Приложение 2.1.10 к ООП ППССЗ кническое обслуживание и ремонт

23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей.

Министерство образования и науки Хабаровского края Краевое государственное бюджетное профессиональное образовательное учреждение «Хорский агропромышленный техникум»

УТВЕРЖДАЮ
Заместитель директора по УР
_____ Мысова Е.И.
«17» июня 2022 г.

ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.10 Физика

Профиль подготовки: технологический

Специальность: 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов

автомобилей

Форма обучения: очная

Программа учебной дисциплины разработана в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259

Организация-разработчик: Краевое государственное бюджетное профессиональное образовательное учреждение «Хорский агропромышленный техникум»

Разработчик: $B. \Phi. Дмитриева$, зав. кафедрой физики Московского государственного университета технологий и управления К. Γ . Разумовского, кандидат технических наук, профессор

Составитель: Овчинникова Е.А., преподаватель физики КГБ ПОУ ХАТ

Программа учебной дисциплины рассмотрена и согласована на заседании ПЦК гуманитарного и естественнонаучного цикла.

Протокол № 9 от «15» мая 2	2022 г
Председатель	/ Кайденко Н.Н.

КГБ ПОУ ХАТ Хабаровский край, р-он им Лазо, п. Хор ул. Менделеева 13 индекс: 682922

- 1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИ-ПЛИНЫ
- 5. КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИ-ПЛИНЫ

1.1. Область применения программы

Программа учебной дисциплины является частью основной образовательной программы подготовки специалистов среднего звена по специальности, 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей разработанной в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259).

1.2. Место дисциплины в структуре Учебная дисциплина относится к учебным дисциплинам естественнонаучного цикла

1.3. Цели и планируемые результаты освоения дисциплины

В результате освоения дисциплины обучающийся осваивает элементы компетенций:

Код ОК	Элементы сопутствующих освоению дисциплины компетенций
и ПМЛ	
OK 1.	Выбирать способы решения задач профессиональной деятельности, применитель-
	но к различным контекстам.
OK 2.	Осуществлять поиск, анализ и интерпретацию информации, необходимой для вы-
	полнения задач профессиональной деятельности.
OK 3.	Планировать и реализовывать собственное профессиональное и личностное раз-
	витие.
OK 4.	Работать в коллективе и команде, эффективно взаимодействовать с коллегами, ру-
	ководством, клиентами.
OK 5.	Осуществлять устную и письменную коммуникацию на государственном языке с
	учетом особенностей социального и культурного контекста.
ОК 9.	Использовать информационные технологии в профессиональной деятельности.
Личность	ные результаты
ЛР 1	Чувство гордости и уважения к истории и достижениям отечественной физиче-
	ской науки; физически грамотное поведение в профессиональной деятельности и
	быту при обращении с приборами и устройствами
ЛР 2	Готовность к продолжению образования и повышения квалификации в избранной
	профессиональной деятельности и объективное осознание роли физических ком-
	петенций в этом
ЛР 3	Умение использовать достижения современной физики и физических технологий
	для повышения собственного интеллектуального развития в избранной професси-
	ональной деятельности
$\Pi P 4$	Умение самостоятельно добывать новые для себя физические знания, используя
	для этого доступные источники информации
ЛР 5	Умение выстраивать конструктивные взаимоотношения в команде по решению
	общих задач
ЛР 6	Умение управлять своей познавательной деятельностью, проводить самооценку
	уровня собственного интеллектуального развития
Метапред	метные результаты

МПР 1	Использование различных видов познавательной деятельности для решения физи-
	ческих задач, применение основных методов познания (наблюдения, описания,
	измерения, эксперимента) для изучения различных сторон окружающей действи-
	тельности
МПР 2	Использование основных интеллектуальных операций: постановки задачи, фор-
	мулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации,
	выявления причинно-следственных связей, поиска аналогов, формулирования вы-
	водов для изучения различных сторон физических объектов, явлений и процессов,
	с которыми возникает необходимость сталкиваться в профессиональной сфере
МПР 3	Умение генерировать идеи и определять средства, необходимые для их реализа-
	ции
МПР 4	Умение использовать различные источники для получения физической информа-
	ции, оценивать ее достоверность
МПР 5	Умение анализировать и представлять информацию в различных видах
МПР 6	Умение публично представлять результаты собственного исследования, вести
	дискуссии, доступно и гармонично сочетая содержание и формы представляемой
	информации
	ые результаты
ПР 1	Сформированность представлений о роли и месте физики в современной научной
	картине мира; понимание физической сущности наблюдаемых во Вселенной яв-
	лений, роли физики в формировании кругозора и функциональной грамотности
	человека для решения практических задач
ПР 2	Владение основополагающими физическими понятиями, закономерностями, зако-
	нами и теориями; уверенное использование физической терминологии и символи-
	ки
ПР 3	Владение основными методами научного познания, используемыми в физике:
	наблюдением, описанием, измерением, экспериментом
ПР 4	Умения обрабатывать результаты измерений, обнаруживать зависимость между
	физическими величинами, объяснять полученные результаты и делать выводы
ПР 5	Сформированность умения решать физические задачи
ПР 6	Сформированность умения применять полученные знания для объяснения усло-
	вий протекания физических явлений в природе, профессиональной сфере и для
	принятия практических решений в повседневной жизни
ПР 7	Сформированность собственной позиции по отношению к физической информа-
	ции, получаемой из разных источников

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	117
Аудиторная учебная работа (обязательные учебные занятия) (всего)	117
в том числе:	
теоретические занятия	81

лабораторные занятия (если предусмотрено)	6
практические занятия (если предусмотрено)	24
контрольные работы (если предусмотрено)	4
Промежуточная аттестация в форме дифференцированного зачета	2

2.2 Тематический план

Наименование разделов/тем	Вид учебной работы			Всего	
	TO	ЛПЗ	ПЗ	КР	часов
1. Механика	13	1	8	1	23
2. Молекулярная физика	23	1	6	1	31
3. Электродинамика	36	4	8	1	49
4. Квантовая физика	9		2	1	12
Дифференцированный зачет				2	2
ВСЕГО	81	6	24	6	117

