УПРАВЛЕНИЕ ОБРАЗОВАНИЕМ АДМИНИСТРАЦИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ТЕМРЮКСКИЙ РАЙОН

Министерство образования, науки и молодежной политики Краснодарского края

Администрация муниципального образования Темрюкский район МБОУ СОШ №21

Принята на заседании педагогического совета от 30.0 €. 2024 Протокол № 1

УТВЕРЖДЕНО

Обабко С. Л.

От «31» 08 2024 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

научно-технической направленности «Юный исследователь»

Уровень программы: ознакомительный

Срок реализации программы: 2 года:144 ч. (1 год-72 ч.; 2 год-72 ч.)

Возрастная категория: от 14 до 15 лет

Состав группы: до 15 человек

Форма обучения: очная, очно-заочная, дистанционная

Вид программы: модифицированная

Программа реализуется на бюджетной основе

ID-номер Программы в Навигаторе:

Автор-составитель: Вогуляков Егор Александрович, учитель информатики и математики

Содержание

1	Введение					
1.	Нормативно-правовая база	3				
Раздел 1. «Комплекс основных характеристик образования: объем, содержание,						
планируемые результаты».						
1.1.	Пояснительная записка программы:	5				
1.1.1	Направленность	5				
1.1.2	Новизна, актуальность, педагогическая целесообразность.	5				
1.1.3	Отличительные особенности программы	6				
1.1.4	Адресат программы	7				
1.1.5	Уровень программы, объем и сроки реализации	8				
1.1.6	Формы обучения	8				
1.1.7	Режим занятий	9				
1.1.8	Особенности организации образовательного процесса	9				
1.2.	Цель и задачи программы.	11				
1.2.1	Цель программы	11				
1.2.2	Задачи программы	11				
1.3	Содержание программы	12				
1.3.1	Учебный план.	12				
1.3.2	Содержание учебного плана	15				
1.3.3	Планируемые результаты.	24				
Раздел	1 2. «Комплекс организационно-педагогических условий, включающий					
	формы аттестации».					
2.1.	Календарный учебный график программы	27				
2.2.	Раздел программы «Воспитание»	28				
2.3.	Условия реализации программы	29				
2.4.	Формы аттестации.	29				
2.5.	Оценочные материалы.	33				
2.6.	Методические материалы.	34				
2.7.	Список литературы.	35				

ВВЕДЕНИЕ

Дополнительная общеобразовательная общеразвивающая программа «Юный исследователь» по научно-технической направленности (далее — Программа) является модифицированной, разработана на основе программ педагогов дополнительного образования, работающих в соответствующем направлении, и с учетом личного опыта учителя информатики, математики МБОУ СОШ №21 Вогулякова Егора Александровича.

1. Нормативно-правовая база

Рабочая программа курса дополнительного образования составлена в соответствии со следующими нормативными актами:

- 1. Федеральный закон от 29 декабря 2012 г. № 273-ФЗ "Об образовании в Российской Федерации" (с изменениями и дополнениями).
- 2. Федеральный закон от 24 июля 1998 г. № 124-ФЗ "Об основных гарантиях прав ребенка в Российской Федерации" (с изменениями и дополнениями).
- 3. Федеральный закон от 29 декабря 2010 г. № 436-ФЗ "О защите детей от информации, причиняющей вред их здоровью и развитию" (с изменениями и дополнениями).
- 4. Распоряжение Правительства РФ от 29 мая 2015 г. № 996-р "Об утверждении Стратегии развития воспитания в Российской Федерации на период до 2025 года".
- 5. Концепция развития дополнительного образования детей до 2030 года (распоряжение Правительства Российской Федерации от 31 марта 2022 г. № 678-р).
- 6. Федеральный проект "Успех каждого ребенка" от 07 декабря 2018 г.
- 7. Приказ Министерства просвещения РФ от 16 сентября 2020 г. № 500 "Об утверждении примерной формы договора об образовании по дополнительным общеобразовательным программам".
- 8. Приказ Министерства труда и социальной защиты Российской Федерации от 22 сентября 2021 г. № 652н "Об утверждении профессионального стандарта 'Педагог дополнительного образования детей и взрослых' (в редакции от 1 сентября 2028 г.)".
- 9. Приказ Министерства просвещения РФ от 27 июля 2022 г. № 628 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным образовательным программам".
- 10. Приказ Министерства просвещения РФ от 3 сентября 2019 г. № 467 "Об утверждении Целевой модели образовательной деятельности в сфере дополнительного образования детей" (с изменениями, внесенными приказом Министерства просвещения РФ от 9 сентября 2020 г. № 28 "Об утверждении санитарных правил СП 2.4.3684-20 "Санитарно-эпидемиологические").24.06.2020 № 47.01-13-6067/20).
- 11. Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 "Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».
- 12. Постановление Главного государственного санитарного врача Российской Федерации от 28.01.2021 г. № 2 "Об утверждении санитарных правил СанПиН 1.2.4.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безопасности для человека факторов среды обитания».
- 13. Методические рекомендации по проектированию дополнительных образовательных программ (включая разновозрастные программы), письмо Минобрнауки от 18 декабря 2015 № 09-3242.
- 14. Рекомендации по реализации внеурочной деятельности, программы воспитания и социализации и дополнительных общеобразовательных программ с применением дистанционных образовательных технологий, письмо Министерства России от 01.06.2020 г. № БФ-976/04.
- 15. Краевые методические рекомендации по проектированию дополнительных общеобразовательных программ (Письмо Минобрнауки от 24.06.2020 № 47.01-13-6067/20).
- 16. Устав Муниципального бюджетного общеобразовательного учреждения средней общеобразовательной школы №21 станица Голубицкая муниципального образования Темрюкский район.

