители алкенов: физические и химические свойства (реакции гидрирования, галогенирования, гидратации, окисления и полимеризации), получение и применение.

Алкадиены: бутадиен-1,3 и метилбутадиен-1,3: строение, важнейшие химические свойства (реакция полимеризации). Получение синтетического каучука и резины.

Алкины: состав и особенности строения, гомологический ряд. Ацетилен – простейший представитель алкинов: состав, строение, физические и химические свойства (реакции гидрирования, галогенирования, гидратации, горения), получение и применение.

Арены. Бензол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Толуол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Токсичность аренов. Генетическая связь между углеводородами, принадлежащими к различным классам.

Природные источники углеводородов. Природный газ и попутные нефтяные газы. Нефть и её происхождение. Способы переработки нефти: перегонка, крекинг (термический, каталитический), пиролиз. Продукты переработки нефти, их применение в промышленности и в быту. Каменный уголь и продукты его переработки.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами пластмасс, каучуков и резины, коллекции «Нефть» и «Уголь», моделирование молекул углеводородов и галогенопроизводных, проведение <u>практической работы</u>: получение этилена и изучение его свойств.

Расчётные задачи.

Вычисления по уравнению химической реакции (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции).

Кислородсодержащие органические соединения

Предельные одноатомные спирты. Метанол и этанол: строение, физические и химические свойства (реакции с активными металлами, галогеноводородами, горение),

применение. Водородные связи между молекулами спиртов. Действие метанола и этанола на организм человека.

Многоатомные спирты. Этиленгликоль и глицерин: строение, физические и химические свойства (взаимодействие со щелочными металлами, качественная реакция на многоатомные спирты). Действие на организм человека. Применение глицерина и этиленгликоля.

Фенол: строение молекулы, физические и химические свойства. Токсичность фенола. Применение фенола.

Альдегиды и *кетоны*. Формальдегид, ацетальдегид: строение, физические и химические свойства (реакции окисления и восстановления, качественные реакции), получение и применение.

Одноосновные предельные карбоновые кислоты. Муравьиная и уксусная кислоты: строение, физические и химические свойства (свойства, общие для класса кислот, реакция этерификации), получение и применение. Стеариновая и олеиновая кислоты как представители высших карбоновых кислот. Мыла как соли высших карбоновых кислот, их моющее действие.

Сложные эфиры как производные карбоновых кислот. Гидролиз сложных эфиров. Жиры. Гидролиз жиров. Применение жиров. Биологическая роль жиров.

Углеводы: состав, классификация углеводов (моно-, ди- и полисахариды). Глюкоза – простейший моносахарид: особенности строения молекулы, физические и химические свойства (взаимодействие с гидроксидом меди(II), окисление аммиачным раствором оксида серебра(I), восстановление, брожение глюкозы), нахождение в природе, применение, биологическая роль. Фотосинтез. Фруктоза как изомер глюкозы.

Крахмал и целлюлоза как природные полимеры. Строение крахмала и целлюлозы. Физические и химические свойства крахмала (гидролиз, качественная реакция с иодом).

Экспериментальные методы изучения веществ и их превращений: проведение, наблюдение и описание демонстрационных опытов: горение спиртов, качественные реакции одноатомных спиртов (окисление этанола оксидом меди(II)), многоатомных спиртов (взаимодействие глицерина с гидроксидом меди(II)), альдегидов (окисление аммиачным раствором оксида серебра(I) и гидроксидом меди(II), взаимодействие крахмала с иодом), проведение практической работы: свойства раствора уксусной кислоты.

Расчётные задачи.

Вычисления по уравнению химической реакции (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции).

Азотсодержащие органические соединения.

Аминокислоты как амфотерные органические соединения. Физические и химические свойства аминокислот (на примере глицина). Биологическое значение аминокислот. Пептиды.

Белки как природные высокомолекулярные соединения. Первичная, вторичная и третичная структура белков. Химические свойства белков: гидролиз, денатурация, качественные реакции на белки.

Экспериментальные методы изучения веществ и их превращений: наблюдение и описание демонстрационных опытов: денатурация белков при нагревании, цветные реакции белков.

Высокомолекулярные соединения

Основные понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса. Основные методы синтеза высокомолекулярных соединений – полимеризация и поликонденсация.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами природных и искусственных волокон, пластмасс, каучуков.

Межпредметные связи.

Реализация межпредметных связей при изучении органической химии в 10 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: явление, научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, измерение, эксперимент, моделирование.

Физика: материя, энергия, масса, атом, электрон, молекула, энергетический уровень, вещество, тело, объём, агрегатное состояние вещества, физические величины и единицы их измерения.

Биология: клетка, организм, биосфера, обмен веществ в организме, фотосинтез, биологически активные вещества (белки, углеводы, жиры, ферменты).