2.3. Содержание учебной дисциплины

Наименование раз- делов и тем	Содержание учебного материала (дидактические единицы), лабораторные и практические занятия, внеаудиторная (самостоятельная) учебная работа обучающихся, курсовая работа (проект) (если предусмотрены)	Объем часов	Осваиваемые элементы компе- тенций,
1 D1	2 Maria	3	4
Раздел 1. Тема 1.1 Механика	Механика Характеристики механического движения: перемещение, скорость, ускорение. Уравнение равномерного прямолинейного движения точки. Виды движения. Относительность механического движения. Системы отсчета. Основное утверждение механики. Материальная точка. Сила. Силы в природе: упругость, трение, сила тяжести, вес. Законы динамики Ньютона. Закон всемирного тяготения. Закон сохранения импульса. Энергия. Кинетическая и потенциальная энергия. Закон сохранения механической энергии. Свободные и вынужденные колебания. Резонанс. Механические колебания. Амплитуда, период, частота, фаза колебаний. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование Лабораторная работа №1 Определение ускорения свободного падения при помощи маятника Практические занятия №1 Решение задач	13	ЛР 1,3,4,5,6 МПР 1,2,3,4,5,6 ПР 1,2,3,4,5,6,7 ОК 1-5,9
	Контрольные работы №1 Темы проектов: Ультразвук (получение, свойства, применение). Характеристики механических колебаний. Виды механического движения. Силы трения.	1	
Раздел 2	Молекулярная физика		
Тема 2.1 Основные положения МКТ	Основные положения молекулярно-кинетической теории. Масса молекул. Количество вещества. Броуновское движение. Силы взаимодействия молекул. Строение газообразных, жидких и твердых тел. Идеальный газ в МКТ. Основное уравнение МКТ. Температура и тепловое равновесие. Температура — мера средней кинетической энергии. Практические занятия №2 Решение задач Темы проектов: Опыты Перрена. Температурные шкалы.	2	ЛР 1-6 МПР 1-6 ПР 1,2,5,6,7 ОК 1-5,9
Тема 2.2 Свойства газов, жидкостей и их взаимные превращения	Уравнение состояния идеального газа. Газовые законы. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха Практические занятия №3 Решение задач	6	ЛР 1-6 МПР 1,4,5 ПР 1,2,5,6,7 ОК 1-5,9
Тема 2.3 Строение и	Кристаллические и аморфные тела. Их строение и свойства. Виды деформаций твердых тел.	4	ЛР 1-6

свойства твердых тел	Лабораторная работа №2 Определение модуля упругости резины при деформации растяжения	1	МПР 1,2,3,4,5,6
	Практические занятия №4 Решение задач	1	ПР 1,2,5,6,7
	Темы проектов: Композиты. Применение жидких кристаллов в промышленности		OK 1-5,9
Тема 2.4 Основы тер-	Внутренняя энергия и способы её изменения. Работа газа. Количество теплоты. Удельная тепло-	6	ЛР 1-6
модинамики	емкость. Первый закон термодинамики. Применение первого закона термодинамики к различным		МПР 1-6
	процессам		ПР 1-7
	Практические занятия №5 Решение задач	1	ОК 1-5,9
	Контрольная работа №2	1	
	Темы проектов: Тепловые двигатели.		
Раздел 3	Электродинамика		
Гема 3.1 Электроста-	Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда.	5	ЛР 1-6
гика	Электризация тел. Закон Кулона. Электрическое поле. Напряженность поля. Потенциал поля.		МПР 1-6
	Разность потенциалов. Связь между напряженностью электростатического поля и разностью по-		ПР 1-7
	тенциалов. Проводники и диэлектрики в электрическом поле. Электрическая емкость. Конденса-		ОК 1-5,9
	тор.		
	Лабораторная работа №3 Определение электроемкости конденсатора	1	
	Практические занятия №6 Решение задач	1	
	Темы проектов: Электризация тел. Проводники и диэлектрики.		
Гема 3.2 Законы по-	Электрический ток. Сила тока. Условия, необходимые для существования электрического тока.	7	ЛР 1-6
стоянного тока	Закон Ома для участка цепи. Сопротивление. Последовательное и параллельное соединения про-		МПР 1-6
	водников. Смешанное соединение проводников. Работа и мощность постоянного тока. Электро-		ПР 1-7
	движущая сила. Закон Ома для полной цепи.		ОК 1-5,9
	Лабораторная работа №4 Измерение ЭДС и внутреннего сопротивления источника тока.	1	
	Практические занятия №7 Решение задач	4	
	Темы проектов: Схемы различных соединений 4 проводников. Использование электроэнергии в		
	транспорте.		
Гема 3.3 Электриче-	Электрическая проводимость различных веществ. Электронная проводимость металлов. Сверх-	5	ЛР 1-6
ский ток в различных	проводимость. Электрический ток в полупроводниках. Электрический ток в вакууме. Электриче-		МПР 2,3,4,5,6
средах	ский ток в жидкостях. Электрический ток в газах. Несамостоятельный и самостоятельный разря-		ПР 1,2,6,7

	ды. Плазма.		OK 1-5,9
	Темы проектов: Акустические свойства полупроводников. Электрические разряды на службе че-		
	ловека. Молния – газовый разряд в природных условиях. Открытие и применение высокотемпе-		
	ратурной сверхпроводимости. Плазма – четвертое состояние вещества. Пьезоэлектрический эф-		
	фект и его применение.		
Тема 3.4 Магнитное	Магнитное поле и его свойства. Вектор магнитной индукции. Сила Ампера. Применение закона	8	ЛР 1-6
поле	Ампера. Действие магнитного поля на движущийся заряд. Сила Лоренца. Магнитный поток. Яв-		МПР 1-6
	ление электромагнитной индукции и закон электромагнитной индукции Фарадея. Направление		ПР 1-7
	индукционного тока. Правило Ленца Вихревое электрическое поле. ЭДС индукции в движущихся		ОК 1-5,9
	проводниках. Самоиндукция. Индуктивность. Энергия магнитного поля тока.		
	Лабораторная работа №5 Изучение явления электромагнитной индукции.	1	
	Практические занятия №8 Решение задач	1	
	Контрольная работа №3	1	
	Темы проектов: Магнитные свойства вещества.		
Тема 3.5 Электромаг-	Свободные и вынужденные электромагнитные колебания. Колебательный контур. Период сво-	8	ЛР 1-6
нитные колебания и	бодных электрических колебаний. Переменный электрический ток. Действующие значения силы		МПР 1-6
волны	тока и напряжения Конденсатор и катушка индуктивности в цепи переменного тока. Электриче-		ПР 1-7
	ский резонанс. Трансформатор. Производство и использование электроэнергии. Виды альтерна-		ОК 1-5,9
	тивной энергии. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных		
	волн. Принципы радиосвязи и телевидения.		
	Практические занятия №9 Решение задач	2	
	Темы проектов: Альтернативная энергетика. Развитие средств связи и радио. Электрический ре-		
	зонанс		
Тема 3.6 Световые	Закон отражения света. Закон преломления света. Свет как электромагнитная волна. Интерферен-	3	ЛР1-6
явления	ция света. Дифракция света. Дисперсия света. Поляризация света. Различные виды электромаг-		МПР 1-6
	нитных излучений, их свойства и практические применения. Спектры и спектральные аппараты.		ПР 1-4,6,7
	Виды спектров. Спектральный анализ.		OK 1-5,9
	Лабораторная работа №6 Изучение интерференции и дифракции света	1	
	Темы проектов: Виды электромагнитных излучений и их применение. Спектры и спектральные		
	аппараты. Голография и её применение. Оптические явления в природе.		