РАЗДЕЛ І. «КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ОБРАЗОВАНИЯ»

1.1.Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Юный исследователь» по научно-технической направленности (далее — Программа) ориентирована на обучение детей и подростков основам микроконтроллерного программирования и робототехники. Программа предназначена для подростков, стремящихся не только развить свои навыки работы с Arduino, но и углубить знания о практическом применении технологий в современном мире.

1.1.1. <u>Направленность.</u> Программа имеет техническую направленность. Педагогическая идея данной программы заключается в создании условий для формирования умений обучающихся в области технического творчества, современных технологий.

1.1.2. Новизна, актуальность и педагогическая целесообразность.

<u>Новизна.</u> Данная программа разработана в рамках междисциплинарного подхода. Она объединяет в себе знаний, умения и навыки обучающихся, которые были приобретены ими на уроках математики, информатики и физики. В программе расширено использование среды программирования Arduino IDE. Таким образом, указанная среда программирования используется не только для программирования микроконтроллера, но и для отработки навыков программирования на языке C++.

<u>Актуальность программы.</u> Развитие технического творчества детей рассматривается сегодня как одно из приоритетных направлений в педагогике. Современный этап развития общества характеризуется ускоренными темпами освоения техники и технологий. Непрерывно требуются новые идеи для создания конкурентоспособной продукции, подготовки высококвалифицированных кадров.

Внешние условия служат предпосылкой для реализации творческих возможностей личности, имеющей в биологическом отношении безграничный потенциал. Становится актуальной задача поиска подходов, методик, технологий для реализации потенциалов, выявления скрытых резервов личности.

Современная робототехника и программирование — одни из важнейших направлений научнотехнического прогресса. Современное общество нуждается в высококвалифицированных специалистах, готовых к высокопроизводительному труду, технически насыщенной производственной деятельности. Дополнительное образование оказывает помощь учреждениям высшего образования в подготовке специалистов, умеющих изучать, проектировать и изготавливать объекты техники.

С целью подготовки детей, владеющих знаниями и умениями современной технологии, повышения уровня кадрового потенциала в соответствии с современными запросами инновационной экономики, разработана и реализуется данная дополнительная общеразвивающая программа.

<u>Педагогическая целесообразность.</u> Данная программа составлена таким образом, чтобы обучающиеся могли овладеть всем комплексом знаний по организации исследовательской, изобретательской деятельности, выполнении проектной работы, познакомиться с требованиями, предъявляемыми к оформлению и публичному представлению результатов своего труда, а также приобрести практические навыки работы с мультиметром, электрическими схемами, инструментом.

1.1.3 Отличительные особенности программы.

Отличительная особенность программы заключается в изменении подхода к обучению детей, а именно — внедрению в образовательный процесс исследовательской и изобретательской деятельности, организации коллективных проектных работ, а также формирование и развитие соответствующих навыков. Реализация программы позволит сформировать современную практико-ориентированную высокотехнологичную образовательную среду, позволяющую эффективно реализовывать проектно-конструкторскую и экспериментально-исследовательскую деятельность детей.

<u>1.1.4 Адресат программы.</u> Дополнительная общеразвивающая программа предназначена для детей в возрасте 15-16 лет, имеющих различный уровень успеваемости по школьным предметам. В рамках Программы предусмотрена возможность работать в малых группах в зависимости от особенностей творческой деятельности с каждой возрастной категорией обучающихся. Педагогом проводится индивидуальная работа с некоторыми обучающимися, чтобы обеспечить полноценное развитие каждого обучающегося образовательного процесса. Запись на Программу осуществляется через систему заявок на сайте АИС «Навигатор дополнительного образования детей Краснодарского края» по следующей ссылке:

<u>Психолого-педагогические особенности адресата программы для обучающихся в возрасте от</u> 11 до 15 лет заключаются в следующем.

В этом возрасте подростки активно развиваются как в физическом, так и в психологическом плане. Они становятся более самостоятельными, у них формируется собственное мнение и интересы.