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: пищевые продукты, основы рационального питания, моющие средства, лекарственные и косметические препараты, материалы из искусственных и синтетических волокон.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ХИМИИ НА БАЗОВОМ УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

ФГОС СОО устанавливает требования к результатам освоения обучающимися программ среднего общего образования (личностным, метапредметным и предметным). Научно-методической основой для разработки планируемых результатов освоения программ среднего общего образования является системно-деятельностный подход.

В соответствии с системно-деятельностным подходом в структуре личностных результатов освоения предмета «Химия» на уровне среднего общего образования выделены следующие составляющие:

осознание обучающимися российской гражданской идентичности – готовности к саморазвитию, самостоятельности и самоопределению;

наличие мотивации к обучению;

целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций базовой науки химии;

готовность и способность обучающихся руководствоваться в своей деятельности ценностно-смысловыми установками, присущими целостной системе химического образования;

наличие правосознания экологической культуры и способности ставить цели и строить жизненные планы.

Личностные результаты освоения предмета «Химия» достигаются в единстве учебной и воспитательной деятельности в соответствии с гуманистическими, социокультурными, духовно-нравственными ценностями и идеалами российского гражданского общества, принятыми в обществе нормами и правилами поведения, способствующими процессам самопознания, саморазвития и нравственного становления личности обучающихся.

Личностные результаты освоения предмета «Химия» отражают сформированность опыта познавательной и практической деятельности обучающихся по реализации принятых в обществе ценностей, в том числе в части:

1) гражданского воспитания:

осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;

представления о социальных нормах и правилах межличностных отношений в коллективе;

готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;

способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;

2) патриотического воспитания:

ценностного отношения к историческому и научному наследию отечественной химии:

уважения к процессу творчества в области теории и практического применения химии, осознания того, что достижения науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда учёных и практиков;

интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;

3) духовно-нравственного воспитания:

нравственного сознания, этического поведения;

способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

готовности оценивать своё поведение и поступки своих товарищей с позиций нравственных и правовых норм и осознание последствий этих поступков;

4) формирования культуры здоровья:

понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;

соблюдения правил безопасного обращения с веществами в быту, повседневной жизни и в трудовой деятельности;

понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

5) трудового воспитания:

коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);

интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;

уважения к труду, людям труда и результатам трудовой деятельности;

готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учётом личностных интересов, способностей к химии, интересов и потребностей общества;

6) экологического воспитания:

экологически целесообразного отношения к природе, как источнику существования жизни на Земле;

понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;

осознания необходимости использования достижений химии для решения вопросов рационального природопользования;

активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

7) ценности научного познания:

сформированности мировоззрения, соответствующего современному уровню развития науки и общественной практики;

понимания специфики химии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убеждённости в особой значимости химии для современной цивилизации: в её гуманистической направленности и важной роли в создании новой базы материальной культуры, решении глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена общества;

естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;

интереса к познанию и исследовательской деятельности;

готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;

интереса к особенностям труда в различных сферах профессиональной деятельности. **МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ**

Метапредметные результаты освоения учебного предмета «Химия» на уровне среднего общего образования включают:

значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);

универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;

способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Овладение универсальными учебными познавательными действиями:

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, всесторонне её рассматривать;

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать при освоении знаний приёмы логического мышления — выделять характерные признаки понятий и устанавливать их взаимосвязь, использовать соответствующие понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций; устанавливать причинно-следственные связи между изучаемыми явлениями;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять в процессе познания, используемые в химии символические (знаковые) модели, преобразовывать модельные представления — химический знак (символ) элемента, химическая формула, уравнение химической реакции — при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.

2) базовые исследовательские действия:

владеть основами методов научного познания веществ и химических реакций;

формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;

владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчёт о проделанной работе;

приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

3) работа с информацией:

ориентироваться в различных источниках информации (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;

формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определённого типа;

приобретать опыт использования информационно-коммуникативных технологий и различных поисковых систем;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);

использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;

использовать и преобразовывать знаково-символические средства наглядности.

Овладение универсальными коммуникативными действиями:

задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;

выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта и формулировать выводы по результатам проведённых исследований путём согласования позиций в ходе обсуждения и обмена мнениями.