Раздел 4	Квантовая физика		
Тема 4.1 Строение	Фотоэффект. Технические устройства, основанные на использовании фотоэффекта. Фотон. Вол-	9	ЛР 1-7
атома и квантовая фи-	новые и корпускулярные свойства света. Строение атома: планетарная модель и модель Бора.		МПР 1-6
зика	Принцип действия и использование лазера. Методы наблюдения и регистрации элементарных ча-		ПР 1,2,5,6,7
	стиц. Альфа-, бета- и гамма-излучения. Строение атомного ядра. Ядерные реакции. Ядерный ре-		OK 1-5,9
	актор. Ядерная энергетика.		
	Практические занятия №10 Решение задач	2	
	Контрольная работа №4	1	
	Темы проектов: Ядерная энергетика: плюсы и минусы. Конструкция и виды лазеров. Применение		
	радиоактивных изотопов. Лазерные технологии и их использование. Нуклеосинтез во Вселенной.		
	Управляемый термоядерный синтез. Ускорители заряженных частиц.		
	Дифференцированный зачёт	2	
	Всего часов	117	

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Материально-техническое обеспечение

Реализация программы дисциплины предусматривает наличие учебного кабинета физики.

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

3.2. Информационное обеспечение обучения

Перечень учебных изданий, Интернет-ресурсов, дополнительной литературы

Интернет-ресурсы:

- 1. http://www.pomogala.ru/fizika/fizika myakishev 10.html
- 2. http://www.pomogala.ru/fizika/fizika_myakishev_11.html
- 3. http://www.otbet.ru/book/class-11/fizika/uchebnik-myakishev/
- 4. <u>www.booksgid.com</u> (Books Gid. Электронная библиотека)
- 5. <u>www.window.edu.ru</u> (Единое окно доступа к образовательным ресурсам)
- 6. <u>www.st-books.ru</u> (Лучшая учебная литература)
- 7. <u>www.alleng.ru/edu/phys.htm</u> (Образовательные ресурсы интернета физика)

Электронные издания:

- 1. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Санкт-Петербург,. Режим доступа: http://e.lanbook.com/;
- 2. Электронно-библиотечная система «Университетская библиотека онлайн [Электронный ресурс]. Москва, Режим доступа: http://biblioclub.ru/;
- 3. Издательский центр «Академия» [Электронный ресурс]: сайт. Москва, Режим доступа: http://www.academia-moscow.ru/;
- 4. Электронная библиотечная система Издательства «Проспект Науки» [Электронный ресурс]. Санкт-Петербург, Режим доступа: http://www.prospektnauki.ru/ebooks/index-usavm.php;

3.3. Организация образовательного процесса

Реализация программы учебной дисциплины предусматривает выполнение обучающимися заданий для практических занятий с использованием персонального компьютера с лицензионным программным обеспечением и с подключением к информационноттелекоммуникационной сети «Интернет». Обучение проводится с применением системнодеятельностного подхода. На занятиях используются следующие инструменты обучения: кластер, глоссарий, денотатный граф, проект, таблица, тест и др.

Текущий контроль знаний и умений осуществляется в форме различных видов опросов на занятиях и во время инструктажа перед практическими занятиями, контрольных работ в виде решения задач. Текущий контроль освоенных умений осуществляется в виде экспертной оценки результатов выполнения практических работ.

Промежуточная аттестация обучающихся осуществляется в рамках освоения общепрофессионального цикла в соответствии с фондами оценочных средств, позволяющими оценить достижение запланированных результатов обучения. Завершается освоение программы дифференцированным зачётом, включающем как оценку теоретических знаний, так и практических умений.

При реализации образовательной программы техникум применяет электронное обучение и дистанционные образовательные технологии.

3.4. Кадровое обеспечение образовательного процесса

Реализация программы учебной дисциплины обеспечивается педагогическим работником техникума, имеющим высшее образование, высшую категорию, стаж работы более 30 лет, деятельность педагога связана с направленностью реализуемой учебной дисциплины.

Квалификация педагогического работника техникума отвечает квалификационным требованиям, указанным в профессиональных стандартах «Педагог профессионального обучения, профессионального образования и дополнительного профессионального образования».

Педагогические работники получают дополнительное профессиональное образование по программам повышения квалификации.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических и лабораторных занятий, контрольных работ, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обуче-	Основные показатели оценки результата	Формы и ме-		
ния(освоенные умения,		тоды оценки		
усвоенные знания				
знать:		Экспертная		
- о роли и месте физики в со-	- осуществляет поиск, анализирует и интер-	оценка выпол-		
временной научной картине	претирует информацию, необходимую для	нения практи-		
мира; понимание физической	выполнения физических задач.	ческого зада-		
сущности наблюдаемых во	- применение основополагающих физиче-	ния.		
Вселенной явлений; роль фи-	ских понятий, закономерностей, законов и			
зики в формировании круго-	теорий;	Тестирование,		
зора и функциональной гра-	- уверенное использование физической тер-	физический		
мотности человека для реше-	минологии и символики	диктант, колло-		
ния практических задач		квиум, индиви-		
- значение физической науки		дуальная работа		
для решения задач, возника-		по карточкам,		
ющих в теории и практике;		групповая ра-		
широту и в то же время огра-		бота, практиче-		
ниченность применения фи-		ская работа,		
зических методов к анализу и		подборка задач,		
исследованию процессов и		составление		
явлений в природе и обще-		схем, таблиц,		
стве;		глоссариев,		
- универсальный харак-		кластеров		
тер законов логики физиче-		_		
ских рассуждений, их приме-		Экспертная		
нимость во всех областях че-		оценка выпол-		
ловеческой деятельности;		нения кон-		
уметь:	- демонстрирует различные способы решения	трольной рабо-		
- решать задачи по известным	физических задач и задач в профессиональ-	I ТЫ.		
формулам и правилам преоб-	ной деятельности;	Экспертная		
разования буквенных выра-	- применение полученных знаний при объ-	оценка выпол-		

жений, включающих степени - вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- делать выводы на основе экспериментальных данных;
- применять полученные знания для решения физических задач;
- определять характер физического процесса по графику, таблице;

яснении условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни

- демонстрация способов прогнозирования, анализа и оценки последствий бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности
- применение исследовательских методов и анализа разнообразных физических явлений и свойств объектов,
- объяснение принципов работы и характеристик приборов и устройств,
- объяснение связи основных космических объектов с геофизическими явлениями;
- выполнение простейших вычислений при решении задач
- выполнение преобразований формул;
- составление соответствий
- выполнение перевода единицы величин в систему СИ
- объяснение природных явлений с точки зрения знания законов и определений физики
- демонстрация построений графиков зависимостей и объяснение этих зависимостей

нения творческих заданий, проектов, презентаций, составление кроссвордов.

5. КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Паспорт контрольно-оценочных средств учебной дисциплины

5.1.1 Область применения

Комплект контрольно-оценочных средств разработан в соответствии с программой учебной дисциплины ОУД.10 Физика

5.1.2 Описание процедуры оценки и системы оценивания результатов освоения программы учебной дисциплины

Текущая аттестация обучающихся — оценка знаний и умений проводится постоянно с помощью контрольных работ, по результатам самостоятельной работы обучающихся с использованием следующих методов:

Наименование оценочного средства	Краткая характеристика оценочного сред- ства	Представление оце- ночного средства в фонде
Контрольная ра-	Средство проверки умений применять полу-	Комплект контроль-
бота	ченные знания для решения задач определен-	ных заданий по вари-
	ного типа по теме или разделу	антам
Сообщение, ре-	Продукт самостоятельной работы студента,	Темы проектов
ферат, презента-	представляющий собой публичное выступление	
ции, проект	по представлению полученных результатов ре-	

	шения определенной учебно-практической те-	
	МЫ	

5.1.3. Инструменты оценки результатов освоения программы учебной дисциплины Кодификатор требований

Код компе-	Наименова-	Текущий контроль	Промежуточная аттестация
тенций	ние раздела	• 1	ьно-оценочного средства
тенции	и темы	паименование контрол	вно-оценочного средства
ЛР 1-6,	Тема 1.1	Тест, задания на соответ-	дифференцированный зачет
MΠP – 1-6,		ствие, проект, диктант, кла-	
ПР 1-7, ОК		стер, глоссарий, таблица,	
1-5,9		контрольная работа	
	Тема 2.1	Проект, глоссарий, кластер,	дифференцированный зачет
		самостоятельная работа	
ЛР 1-6,	Тема 2.2	Проект, таблица, кластер,	дифференцированный зачет
МПР1,4,5,		глоссарий	
ПР 1,2,5,6,7,	Тема 2.3	Таблица, коллоквиум, про-	дифференцированный зачет
ОК 1-5,9		ект,	
ЛР 1-6, МПР	Тема 2.4	Кластер, таблица, проект	дифференцированный зачет
1-6, ПР 1-7,	Тема 3.1	Кластер, глоссарий, проект	дифференцированный зачет
ОК 1-5,9	Тема3.2	Кластер, глоссарий, проект,	дифференцированный зачет
		проверочная работа	
ЛР 1-6, МПР	Тема3.3	Проект, таблица	
2-6, ПР			
1,2,6,7, OK			
1-5,9			
ЛР 1-6, МПР	Тема 3.4	Кластер, глоссарий, проект,	дифференцированный зачет
1-6, ПР 1-7,		контрольная работа №2	
OK 1-5,9	Тема 3.5	Кластер, глоссарий, проект	дифференцированный зачет
ЛР 1-6, МПР	Тема 3.6	Глоссарий, проект	дифференцированный зачет
1-6, ПР			
1,4,6,7, ОК			
1-5,9			
ЛР 1-6, МПР	Тема 4.1	Проект, контрольная работа	дифференцированный зачет
1-6, ПР			
1,2,5,6, OK			
1-5,9			

5.2. Оценочные материалы для текущего (тематического) контроля

Контрольная работа №1 Вариант 1

Уровень А

- 1. Почему легче плыть, чем бежать по дну по пояс погруженным в воду? (2б)
- 2. Человек стоит в лифте. Указать и сравнить силы, действующие на человека в следующих случаях:
- а) лифт неподвижен б) лифт начинает движение вверх в) лифт движется вниз (3б) Уровень В

- 1. Сила 60 H сообщает телу ускорение 0.8 м/c^2 . Какая сила сообщит этому телу ускорение 2 м/c^2 ? (4 б)
- 2. Космический корабль массой 8 т приблизился к орбитальной космической станции массой 20 т на расстояние 100 м. Найти силу их взаимного притяжения. (4 б)

Вариант 2

Уровень А

- 1. Как движется поезд, если яблоко, упавшее со столика вагона в системе отсчета «Вагон»:
- а) движется по вертикали б) отклоняется при падении вперед в) отклоняется назад (2 б)
- 2. Зачем, ныряя с вышки, пловец стремится войти в воду в вертикальном, а не в горизонтальном положении? (3б)

Уровень В

- 1. С какой скоростью должна лететь хоккейная шайба массой 160 г, чтобы её импульс был равен импульсу пули массой 8 г, летящей со скоростью 600 м/с? (4б)
- 2. Порожний грузовой автомобиль массой 4 т начал движение с ускорением 0.3 м/c^2 . Какова масса груза, принятого автомобилем, если при той же силе тяги он трогается с места с ускорением 0.2 м/c^2 ? (4б)

Вариант 3

Уровень А

- 1. Что должен сделать водитель машины, подъезжая к крутому повороту? Почему водитель должен быть особенно внимательным в сырую погоду, во время листопада или при гололеде? (2 б)
- 2. С каким ускорением двигался при разбеге реактивный самолет массой 60 т, если сила тяги двигателей 90 кН? (3 б)

Уровень В

- 1. Космическая ракета при старте с поверхности Земли движется вертикально с ускорением 20 м/с². Найти вес летчика-космонавта массой 80 кг в кабине при старте ракеты (4б)
- 2. Два тела массами 400 г и 600 г двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с? (4б)

Вариант 4

Уровень А

- 1. В чем отличие массы от веса? (2б)
- 2. С какой скоростью автомобиль должен проходить середину выпуклого моста радиусом 40 м, чтобы пассажир на мгновение оказался в состоянии невесомости? (3б)

Уровень В

- 1. Тело массой 4 кг под действием некоторой силы приобрело ускорение 2 м/ c^2 . Какое ускорение приобретает тело массой 10 кг под действием такой же силы? (46)
- 2. Вагон массой 60 т подходит к неподвижной платформе со скоростью 0,3 м/с и ударяет её буферами, после чего платформа получает скорость 0,4 м/с. Какова масса платформы, если после удара скорость вагона уменьшилась до 0,2 м/с? (46)

Критерии оценивания: 12-13 баллов - «5» 10-11 баллов - «4» 7-9 баллов - «3»

Градация баллов:

1 балл – правильно записано условие задачи, т.е. все величины обозначены правильно, указаны единицы измерения

1 балл – если правильно выполнен перевод величин в систему СИ

1 балл – если правильно выбрана формула для решения задачи

1 балл – за вывод производной формулы

1 балл – если правильно произведены измерения

1 балл – за оформление задачи

1 балл – за правильное объяснение явления, физ. величины

Эталоны ответов к контрольной работе №1

	Вариант 1	Вариант 2	Вариант 3	Вариант 4
№ 1	Когда человек плывет,	А) равномерно	Снизить ско-	Масса-величина скаляр-
	на него действует сила	Б)равнозамедленно	рость. Т.к.	ная, измеряется в кг; вес-
	сопротивления воды,	В) равноускоренно	сила трения	сила, векторная, измеря-
	направленная против		уменьшается	ется в Ньютонах, вес мо-
	скорости тела. Модуль			жет изменяться при дви-
	силы сопротивления			жении тела с ускорением
	зависит от размеров,			вверх или вниз, а масса не
	формы, скорости дви-			изменяется
	жения тела			
№ 2	Р-вес, N – сила реак-	Чтобы уменьшить	$1,5 \text{ M/c}^2$	19,8 м/с
	ции опоры	площадь сопри-		
	A) P = N	косновения тела с		
	Б) P → N	водой, тем самым		
	B) P ⟨ N	уменьшить силу		
		сопротивлении		
		яводы		
№3	150 H	30 м/с	2384 H	0.8 m/c^2
№4	1,1·10 ⁻⁶ H	2000 кг	2 м/с	15000 кг

Контрольная работа №2

Вариант 1

Уровень А

1. Используя условия задачи, установите соответствия величин из левого столбца с их изменениями в правом столбце

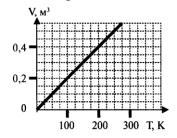
На аэрозольном баллончике написано: «...беречь от попадания прямых солнечных лучей и нагрева выше 50° C...» Это требование обусловлено тем, что при нагревании...