Психолого-педагогические особенности обучающихся в рамках данной возрастной категории включают следующее: - развитие социальных навыков: обучающиеся учатся работать в команде, общаться с другими людьми, решать конфликты; - развитие творческих способностей: Программа предоставляет возможность для выражения своих мыслей и идей через театральное искусство; - развитие эмоциональной сферы: обучающиеся учатся понимать свои эмоции и управлять ими, что помогает им лучше справляться с различными жизненными ситуациями; - развитие познавательных процессов: программа помогает улучшить внимание, память, мышление; - развитие коммуникативных навыков: общение с педагогами, родителями помогает подросткам научиться эффективно взаимодействовать с окружающими; - развитие лидерских качеств: участие в творческих проектах и мероприятиях Программы способствует формированию у обучающихся лидерских навыков.

1.1.5. Уровень программы, объем и сроки реализации

Программа рассчитана на 2 года обучения. Общее количество часов в год — 36 часа. Суммарное количество часов 72.

1.1.6. Форма обучения – очная.

Используются многообразные формы работы (учебное занятие, коллективно-творческие дела, индивидуальные и коллективные творческие проекты и т.д.). Если по каким-то причинам ребенок не может посещать очные занятия, Программа предусматривает возможность использования дистанционных технологий. Это позволяет детям продолжать обучение, не выходя из дома, и успешно осваивать материал. В связи с этим, в Программу были включены дистанционные занятия, проводимые через Интернет (VK Мессенджер и Сферум).

1.1.7. Режим занятий, периодичность и продолжительность занятий.

Общее количество часов в год -72 часа. Продолжительность занятий исчисляется в академических часах -40 минут, между занятиями установлены 10-минутные перемены. Недельная нагрузка на одну группу: 1 час. Занятия проводятся 2 раза в неделю.

			Количество	Количество	Всего
Год	Продолжительность	Периодичность	часов в	недель в	часов
обучения	занятия (часов)	в неделю	неделю	году	в год
1	40	2 раза в неделю	2	36	72
2	40	2 раза в неделю	2	36	72

- <u>1.1.8 Особенности организации образовательного процесса.</u> Набор детей в объединение свободный. Программа объединения предусматривает индивидуальные, групповые, фронтальные формы работы с детьми;
 - состав групп 10-15 человек, переменный;
 - занятия групповые;

- виды занятий по программе определяются содержанием программы и могут предусматривать лекции, практические и семинарские занятия, лабораторные работы, круглые столы, мастер-классы.

В каждом разделе Программы предусмотрены задания разной степени сложности для детей с разной степенью подготовки. Наличие в одной группе обучающихся не только разного возраста, но и детей разного уровня подготовки определяет выбор дифференцированного подхода на занятиях и использование не только групповой, но и мелкогрупповой работы, различных форм индивидуального сопровождения и взаимообучения. При такой организации в учебновоспитательном процессе новый материал всем обучающимся дается на одну тему, которая предполагает разный характер заданий для каждого возраста и уровня обучающихся.

Содержание Программы допускает некоторые изменения в содержании занятий, форме их проведения, количестве часов на изучение программного материала на усмотрение педагога. В Программе предусмотрено участие детей в обсуждении процесса и результатов деятельности: как коллектива, так и каждого обучающегося. И чем чаще дети участвуют в совместном анализе, рефлексии, тем больше шансов для формирования у каждого из них адекватной самооценки, умения договариваться друг с другом, обосновывать свое мнение и суждение, слушать других. Также важно участие каждого обучающегося в сценической деятельности, конкурсах, праздниках коллектива, образовательных проектах и др. Это повышает самооценку и увеличивает интерес к выбранному виду театральной деятельности.

Образовательный процесс строится с учетом следующих принципов: - индивидуальный подход: каждый ребенок имеет свои особенности, поэтому Программа предусматривает индивидуальный подход к обучению. Этот принцип предусматривает взаимодействие между педагогом и ребенком.

Подбор индивидуальных творческих заданий необходимо производить с учетом личностных особенностей каждого обучающегося, его заинтересованности и достигнутого уровня подготовки; - постепенное усложнение: Программа построена таким образом, чтобы обучающиеся могли постепенно осваивать новые навыки и умения исследовательского характера; - вовлечение в творческий процесс: Программа предполагает участие обучающихся в конкурсах и других мероприятиях, что способствует развитию их творческих способностей; - сотрудничество с родителями:

Программа предусматривает активное участие родителей в образовательном процессе, что помогает создать атмосферу поддержки и взаимопомощи; - культуросообразности и природосообразности: в Программе учитываются возрастные и индивидуальные особенности детей. Содержание программы опирается на традиции и культуру народов России, и региональный компонент. - системности: полученные знания, умения и навыки, обучающиеся системно применяют на практике. Это позволяет использовать знания и умения в единстве, целостности, реализуя собственный замысел, что способствует самовыражению обучающегося, развитию его творческого потенциала; - комплексности и последовательности: реализация этого принципа предполагает постепенное введение обучающихся в мир театрального искусства, то есть, от простого к сложному, на каждом году обучения углубляя приобретенные знания, умения, навыки. Этот принцип также предполагает использование разнообразных методов и технологий обучения, таких как демонстрация, практика, анализ драматургических произведений и участие в исследовательских проектах и конкурсах. - наглядности: использование наглядности повышает внимание обучающихся, углубляет их интерес к изучаемому материалу, способствует развитию внимания, воображения, наблюдательности, мышления. Программа может учитывать запросы основных стейкхолдеров, таких как родители, дети и педагог. Родители могут высказывать свои пожелания относительно содержания Программы, методов обучения и расписания

Содержание Программы допускает некоторые изменения в содержании занятий, форме их проведения, количестве часов на изучение программного материала на усмотрение педагога. В

Программе предусмотрено участие детей в обсуждении процесса и результатов деятельности: как коллектива, так и каждого обучающегося.