Овладение универсальными регулятивными действиями:

самостоятельно планировать и осуществлять свою познавательную деятельность, определяя её цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учётом получения новых знаний о веществах и химических реакциях;

осуществлять самоконтроль своей деятельности на основе самоанализа и самооценки. **ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ**

Предметные результаты освоения курса «Органическая химия» отражают:

сформированность представлений о химической составляющей естественно-научной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает: основополагающие понятия (химический элемент, атом, электронная оболочка атома, молекула, валентность, электроотрицательность, химическая связь, структурная формула (развёрнутая и сокращённая), моль, молярная масса, молярный объём, углеродный функциональная группа, радикал, изомерия, изомеры, гомологический ряд, гомологи, углеводороды, кислород и азотсодержащие соединения, мономер, полимер, структурное звено, высокомолекулярные соединения); теории и законы (теория строения органических веществ А. М. Бутлерова, закон сохранения массы веществ); закономерности, символический язык химии; мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших органических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании состава, строения и превращений органических соединений;

сформированность умений использовать химическую символику для составления молекулярных и структурных (развёрнутой, сокращённой) формул органических веществ и уравнений химических реакций, изготавливать модели молекул органических веществ для иллюстрации их химического и пространственного строения;

сформированность умений устанавливать принадлежность изученных органических веществ по их составу и строению к определённому классу/группе соединений (углеводороды, кислород и азотсодержащие соединения, высокомолекулярные соединения), давать им названия по систематической номенклатуре (IUPAC), а также приводить тривиальные названия отдельных органических веществ (этилен, пропилен, ацетилен, этиленгликоль, глицерин, фенол, формальдегид, ацетальдегид, муравьиная кислота, уксусная кислота, олеиновая кислота, стеариновая кислота, глюкоза, фруктоза, крахмал, целлюлоза, глицин);

сформированность умения определять виды химической связи в органических соединениях (одинарные и кратные);

сформированность умения применять положения теории строения органических веществ А. М. Бутлерова для объяснения зависимости свойств веществ от их состава и строения; закон сохранения массы веществ;

сформированность умений характеризовать состав, строение, физические и химические свойства типичных представителей различных классов органических веществ (метан, этан, этилен, пропилен, ацетилен, бутадиен-1,3, метилбутадиен-1,3, бензол, метанол, этанол, этиленгликоль, глицерин, фенол, ацетальдегид, муравьиная и уксусная кислоты, глюкоза, крахмал, целлюлоза, аминоуксусная кислота), иллюстрировать генетическую связь между ними уравнениями соответствующих химических реакций с использованием структурных формул;

сформированность умения характеризовать источники углеводородного сырья (нефть, природный газ, уголь), способы их переработки и практическое применение продуктов переработки;

сформированность умений проводить вычисления по химическим уравнениям (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции);

сформированность умений владеть системой знаний об основных методах научного познания, используемых в химии при изучении веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование), использовать системные химические знания для принятия решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (превращения органических веществ при нагревании, получение этилена и изучение его свойств, качественные реакции органических веществ, денатурация белков при нагревании, цветные реакции белков) в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой информации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых органических веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефно-точечную систему обозначений Л. Брайля для записи химических формул.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

	Наименование разделов и тем программы	Количество ч	асов	Электронные	
№ п/п		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Раздел 1.	Теоретические основы органической хим	мии			
1.1	Предмет органической химии. Теория строения органических соединений А. М. Бутлерова	3			
Итого по	разделу	3			
Раздел 2.	Углеводороды				
2.1	Предельные углеводороды — алканы	2			
2.2	Непредельные углеводороды: алкены, алкадиены, алкины	6		1	
2.3	Ароматические углеводороды	2			
2.4	Природные источники углеводородов и их переработка	3	1		
Итого по	Итого по разделу				
Раздел 3.	Кислородсодержащие органические соед	инения			
3.1	Спирты. Фенол	3			
3.2	Альдегиды. Карбоновые кислоты. Сложные эфиры	7		1	
3.3	Углеводы	3	1		
Итого по разделу		13			

Раздел	Раздел 4. Азотсодержащие органические соединения							
4.1	Амины. Аминокислоты. Белки	3						
Итого по разделу		3						
Раздел	Раздел 5. Высокомолекулярные соединения							
5.1	Пластмассы. Каучуки. Волокна	2						
Итого по разделу		2						
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		34	2	2				

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

	Тема урока	Количест	во часов		Электронные	
№ п/п		Всего	Контрольные работы	Практические работы	Дата изучения	цифровые образовательные ресурсы
1	Предмет органической химии, её возникновение, развитие и значение	1				
2	Теория строения органических соединений А. М. Бутлерова, её основные положения	1				
3	Представление о классификации органических веществ. Номенклатура (систематическая) и тривиальные названия органических веществ	1				
4	Алканы: состав и строение, гомологический ряд	1				
5	Метан и этан — простейшие представители алканов	1				
6	Алкены: состав и строение, свойства	1				
7	Этилен и пропилен — простейшие представители алкенов	1				
8	Практическая работа № 1. «Получение этилена и изучение его свойств»	1		1		
9	Алкадиены. Бутадиен-1,3 и метилбутадиен-1,3. Получение синтетического каучука и резины	1				
10	Алкины: состав и особенности строения, гомологический ряд.	1				