А. масса молекулы газа

1. увеличивается

Б. количество молекул

2. уменьшается


В. скорость молекул газа

3. Не изменяется

Г. давление газа

Уровень В

- 1. При охлаждении оловянной кружки массой 160 г до температуры 12°C выделилось 4 кДж энергии. Определите температуру олова до охлаждения. Удельная теплоемкость олова равна $250 \, \text{Дж/(кг*°C)}$
- 2. На рисунке изображена изобара кислорода. Какому давлению газа она соответствует, если масса кислорода 0,1 кг? Ответ округлите до целых и выразите в кПа.

3. Какое количество вещества содержится в алюминиевой детали массой 0,4 кг?

№ задачи	1	2	3	4				
Балл	4	6	6 6 5					
На оценку «5» необходим	ю набрать		20-21					
На оценку «4» необходим	ю набрать		15-19					
На оценку «3» необходим	ю набрать		11-14					

Вариант 2

Уровень А

1. Используя условия задачи, установите соответствия величин из левого столбца с их изменениями в правом столбце

На аэрозольном баллончике написано: «...беречь от попадания прямых солнечных лучей и нагрева выше 50° C...» Это требование обусловлено тем, что при нагревании...

 А. масса газа
 1) увеличивается

 Б. температура газа
 2)уменьшается

 В. давление газа
 3) не изменяется

Г. объем газа

Уровень В

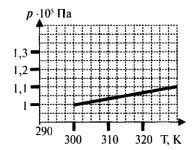
- 1. В цилиндре дизельного двигателя автомобиля КАМАЗ-5320 температура воздуха в начале такта сжатия была 50° C. Найти температуру воздуха в конце такта, если его объем уменьшается в 17 раз, а давление возрастает в 50 раз?
- 2. В цилиндре под поршнем изобарно охлаждают $0.01~{\rm m}^3$ газа от $50{\rm °C}$ до $0{\rm °C}$. Каков объем охлажденного газа?
- 3. Для плавления вещества массой 4 кг потребовалось 420 кДж энергии. Определите по этим данным удельную теплоту плавления данного вещества

№ задачи	1	2	3 4				
Балл	6	6	6 4 5				
На оценку «5» необходим	ю набрать		20-21				
На оценку «4» необходим	ю набрать		15-19				
На оценку «3» необходим	ю набрать		11-14				

Вариант 3

Уровень А

1. Используя условия задачи, установите соответствия величин из левого столбца с их изменениями в правом столбце


На аэрозольном баллончике написано: «...беречь от попадания прямых солнечных лучей и нагрева выше 50°С...» Это требование обусловлено тем, что при нагревании...

А. концентрация молекул
Б. температура газа
В. объем газа
З) уменьшается
3) не изменяется

Г. давление газа

Уровень В

- 1. Какой объем занимают 50 моль воды?
- 2. На рисунке показан график зависимости давления газа в запаянном сосуде от его температуры. Объем сосуда равен 0,4 м³. Какое количество вещества содержится в этом сосуде? Ответ округлите до целых.

3. Температура газа при изобарном процессе возросла на 150°C, а объем увеличился в 1,5 раза. Определите начальную температуру газа.

_								
задачи	1	2	3	4				
Балл	5	6	6 6 4					
На оценку «5» необходим	ю набрать		20-21					
На оценку «4» необходим	ю набрать		15-19					
На оценку «3» необходим	ю набрать		11-14					

Вариант 4

Уровень А

1. Используя условия задачи, установите соответствия величин из верхнего столбца с их изменениями в нижнем столбце

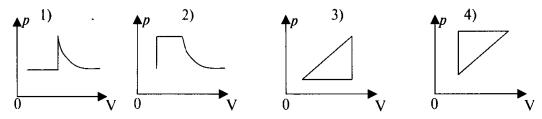
На аэрозольном баллончике написано: «...беречь от попадания прямых солнечных лучей и нагрева выше 50°С...» Это требование обусловлено тем, что при нагревании...

А. масса газа

1) увеличивается

Б. скорость молекул

2) уменьшается


В. количество молекул газа

3) не изменяется

Г. объем газа

Уровень В

- 1. Какой объем занимают 40 моль воды?
- 2. Абсолютная температура двух моль идеального газа уменьшилась в 2 раза, а объем увеличился в 2 раза. Как изменилось при этом давление газа?
- 3. Идеальный газ сначала нагревался при постоянном давлении, потом его давление увеличивалось при постоянном объеме, затем при постоянной температуре давление газа уменьшалось до первоначального значения. Какой из графиков в осях p-, V- соответствует этим изменениям состояния газа?

№ задачи	1	2	3	4			
Балл	4	4 6 5					
На оценку «5» необходим	ю набрать		20-21				
На оценку «4» необходим	ю набрать		15-19				
На оценку «3» необходим	10 набрать		11-14				

Градация баллов:

1 балл – правильно записано условие задачи, т.е. все величины обозначены правильно, указаны единицы измерения

1 балл – если правильно записано условие задачи

- 1 балл если правильно записана искомая величина
- 1 балл если правильно выполнен перевод величин в систему СИ
- 1 балл если правильно выбрана формула для решения задачи
- 1 балл если правильно преобразована формула
- 1 балл если правильно произведены измерения
- 1 балл за оформление задачи

Эталоны ответов к контрольной работе № 2

№ задания	Вариант 1	Вариант 2	Вариант 3	Вариант 4
1.	3311	950 K	9·10 м ³	$7,2\cdot 10^{-4} \text{ m}^3$
2.	112°C	$8,45 \cdot 10^{-3} \text{ m}^3$	12 моль	3133
3.	13кПа	3113	300 K	Уменьшилось в 4 раза
4.	14,8 моль	105000 Дж/кг	3131	Первый

Контрольная работа № 3

Вариант 1

Уровень А

1. При ремонте генератора переменного тока используется катушка с индуктивностью 0,6 Гн и силой тока 20 А. Какова энергия поля этой катушки? Как изменится энергия поля, если сила тока увеличится вдвое? (3 балла)

Уровень В

- 2. При подключении лампочки к батарее элементов с ЭДС 23,6 В вольтметр показал напряжение на лампочке 18,2 В, а амперметр силу тока 5,1 А. Каково внутреннее сопротивление батареи? (6 баллов)
- 3. Два одинаковых положительных заряда находятся на расстоянии 25 мм друг от друга. Они взаимодействуют с силой $2.7 \cdot 10^{-4}$ H. Вычислите заряд каждого шарика? (6 баллов)
- 4. Магнитный поток внутри контура, площадь поперечного сечения которого 60 см², равен 0,3 мВб. Найти индукцию поля внутри контура. Поле считать однородным и перпендикулярным плоскости проводника. (5 баллов)
- 5. Какой магнитный поток пронизывает плоскую поверхность площадью 50 см² при индукции поля 0,4 Тл, если эта поверхность перпендикулярна вектору индукции поля? (5 баллов)