1.2. Цель и задачи программы.

<u>1.2.1. Цель дополнительной общеразвивающей программы:</u> возрождение престижа инженерных и научных профессий, подготовка кадрового резерва для будущих профессий. Создание современной практико-ориентированной высокотехнологичной образовательной среды, позволяющей эффективно реализовывать проектно-конструкторскую и экспериментально-исследовательскую деятельность обучающихся в разновозрастных проектных командах, получать новые образовательные результаты.

1.2.2. Задачи дополнительной общеразвивающей программы:

образовательные (предметные):

- Освоение основ программирования. Написание и отладка кода на языке Arduino (C/C++).
- Знание структур данных: переменные, массивы, функции.
- Работа с сенсорами: установка и настройка датчиков (света, температуры, движения). Чтение и обработка данных от сенсоров.
- Управление сервоприводами и моторами: позиционирование сервомоторов, реализация движений с использованием шаговых и DC-моторов.
- Прототипирование электрических схем с использованием макетных плат.
- Чтение и создание схем на основе принципиальных изображений. Проектирование и реализация простых систем управления (роботы, следящие за линией).
- Использование Arduino для создания автоматизированных систем. Разработка пользовательских интерфейсов с использованием светодиодов, дисплеев, кнопок.
- Реализация простых игровых интерфейсов. Работа над индивидуальными и групповыми проектами: планирование, реализация, презентация.
- Навыки решения практических задач. Устранение неполадок в проектах.

личностные:

- ценностное отношение к отечественному культурному, историческому и научному наследию, понимание значения информатики как науки в жизни современного общества, владение достоверной информацией о передовых мировых и отечественных достижениях в области информатики и информационных технологий,
- готовность к разнообразной совместной деятельности при выполнении учебных, познавательных задач, создании учебных проектов, стремление к взаимопониманию и взаимопомощи в процессе этой учебной деятельности,
- овладение основными навыками исследовательской деятельности, установка на осмысление опыта, наблюдений, поступков и стремление совершенствовать пути достижения индивидуального и коллективного благополучия.

метапредметные:

- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логические рассуждения, делать умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; публично представлять результаты выполненного опыта (эксперимента, исследования, проекта);
- выявлять в жизненных и учебных ситуациях проблемы, требующие решения; ориентироваться в различных подходах к принятию решений (индивидуальное принятие решений, принятие решений в группе); самостоятельно составлять алгоритм решения задачи

(или его часть), выбирать способ решения учебной задачи с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений.

Ожидаемые результаты

- 1. Умение программировать на языке С/С++.
- 2. Навыки работы с платами Arduino и дополнительными модулями.
- 3. Способность разрабатывать простые электронные схемы.
- 4. Понимание основ сенсорных технологий и их применения.
- 5. Опыт создания различных проектов, включая роботов и автоматизированные системы.
- 6. Умение работать с программным обеспечением для моделирования и симуляции.
- 7. Развитие навыков командной работы и проектного подхода.
- 8. Способность к самостоятельному поиску и решению технических задач.
- 9. Уверенное использование инструментов для отладки и тестирования.
- 10. Подготовленность к участию в конкурсах и выставках по робототехнике.

1.3. Содержание программы.

Для успешного проведения занятий по робототехнике используются разнообразные виды работ. Теоретические занятия включают изучение основ робототехники, истории развития роботов, различных технологий и методов программирования, анализ успешных проектов и решений, а также основы механики и электроники.

Практические занятия охватывают освоение программирования на Arduino и других платах, работу над созданием электронных схем, разработку и сборку роботов, тестирование и отладку оборудования. Индивидуальные занятия направлены на развитие навыков программирования, работу с датчиками и актуаторами, анализ и оптимизацию алгоритмов, а также специальные упражнения на развитие креативности и инженерного мышления.

Групповые занятия предполагают участие в командных проектах, работу над совместными роботами, развитие навыков коммуникации и сотрудничества, обсуждение и анализ коллективной работы. Конкурсная деятельность включает подготовку и участие в соревнованиях и выставках по робототехнике, демонстрацию созданных роботов и проектов для широкой аудитории, а также участие в конкурсах и фестивалях робототехники различного уровня.