	Ацетилен — простейший				
	представитель алкинов				
11	Вычисления по уравнению химической реакции	1			
12	Арены: бензол и толуол. Токсичность аренов	1			
13	Генетическая связь углеводородов, принадлежащих к различным классам	1			
14	Природные источники углеводородов: природный газ и попутные нефтяные газы, нефть и продукты её переработки	1			
15	Природные источники углеводородов: природный газ и попутные нефтяные газы, нефть и продукты её переработки	1			
16	Контрольная работа по разделу «Углеводороды»	1	1		
17	Предельные одноатомные спирты: метанол и этанол. Водородная связь	1			
18	Многоатомные спирты: этиленгликоль и глицерин	1			
19	Фенол: строение молекулы, физические и химические свойства, применение	1			
20	Альдегиды: формальдегид и ацетальдегид. Ацетон	1			
21	Одноосновные предельные карбоновые кислоты: муравьиная и уксусная	1			
22	Практическая работа № 2. «Свойства раствора уксусной кислоты»	1		1	

		Т			
23	Стеариновая и олеиновая кислоты, как представители высших карбоновых кислот	1			
24	Мыла как соли высших карбоновых кислот, их моющее действие	1			
25	Сложные эфиры как производные карбоновых кислот. Гидролиз сложных эфиров	1			
26	Жиры: гидролиз, применение, биологическая роль жиров	1			
27	Углеводы: состав, классификация. Важнейшие представители: глюкоза, фруктоза, сахароза	1			
28	Крахмал и целлюлоза как природные полимеры	1			
29	Контрольная работа по разделу «Кислородсодержащие органические соединения»	1	1		
30	Амины: метиламин и анилин	1			
31	Аминокислоты как амфотерные органические соединения, их биологическое значение. Пептиды	1			
32	Белки как природные высокомолекулярные соединения	1			
33	Основные понятия химии высокомолекулярных соединений	1			
34	Основные методы синтеза высокомолекулярных соединений. Пластмассы, каучуки, волокна	1			

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО	24	2	2	
ПРОГРАММЕ	34	2	2	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

1. Химия, 10 класс/ Габриелян О.С., Общество с ограниченной ответственностью «ДРОФА»; Акционерное общество «Издательство «Просвещение»

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

- 1. О.С.Габриелян, Г.Г.Лысова «Химия Методическое пособие базовый уровень» М.: Дрофа 2022 год.
- 2. О.С.Габриелян, И.Г.Остроумов, «Общая химия в тестах, задачах, упражнениях. 11 класс» М.: Дрофа, 2023 год.
- 3. О.С.Габриелян, П.Н.Березкин, А.А.Ушакова «Химия 11 класс: Контрольные и проверочные работы к учебнику». М.: Дрофа, 2021 г.
- 4. О.С.Габриелян, Г.Г.Лысова, А.Г.Введенская «Химия 11 класс: Настольная книга для учителя». Часть 1 М.: Дрофа, 2019 год.
- 5. О.С.Габриелян, Г.Г.Лысова, А.Г.Введенская «Химия 11 класс: Настольная книга для учителя». Часть 2 М.: Дрофа, 2022 год.
- 6. О.С.Габриелян, П.В.Решетов, И.Г.Остроумова «Задачи по химии и способы их решения» М.: «Дрофа», 2021год.
- 7. В.Г. Денисова «Химия 11 класс поурочные планы по учебнику О.С.Габриеляна, Г.Г.Лысовой» Волгоград» Учитель 2018год.
- 8. М.А.Рябова, У.Ю.Невская, Р.В.Линко «Тесты по химии 11 класс», М.: Экзамен, 2019г.
- 9. 9. О.С.Габриелян, И.Г.остроумов «Химический эксперимент в школе 11 класс»; М.: Дрофа. 2019 год.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

http://www.chemnet.ru Газета «Химия» и сайт для учителя «Я иду на урок химии» 2 http://him.1september.ru Единая коллекция ЦОР: Предметная коллекция «Химия» http://school-collection.edu.ru/collection/chemistry Естественно-научные эксперименты: химия. Коллекция Российского общеобразовательного портала http://experiment.edu.ru АЛХИМИК: сайт Л.Ю. Аликберовой

http://www alhimik.ru Всероссийская олимпиада школьников по химии

http://chem.rusolymp.ru Органическая химия: электронный учебник для средней школы

http://www.chemistry.ssu.samara.ru Основы химии: электронный учебник

http://www hemi.nsu.ru Открытый колледж: Химия

http://www.chemistry.ru Дистанционная олимпиада по химии: телекоммуникационный

образовательный проект