Вариант 2

Уровень А

1. При ремонте генератора переменного тока используется катушка с индуктивностью 0,8 Гн и силой тока 30 А. Какова энергия поля этой катушки? Как изменится энергия поля, если сила тока уменьшится вдвое? (3 балла)

Уровень В

- 2. На каком расстоянии нужно расположить два заряда: $q_1=3,4\cdot 10^{-9}$ Кл и $q_2=4,2\cdot 10^9$ Кл, чтобы они отталкивались друг от друга с силой $3,7\cdot 10^{-5}$ Н? (6 баллов)
- 3. Конденсатор емкостью 96 мк Φ заряжается до напряжения 145 В за 0,54 с. Каково значение силы тока? (6 баллов)
- 4. Магнитный поток внутри контура, площадь поперечного сечения которого 40 см^2 , равен 0,6 мВб. Найти индукцию поля внутри контура. Поле считать однородным и перпендикулярным плоскости проводника (5 баллов)
- 5. С какой силой действует магнитное поле индукцией 8 мТл на проводник, в котором сила тока 40 A, если длина активной части проводника 0,2 м? Линии индукции и ток расположены под углом 30°. (5 баллов)

Вариант 3

Уровень А

1. При ремонте генератора переменного тока используется катушка с индуктивностью 0,6 Гн и силой тока 9 А. Какова энергия поля этой катушки? Как изменится энергия поля, если сила тока уменьшится втрое? (3 балла)

Уровень В

- 2. Обмотка реостата сопротивлением 48 Ом выполнена из стальной проволоки ($\rho = 0.12$ Ом·мм²/м) с площадью поперечного сечения 2 мм². Какова длина проволоки? (5 баллов)
- 3. Величина одного заряда $2,7 \cdot 10^{-5}$ Кл, другого $3,9 \cdot 10^{-4}$ Кл. Определите силу взаимодействия между ними, если они помещены в керосин ($\epsilon = 2$) на расстоянии 6 см. (6 баллов)
- 4. Магнитный поток внутри контура, площадь поперечного сечения которого 50 см², равен 0,4 мВб. Найти индукцию поля внутри контура. Поле считать однородным и перпендикулярным плоскости проводника. (6 баллов)
- 5. С какой силой действует магнитное поле индукцией 10 мТл на проводник, в котором сила тока 50 А, если длина активной части проводника 0,1 м? Линии индукции и ток взаимно перпендикулярны. (5 баллов)

Вариант 4

Уровень А

1. При ремонте генератора переменного тока используется катушка с индуктивностью 0,3 Гн и силой тока 50 А. Какова энергия поля этой катушки? Как изменится энергия поля, если сила тока увеличится вдвое? (3 балла)

Уровень В

- 2. На каком расстоянии нужно расположить два заряда: $q_1=5\cdot 10^{-9}$ Кл и $q_2=6\cdot 10^{-9}$ Кл, чтобы они отталкивались друг от друга с силой $12\cdot 10^{-5}$ Н? (6 баллов)
- 3. Конденсатор емкостью 80 мкФ заряжается до напряжения 400 В за 0,4 с. Каково значение силы тока? (6 баллов)
- 4. Магнитный поток внутри контура, площадь поперечного сечения которого 90 см^2 , равен 0,5 мВб. Найти индукцию поля внутри контура. Поле считать однородным и перпендикулярным плоскости проводника. (5 баллов)
- 5. Какой магнитный поток пронизывает плоскую поверхность площадью 80 см² при индукции поля 0,6 Тл, если эта поверхность перпендикулярна вектору индукции поля? (5 баллов) Критерии оценивания: На «5» 23-25 баллов На «4» 18-22 балла На «3» 13-17 баллов Градация баллов:
- 1 балл правильно записано условие задачи, т.е. все величины обозначены правильно, указаны единицы измерения
- 1 балл если правильно записана искомая величина
- 1 балл если правильно выполнен перевод величин в систему СИ
- 1 балл если правильно выбрана формула для решения задачи
- 1 балл если правильно преобразована формула
- 1 балл если правильно оформлена запись и произведены измерения
- 1 балл за оформление задачи

Эталоны ответов к контрольной работе №3

№ задания	Вариант 1	Вариант 1 Вариант 2		Вариант 4	
1.	1,06 Ом	0,059 м	800 м	0,047 м	
2.	4,3·10 ⁻⁹ Кл	0,026 A	13157 H	0,08 A	
3.	120 Дж, увеличится	24,3 Дж, умень-	360 Дж, умень-	375 Дж, увели-	
	в 4 раза	шится в 9 раз	шится в 4 раза	чится в 4 раза	

4.	50 мТл	0,15 Тл	0,08 Тл	0,056 Тл
5.	2 мВб	0,032 H	0,05H	4,8·10 ⁻³ Bб

Контрольная работа № 4

Вариант 1

Уровень А

- 1. Трансформаторы в механическом цеху применяют для:
- А. понижения или повышения напряжения Б. повышения или понижения частоты тока
- В. преобразования переменного тока в постоянный
- 2. Для работы электропаяльника используют ...
- А. постоянный ток Б. переменный ток В. постоянный и переменный ток
- 3. При проведении электропроводки в ремонтных мастерских используют чаще всего...
- А. параллельное соединение
- Б. последовательное соединение В. смешанное соединение
- 4. В тепловых двигателях происходит переход...
- А. электрической энергии в механическую энергию
- Б. внутренней энергии топлива в механическую энергию
- В. потенциальной энергии во внутреннюю энергию

Уровень В

- 5. Значение силы переменного тока, измеренное в амперах, задано уравнением x=0,1sin100пt. Укажите все правильные утверждения.
- А) Амплитуда силы тока 0,1А. Б) Период равен 100с. В) Частота равна 50Гц.
- 6. Автомобиль массой 1т движется со скоростью 72км/ч. Чему равен его импульс?
- А. 72кг м/с
- Б. 20кг м/с
- В. 20000кг м/с
- 7. В каком из перечисленных ниже приборов для регистрации ядерных излучений используется след капель жидкости в газе при прохождении через него быстрой заряженной частицы?
- А. счетчик Гейгера Б. камера Вильсона В. пузырьковая камера
- 8. Красная граница фотоэффекта для металла равна $5 \cdot 10^{14}$ Γ ц. Найдите работу выхода электронов из этого металла?
- А. 3,3·10⁻¹⁹ Дж
- Б. 1,32·10⁻⁴⁸ Дж
- В. 7,6·10⁴⁷ Дж
- 9. В таблице Менделеева на десятом месте стоит химический элемент неон. Рядом с символом Ne расположено число «20,179». В атоме Ne находится...
- А. 10 протонов, 20 нейтронов, 30 электронов
- Б. 20 протонов, 10 нейтронов, 0 электронов
- В. 10 протонов, 10 нейтронов, 10 электронов
- 10. Найти период и частоту колебаний в контуре, емкость конденсатора в котором $1,6\cdot10^{-7}$ Ф, индуктивность катушки $9\cdot10^{-4}$ Гн.