Программа состоит из следующих разделов:

Раздел №1. Основы безопасности

Раздел №2. Основы схемотехники и главные компоненты

Раздел № 3. Язык С++

Раздел №4. Проектирование

Учебный план

No		Ко.	пичество ч	насов	Формы
П/П Название раздела, темы		Всего	Теория	Практика	аттестации, контроля
1	Техника безопасности. Основные законы электричества	2	1	1	Усвоение знаний, овладение специальными умениями
2	Описание микроконтроллерной платы и набора по робототехнике	2	1	1	Усвоение знаний, овладение специальными умениями

3	Подключение микроконтроллерной платы к компьютеру. Среда разработки Ардуино	2	1	1	Усвоение знаний, овладение специальными умениями
4	Основы схемотехники	2	1	1	Усвоение знаний, овладение специальными умениями
5	Основные компоненты: конденсатор, резистор, транзистор, диод	2	1	1	Усвоение знаний, овладение специальными умениями
6	Аналоговый сигнал, цифровой сигнал	2	1	1	Усвоение знаний, овладение специальными умениями
7	Датчики и сенсоры	2	1	1	Усвоение знаний, овладение специальными умениями
8	Широтно-импульсная модуляция	2	1	1	Усвоение знаний, овладение специальными умениями
9	Структура программы на С++ для Arduino	2	1	1	Усвоение знаний, овладение специальными умениями
10	Проект «Маячок»	2	1	1	Усвоение знаний, овладение специальными умениями
11	Проект Маячок с нарастающей яркостью	2	1	1	Усвоение знаний, овладение специальными умениями
12	Проект Светильник с управляемой яркостью	2	1	1	Усвоение знаний, овладение специальными умениями
13	Проект Ночной светильник	1		1	Усвоение знаний, овладение специальными умениями

Проект Пульсар			1	l	l	1
Проект Бегущий огонёк 1 1 1 умениями Проект Миксер Проект Кнопочный переключатель 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14		1		1	специальными
Проект Миксер 1 1 1 умениями Проект Кнопочный переключатель 1 1 1 1 умениями 1 1 1 1 умениями 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15		1		1	специальными
Проект Кнопочный переключатель 17 1 1 1 умениями	16		1		1	специальными
N	17	переключатель	1		1	специальными
Проект Светильник с кнопочным управлением 1 Усвоение знании овладение овладение специальными умениями 18 1 1 уканиями	18	кнопочным управлением	1		1	специальными
Проект Секундомер Усвоение знаний овладение специальными 19 1 1 1 умениями	19		1		1	специальными
Проект Счётчик нажатий Усвоение знаний овладение специальными 20 1 1 умениями	20		1		1	специальными
Проект Комнатный термометр Усвоение знаний овладение специальными 21 1 1 умениями	21	Проект Комнатный термометр	1		1	специальными
Проект Метеостанция Усвоение знаний овладение специальными 22 1 1 1 умениями	22		1		1	специальными
Итого 34 12 22		Итого	34	12	22	

1.3.2 Содержание учебного плана

1. Техника безопасности. Основные законы электричества

Цель занятия: Ознакомить участников с основами техники безопасности при работе с электрическими устройствами и основными законами электричества.

Оборудование: - Презентация или видео о технике безопасности,- Мультиметр,- Электрические схемы,- Изолирующие перчатки и очки

Ход занятия:

- 1. Введение в технику безопасности:
 - Обсуждение важности соблюдения правил безопасности.
 - Примеры несчастных случаев и их причины.
- 2. Основные законы электричества:
 - Закон Ома: $V = I \cdot R$ (где V напряжение, I ток, R сопротивление).
 - Закон Кирхгофа: обсуждение законов о токах и напряжениях в цепях.
 - Понятие мощности: $P = V \cdot I$.
- 3. Практическая часть:
 - Измерение напряжения и тока с помощью мультиметра.
 - Обсуждение результатов и применение законов на практике.
- 4. Заключение:
 - Подведение итогов, повторение ключевых моментов.
 - Ответы на вопросы участников.
 - 2. Описание микроконтроллерной платы и набора по робототехнике

Цель занятия: Ознакомить участников с основами работы микроконтроллерных плат и наборов по робототехнике.

Оборудование: - Микроконтроллерная плата (например, Arduino или Raspberry Pi),- Набор для сборки робота (моторы, датчики, шасси),- Компьютер с установленным ПО для программирования Ход занятия:

- 1. Введение в микроконтроллеры:
 - Объяснение, что такое микроконтроллер и его основные функции.
 - Обзор популярных плат (Arduino, Raspberry Pi) и их характеристик.
- 2. Компоненты набора по робототехнике:
 - Обсуждение различных компонентов (моторы, датчики, аккумуляторы).
 - Как эти компоненты взаимодействуют между собой.
- 3. Практическая часть:
 - Сборка простого робота из набора.
 - Программирование базовых функций (например, движение вперед/назад, поворот).
- Заключение:
 - Подведение итогов, обсуждение возможностей дальнейшего изучения.
 - Ответы на вопросы участников.
 - 3. Подключение микроконтроллерной платы к компьютеру. Среда разработки Arduino

Цель занятия: Научить участников подключать микроконтроллерную плату Arduino к компьютеру и использовать среду разработки Arduino IDE для написания и загрузки программ.

Оборудование:- Микроконтроллерная плата Arduino (например, Arduino Uno),- USB-кабель для подключения,- Компьютер с установленной Arduino IDE, Ход занятия:

- 1. Введение в подключение:
 - Объяснение, как правильно подключить плату к компьютеру.
 - Обсуждение необходимых драйверов (если требуется).
- 2. Установка и настройка Arduino IDE:
 - Пошаговая установка Arduino IDE на компьютер.
 - Настройка среды: выбор модели платы и порта.
- 3. Первый проект: мигающий светодиод:
 - Подключение светодиода к плате.
 - Написание простого кода для мигания светодиода.
 - Загрузка программы на плату и проверка работы.
- 4. Заключение:
 - Обсуждение возможностей дальнейшего использования Arduino.
 - Ответы на вопросы участников.
- 4. Основы схемотехники

Цель занятия: Ознакомить участников с основами схемотехники, принципами работы электрических компонентов и их взаимодействием в схемах.

Оборудование:- Макетная плата,- Различные электронные компоненты (резисторы, конденсаторы, диоды, транзисторы),- Мультиметр,- Провода для соединений,,

Ход занятия:

- 1. Введение в схемотехнику:
 - Объяснение основных понятий: схема, компоненты, электрическая цепь.
 - Обзор символов, используемых в схемах.
- 2. Основные компоненты:
 - Резисторы: назначение и использование.
 - Конденсаторы: принцип работы и применение.
 - Диоды и транзисторы: основные функции и схемы подключения.
- 3. Создание простой схемы:
 - Сборка базовой схемы (например, схема с резистором и светодиодом).
 - Измерение напряжения и тока с помощью мультиметра.
- 4. Заключение:
 - Подведение итогов, обсуждение полученных знаний.
 - Ответы на вопросы участников.
- 5. Основные компоненты: конденсатор, резистор, транзистор, диод

Цель занятия: Познакомить участников с основными электронными компонентами, их функциями и применением в схемах.

Оборудование: - Макетная плата, - Резисторы (разных номиналов), - Конденсаторы (разных типов), - Диоды (например, 1N4148), - Транзисторы (например, NPN), - Мультиметр,

Ход занятия:

- 1. Резисторы:
 - Объяснение принципа работы резисторов.
 - Закон Ома и его применение.
 - Примеры использования в схемах (ограничение тока, делители напряжения).
- 2. Конденсаторы:
 - Принцип работы конденсаторов и их назначение.
 - Различие между электролитическими и керамическими конденсаторами.
 - Применение в фильтрации и временных задержках.
- 3. Диоды:
 - Принцип работы диодов и их назначение.
 - Различие между выпрямительными и светодиодами.
 - Примеры применения в схемах (выпрямление, защита от обратного напряжения).
- 4. Транзисторы:
 - Принцип работы транзисторов как усилителей и ключей.
 - Различие между NPN и PNP транзисторами.
 - Примеры использования в схемах (усиление сигнала, переключение нагрузок).
- 5. Заключение:
 - Подведение итогов по каждому компоненту.
 - Ответы на вопросы участников.
- 6. Аналоговый сигнал, цифровой сигнал

Цель занятия: Объяснить разницу между аналоговыми и цифровыми сигналами, их характеристики и применение.

Оборудование:- Осциллограф (если доступен),- Генератор сигналов (по желанию),- Компьютер с программным обеспечением для анализа сигналов,

Ход занятия:

- 1. Аналоговые сигналы:
 - Определение аналогового сигнала.
 - Примеры аналоговых сигналов (звуковые волны, температура).
 - Характеристики: амплитуда, частота, фаза.
- 2. Цифровые сигналы:
 - Определение цифрового сигнала.
 - Примеры цифровых сигналов (компьютерные данные, цифровая аудиозапись).
 - Характеристики: уровни (0 и 1), частота дискретизации.
- 3. Сравнение аналоговых и цифровых сигналов:
 - Преимущества и недостатки каждого типа сигнала.
 - Применение в различных областях (радиосвязь, звукозапись).
- 4. Практическое задание:
- Наблюдение за аналоговыми и цифровыми сигналами с помощью осциллографа (если доступен).
- 5. Заключение:
 - Подведение итогов, обсуждение значимости обоих типов сигналов.
 - Ответы на вопросы участников.
- 7. Датчики и сенсоры

Цель занятия: Ознакомить участников с различными типами датчиков и сенсоров, их принципом работы и применением в проектах.

Оборудование: - Разнообразные датчики (температуры, влажности, света, движения),-Микроконтроллерная плата Arduino,- Макетная плата,- Провода для соединений,

Ход занятия:

- 1. Введение в датчики и сенсоры:
 - Определение понятий "датчик" и "сенсор".
 - Различие между активными и пассивными датчиками.
- 2. Типы датчиков:
 - Датчики температуры (например, LM35).
 - Датчики влажности (например, DHT11).
 - Датчики света (фоторезисторы).
 - Датчики движения (PIR-сенсоры).
- 3. Принцип работы датчиков:
 - Объяснение принципа работы каждого типа датчика.
 - Как датчики преобразуют физические величины в электрические сигналы.
- 4. Практическое задание:
 - Подключение одного из датчиков к Arduino.
 - Написание простого кода для считывания данных с датчика и вывода их на экран.
- 5. Заключение:
 - Обсуждение применения датчиков в реальных проектах (умный дом, автоматизация).
 - Ответы на вопросы участников.
- 8. Широтно-импульсная модуляция (ШИМ)

Цель занятия: Познакомить участников с принципом работы широтно-импульсной модуляции, ее применением и реализацией на Arduino.