Вариант 2

Уровень А

- 1. В недрах Солнца температура достигает десятков миллионов градусов. Чем это объясняется?
- А. быстрым вращением Солнца вокруг своей оси Б. термоядерным синтезом легких ядер
- В. химической реакцией горения водорода в кислороде
- 2. Для работы электропаяльника используют ...
- А. постоянный и переменный ток Б. переменный ток В. постоянный ток
- 3. В тепловых двигателях происходит переход...
- А. электрической энергии в механическую энергию
- Б. внутренней энергии топлива в механическую энергию
- В. потенциальной энергии во внутреннюю энергию

4. Напряжение на зажимах вторичной обмотки понижающего трансформатора 60В, сила тока во вторичной цепи 40А. Первичная обмотка включена в цепь с напряжением 240В. Найдите силу тока в первичной обмотке трансформатора

А. счетчик Гейгера

Б. ионизационная камера

В. камера Вильсона

Уровень В

- 1. В каком из перечисленных ниже приборов для регистрации ядерных излучений прохождение быстрой заряженной частицы вызывает появление импульса электрического тока в газе?
- 2. В таблице Менделеева на седьмом месте стоит химический элемент азот. Рядом с символом N расположено число «14,0067». В молекуле N_2 находится...
- А. 14 протонов, 14 нейтронов, 14 электронов
- Б. 14 протонов, 28 нейтронов, 14 электронов
- В. 28 протонов, 14 нейтронов, 28 электронов
- 7. Определите резонансную частоту для контура электроемкостью 40 мкФ и индуктивностью 382 мГн
- 8. В состав атома входят...

А. только протоны Б. нуклоны и электроны В. протоны и нейтроны Г. нейтроны и электроны

- 9. Найти период T и частоту v колебаний в контуре, состоящем из конденсатора емкостью $C=900~\text{n}\Phi$ и катушки индуктивностью $L=4~\text{м}\Gamma\text{h}$
- 10. Радиостанция ведет передачу на частоте 45 МГц. Найти длину волны.

Вариант 3

Уровень А

- 1. Трансформаторы в механическом цеху применяют для:
- А. повышения или понижения частоты тока
- Б. преобразования переменного тока в постоянный В. понижения или повышения напряжения
- 2. При перевозке горючесмазочных смесей необходимо учитывать:
- А. атмосферное давление Б. температуру В. влажность воздуха
- 3. При проведении электропроводки в ремонтных мастерских используют чаще всего...
- А. параллельное соединение Б. последовательное соединение В. смешанное соединение
- В тепловых двигателях происходит переход...
- А. потенциальной энергии во внутреннюю энергию
- Б. внутренней энергии топлива в механическую энергию
- В. электрической энергии в механическую энергию
- 4. Каким импульсом обладает предмет, находящийся на дереве, высота которого 2,5м? Масса предмета 500г.

А.40 м

Б. 0 м

В. 20 м

Уровень В

- 5. Радиостанция ведет передачу на частоте 54 МГц. Найти длину волны.
- 6. В каком из перечисленных ниже приборов для регистрации ядерных излучений используется след из пузырьков пара жидкости при прохождении через него быстрой заряженной частицы?

А. камера Вильсона

- Б. пузырьковая камера
- В. толстослойная фотоэмульсия
- 7. Расстояние от линзы до предмета 50 см, от линзы до изображения-20 см. Определить оптическую силу линзы и фокусное расстояние.
- 8. В таблице Менделеева на восьмом месте стоит химический элемент кислород. Рядом с символом О расположено число «15,9994». В молекуле кислорода О₂ находится...
- А. 8 протонов, 8 нейтронов, 8 электронов Б. 16 протонов, 16 нейтронов, 16 электронов
- В. 16 протонов, 8 нейтронов, 0 электронов

10. Чему равна длина волны, излучаемой передатчиком, если период колебаний равен $0.2x10^{-6}c$?

Вариант 4

Уровень А

- 1. Трансформаторы в механическом цеху применяют для:
- А. повышения или понижения частоты тока Б. понижения или повышения напряжения
- В. преобразования переменного тока в постоянный
- 2. При перевозке горючесмазочных смесей необходимо учитывать:
- А. температуру Б. влажность воздуха В. атмосферное давление
- 3. Для работы электропаяльника используют ...
- А. постоянный ток Б. постоянный и переменный ток В. переменный ток
- 4. При проведении электропроводки в ремонтных мастерских используют чаще всего...
- А. последовательное соединение Б. параллельное соединение В. смешанное соединение Уровень В
- 5. В тепловых двигателях происходит переход...
- А. внутренней энергии топлива в механическую энергию
- Б. потенциальной энергии во внутреннюю энергию
- В. электрической энергии в механическую энергию
- 6. Мальчик массой 30кг, бегущий со скоростью 3м/с, вскакивает на неподвижную платформу массой 15кг. Чему равна скорость платформы с мальчиком?
- A. 1м/с Б. 2м/с В. 6м/с
- 7. В каком из перечисленных ниже приборов для регистрации ядерных измерений прохождение быстрой заряженной частицы вызывает образование скрытого изображения следа этой частицы?
- А. пузырьковая камера Б. толстослойная фотоэмульсия В. камера Вильсона
- 8. В первичной обмотке трансформатора 100 витков, во вторичной обмотке 20. Укажите все правильные утверждения.
- А. Трансформатор является понижающим. Б. Коэффициент трансформации равен 0,2.
- В. Коэффициент трансформации равен 5.
- 9. В таблице Менделеева на седьмом месте стоит химический элемент азот. Рядом с символом N расположено число «14,0067». В молекуле N_2 находится...
- А. 14 протонов, 28 нейтронов, 14 электронов
- Б. 14 протонов, 14 нейтронов, 14 электронов
- В. 28 протонов, 14 нейтронов, 28 электронов
- 10. Под каким напряжением находится первичная обмотка трансформатора, имеющая 1000 витков, если во вторичной обмотке 3500 витков и напряжение 105В? Каков коэффициент трансформации?

Эталоны ответов к контрольной работе №4

задания	1	2	3	4	5	6	7	8	9	10
Вари-										
ант										
1	A	A,B	Б	A	Б	В	Б	A	В	$7,5 \cdot 10^{-5}$ c
										13270 Гц
2	10A	В	Б	A	Б	A	256	Б	1,2·10 ⁻⁵ c	6,67 м
							Гц		83925 Гц	
3	В	Б	5,56	В	A	A	Б	7 дптр,	Б	60 м
			M					0,14 м		
4	Б	A	В	Б	A	Б	Б	A,B	Б	30 B,

					0,29

Критерии оценивания:

- оценка «5» при выполнении всех заданий уровней A и B
- оценка «4» при выполнении всех заданий уровня A и не менее 4 заданий уровня В
- оценка «3» при выполнении заданий уровня A и не менее 3 заданий уровня В

5.3. Оценочные материалы для промежуточной аттестации

Форма промежуточного контроля и его содержание: Дифференцированный зачет Вариант 1