Оборудование: - Arduino (например, Arduino Uno),- Светодиоды,- Резисторы,- Макетная плата,- Провода для соединений,

Ход занятия:

- 1. Введение в ШИМ:
 - Определение широтно-импульсной модуляции.
- Объяснение принципа работы: изменение ширины импульсов для управления средней мощностью.
- 2. Применение ШИМ:
 - Управление яркостью светодиодов.
 - Регулировка скорости моторов.
 - Применение в аудиосигналах.
- 3. Реализация на Arduino:
 - Обзор функций analogWrite() и ее применения.
 - Пример схемы подключения светодиода и кода для регулировки яркости.
- 4. Практическое задание:
 - Создание программы для плавного изменения яркости светодиода с использованием ШИМ.
- 5. Заключение:
 - Подведение итогов, обсуждение значимости ШИМ в электронике.
 - Ответы на вопросы участников.
- 9. Структура программы на C++ для Arduino

Цель занятия: Ознакомить участников с основными элементами структуры программы на языке C++ для Arduino.

Оборудование: - Компьютер с установленным Arduino IDE,- Arduino (например, Arduino Uno),

Ход занятия:

- 1. Основные компоненты программы:
 - Функция setup(): инициализация настроек.
 - Функция loop(): основной цикл программы, выполняющийся бесконечно.
- 2. Переменные и типы данных:
 - Объяснение различных типов данных (int, float, char).
 - Примеры объявления переменных.
- 3. Управляющие конструкции:
 - Условные операторы (if, else).
 - Циклы (for, while).
- 4. Работа с функциями:
 - Как создавать и использовать функции для организации кода.
- 5. Пример программы:
 - Написание простого кода, который считывает данные с датчика и управляет светодиодом.
- 6. Заключение:
 - Подведение итогов, обсуждение важности структуры программы.
 - Ответы на вопросы участников.
- 10. Проект «Маячок»

Цель проекта: Создание простого маячка, который будет моргать светодиодами с использованием широтно-импульсной модуляции.

Оборудование: - Arduino (например, Arduino Uno),- Светодиоды (разных цветов),- Резисторы,- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
 - Сборка схемы подключения светодиодов к Arduino через резисторы.
- 2. Разработка программы:
 - Написание кода на С++ для управления яркостью светодиодов с помощью ШИМ.

```
- Пример кода:
        const int ledPin = 9; // Пин, к которому подключен светодиод void setup() {
        pinMode(ledPin, OUTPUT);
    }
    void loop() {
        for (int brightness = 0; brightness <= 255; brightness++) {
            analogWrite(ledPin, brightness); // Установка яркости delay(10);
        }
        for (int brightness = 255; brightness >= 0; brightness--) {
            analogWrite(ledPin, brightness); delay(10);
        }
    }
```

- 3. Тестирование проекта:
 - Загрузка программы на Arduino и наблюдение за работой маячка.
 - Обсуждение возможных улучшений (например, добавление нескольких светодиодов).
- 4. Заключение:
 - Подведение итогов проекта, обсуждение полученного опыта.
 - Ответы на вопросы участников.
- 11. Проект «Маячок с нарастающей яркостью»

Цель проекта: Создание маячка, который будет плавно увеличивать и уменьшать яркость светодиода.

Оборудование: - Arduino (например, Arduino Uno),- Светодиод,- Резистор (220 Ом),- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
 - Соберите схему подключения светодиода к Arduino через резистор.
- 2. Разработка программы:

```
- Напишите код, который будет плавно изменять яркость светодиода. Пример кода:
    const int ledPin = 9; // Пин, к которому подключен светодиод void setup() {
        pinMode(ledPin, OUTPUT);
    }
    void loop() {
        // Увеличение яркости
        for (int brightness = 0; brightness <= 255; brightness++) {
            analogWrite(ledPin, brightness);
            delay(10);
        }
        // Уменьшение яркости
        for (int brightness = 255; brightness >= 0; brightness--) {
            analogWrite(ledPin, brightness);
            delay(10);
        }
    }
```

- 3. Тестирование проекта:
 - Загрузите программу на Arduino и наблюдайте за плавным изменением яркости светодиода.
- 4. Заключение:

- Обсудите возможности улучшения проекта, например, добавление режима мигания или использования нескольких светодиодов.
- 12. Проект «Светильник с управляемой яркостью»

Цель проекта: Создание светильника, яркость которого можно регулировать с помощью потенциометра.