- 1. Найти период T колебаний в контуре, состоящем из конденсатора емкостью $C=900~\text{п}\Phi$ и катушки индуктивностью $L=4~\text{м}\Gamma\text{h}$.
- 2. Расстояние от линзы до предмета 50 см, от линзы до изображения-20 см. Определить оптическую силу линзы.
- 3. В первичной обмотке трансформатора 100 витков, во вторичной обмотке -20. Укажите, какой это трансформатор и чему равен его коэффициент трансформации
- 4. Радиостанция ведет передачу на частоте 54 МГц. Найти длину волны.
- 5. Укажите, под действием какой частицы протекает ядерная реакция:

? +
$$^{62}_{28}Ni \rightarrow ^{63}_{29}Cu + \gamma$$

6. В направлении, перпендикулярном линиям индукции магнитного поля, влетает электрон со скоростью 10Мм/с. Найти индукцию поля, если электрон описал в поле окружность радиусом 1 см

№ задачи	1	2	3	4	5	6
Уровень	В	В	A	В	В	В
Балл	5	5	4	5	5	5
На оценку «5» необходим	ГЬ	27-29				
На оценку «4» необходим	ГЬ	22-26				
На оценку «3» необходимо набрать				16-21		

Вариант 2

- 1. Расстояние от линзы до предмета 50 см, от линзы до изображения-20 см. Определить фокусное расстояние.
- 2. Радиостанция ведет передачу на частоте 60 МГц. Найти длину волны.
- 3. Определите длину волны света, которым освещается поверхность металла, если фотоэлектроны имеют кинетическую энергию $4,5\cdot10^{-19}$ Дж, а работа выхода электрона из металла равна $6,7\cdot10^{-20}$ Дж
- 4. Световой луч переходит из воздуха в воду. Угол падения 70°. Определить угол преломления
- 5. Рассматривая предмет в собирающую линзу и располагая его на расстоянии 4 см от неё, получают его мнимое изображение, в 3 раза больше самого предмета. Какова оптическая сила линзы?
- 6. Значение силы переменного тока, измеренное в амперах, задано уравнением x=0,1sin100пt. Укажите, чему равна амплитуда силы тока, период и частота.

№ задачи	1	2	3	4	5	6
Уровень	В	A	В	В	В	В
Балл	5	4	5	5	5	5
На оценку «5» необходим	ГЬ	27-29				
На оценку «4» необходим	ГЬ	22-26				
На оценку «3» необходим	ГЬ	16-21				

Вариант 3

- 1. Радиостанция ведет передачу на частоте 45 МГц. Найти длину волны.
- 2. Световой луч переходит из воздуха в воду. Угол падения 50°. Определить угол преломления.
- 3. Расстояние от линзы до предмета 40 см, от линзы до изображения-10 см. Определить оптическую силу линзы.
- 4. Найти частоту ν колебаний в контуре, состоящем из конденсатора емкостью $C=900~\text{п}\Phi$ и катушки индуктивностью $L=4~\text{м}\Gamma$ н.
- 5. В первичной обмотке трансформатора 20 витков, во вторичной обмотке 80. Укажите, какой это трансформатор и чему равен его коэффициент трансформации
- 6. В направлении, перпендикулярном линиям индукции магнитного поля, влетает электрон со скоростью 5Мм/с. Найти индукцию поля, если электрон описал в поле окружность радиусом 2 см

№ задачи	1	2	3	4	5	6
Уровень	В	В	В	В	A	В
Балл	5	5	5	5	4	5
На оценку «5» необходим	ГЬ	27-29				
На оценку «4» необходим	ГЬ	22-26				
На оценку «3» необходимо набрать				16-21		

Вариант4

- 1. Напряжение на зажимах вторичной обмотки понижающего трансформатора 60 В, сила тока во вторичной цепи 40 А. Первичная обмотка включена в цепь с напряжением 240 В. Найдите силу тока в первичной обмотке трансформатора.
- 2. Сигнал радиолокатора возвратился от объекта через $3x10^{-4}$ с. Какое расстояние до объекта?
- 3. Определите индуктивность катушки колебательного контура, если емкость конденсатора равна 5мкФ, а период колебаний 0,001с.
- 4. Под каким напряжением находится первичная обмотка трансформатора, имеющая 1000 витков, если во вторичной обмотке 3500 витков и напряжение 105 В? Каков коэффициент трансформации?
- 5. Чему равна длина волны, излучаемой передатчиком, если период колебаний равен $0.2x10^{-6}$ с?
- 6. Найти период и частоту колебаний в контуре, емкость конденсатора в котором $7,47x10^{-10}$ Ф, индуктивность катушки $9,41x10^{-4}$ Гн.

№ задачи	1	2	3	4	5	6
Уровень	В	Α	В	В	В	В
Балл	5	4	5	5	5	5
На оценку «5» необходимо набрать				27-29		
На оценку «4» необходимо набрать				22-26		
На оценку «3» необходимо набрать			16-21			

Эталоны ответов к дифференцированному зачету

	Вариант 1	Вариант 2	Вариант 3	Вариант 4
1.	1,19·10 ⁻⁵ c	0,14 м	100 м	10 A
2.	7 дптр	5 м	3,98·10 ⁻¹⁹ Дж	45000 м
3.	к=5, понижающий	3,8·10 ⁻⁷ м	12,5 дптр	5 Гц
4.	5,6 м	45°	1,09·10 ⁻⁵ c	κ =0,19, U ₁ =30 B
5.	Протон	83925 Гц	0,25, повышающий	60 м
6.	5,7·10 ⁻³ Тл	0,1 А, 0,02 с, 50 Гц	1,4·10 ⁻³ Тл	2,85·10 ⁻¹⁹ Дж

5.4. Перечень учебных проектов

Тема проекта	Форма проекта
Ультразвук (получение, свойства, применение)	Реферат
Характеристики механических колебаний	Сообщение
Виды механического движения	Сообщение
Силы трения	Кластер
Опыты Перрена	Сообщение
Температурные шкалы	Кластер
Композиты	Сообщение
Применение жидких кристаллов в промышленности	
Тепловые двигатели	Таблица
Электризация тел.	Сообщение
Проводники и диэлектрики	Презентация
Схемы различных соединений 4 проводников	Схема
Использование электроэнергии в транспорте.	Реферат
Акустические свойства полупроводников.	Сообщение
Электрические разряды на службе человека	Сообщение
Молния – газовый разряд в природных условиях.	Сообщение
Открытие и применение высокотемпературной сверхпроводимости.	Сообщение
Плазма – четвертое состояние вещества.	Сообщение
Пьезоэлектрический эффект и его применение	Сообщение
Магнитные свойства вещества.	Сообщение
Альтернативная энергетика.	Презентация
Развитие средств связи и радио.	Доклад
Электрический резонанс	Сообщение
Виды электромагнитных излучений и их применение.	Сообщение
Спектры и спектральные аппараты.	Сообщение
Оптические явления в природе.	Сообщение
Голография и её применение.	Презентация
Ядерная энергетика: плюсы и минусы.	Презентация
Конструкция и виды лазеров.	Сообщение
Применение радиоактивных изотопов.	Сообщение
Лазерные технологии и их использование.	Сообщение
Нуклеосинтез во Вселенной.	Сообщение
Управляемый термоядерный синтез.	Сообщение
Ускорители заряженных частиц.	Сообщение