Оборудование: - Arduino (например, Arduino Uno),- Светодиод,- Резистор (220 Ом),- Потенциометр (10 кОм),- Макетная плата,- Провода для соединений,

Ход проекта:

- 1. Подготовка оборудования:
 - Соберите схему подключения светодиода и потенциометра к Arduino.
- 2. Разработка программы:
 - Напишите код для управления яркостью светодиода с помощью потенциометра.

```
Пример кода:
```

```
const int ledPin = 9; // Пин для светодиода const int potPin = A0; // Пин для потенциометра void setup() { pinMode(ledPin, OUTPUT); } void loop() { int potValue = analogRead(potPin); // Чтение значения с потенциометра int brightness = map(potValue, 0, 1023, 0, 255); // Преобразование значения analogWrite(ledPin, brightness); // Установка яркости delay(10); }
```

- 3. Тестирование проекта:
- Загрузите программу на Arduino и проверьте, как изменение положения потенциометра влияет на яркость светодиода.
- 4. Заключение:
- Обсудите возможные применения этого проекта, такие как создание регулируемого освещения в комнате.
- 13. Проект «Ночной светильник»

Цель проекта: Создание ночного светильника, который автоматически включается при низком уровне освещения.

Оборудование: - Arduino (например, Arduino Uno),- Светодиод,- Резистор (220 Ом),- Фоторезистор (LDR),- Резистор (10 кОм),- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
 - Соберите схему подключения фоторезистора и светодиода к Arduino.
- 2. Разработка программы:
- Напишите код для автоматического управления светодиодом в зависимости от уровня освещения.

```
Пример кода:
```

```
const int ledPin = 9; // Пин для светодиода const int ldrPin = A0; // Пин для фоторезистора void setup() { pinMode(ledPin, OUTPUT); Serial.begin(9600); // Для отладки } void loop() {
```

```
int ldrValue = analogRead(ldrPin); // Чтение значения с фоторезистора Serial.println(ldrValue); // Вывод значения в Serial Monitor if (ldrValue < 300) { // Уровень освещения ниже порога analogWrite(ledPin, 255); // Включаем светодиод } else { analogWrite(ledPin, 0); // Выключаем светодиод } delay(100);
```

- 3. Тестирование проекта:
- Загрузите программу на Arduino и проверьте работу ночного светильника при изменении освещения.
- 14. Проект «Пульсар»

Цель проекта: Создание светового эффекта «пульсара», при котором светодиод будет плавно включаться и выключаться, имитируя пульсацию.

Оборудование: - Arduino (например, Arduino Uno),- Светодиод,- Резистор (220 Ом),- Макетная плата,- Провода для соединений,

Ход проекта:

- 1. Подготовка оборудования:, Соберите схему подключения светодиода к Arduino через резистор.,
- 2. Разработка программы:, Напишите код для создания эффекта пульсации., Пример кода: const int ledPin = 9; // Пин для светодиода

```
void setup() {
    pinMode(ledPin, OUTPUT);
}

void loop() {
    // Увеличение яркости
    for (int brightness = 0; brightness <= 255; brightness++) {
        analogWrite(ledPin, brightness);
        delay(10);
    }
    // Уменьшение яркости
    for (int brightness = 255; brightness >= 0; brightness--) {
        analogWrite(ledPin, brightness);
        delay(10);
    }
}
```

- 3. Тестирование проекта:
 - Загрузите программу на Arduino и наблюдайте за эффектом пульсации светодиода.
- 4. Заключение:
- Обсудите возможности изменения скорости пульсации или добавления различных цветов с помощью RGB-светодиодов.
- 15. Проект «Бегущий огонёк»

Цель проекта: Создание эффекта бегущего огонька, при котором несколько светодиодов последовательно загораются и гаснут.

Оборудование: - Arduino (например, Arduino Uno),- 5 светодиодов,- 5 резисторов (220 Ом),- Макетная плата,- Провода для соединений,

Ход проекта:

1. Подготовка оборудования:

- Соберите схему подключения 5 светодиодов к различным пинам Arduino через резисторы.
- 2. Разработка программы:
 - Напишите код для создания эффекта бегущего огонька.

```
Пример кода:
    const int ledCount = 5; // Количество светодиодов
    const int ledPins[ledCount] = {2, 3, 4, 5, 6}; // Пины для светодиодов
    void setup() {
        for (int i = 0; i < ledCount; i++) {
            pinMode(ledPins[i], OUTPUT);
        }
    }
    void loop() {
        for (int i = 0; i < ledCount; i++) {
```

digitalWrite(ledPins[i], HIGH); // Включаем текущий светодиод

digitalWrite(ledPins[i], LOW); // Выключаем текущий светодиод

3. Тестирование проекта:

delay(100);

- Загрузите программу на Arduino и наблюдайте за эффектом бегущего огонька.
- 4. Заключение:
- Обсудите возможности изменения скорости бегущего огонька или добавления дополнительных эффектов, таких как обратный бегущий огонёк.
- 16. Проект «Миксер»

Цель проекта: Создание простого устройства, имитирующего работу миксера с возможностью регулировки скорости вращения.

Оборудование: - Arduino (например, Arduino Uno),- Мотор (например, DC мотор),- Модуль управления мотором (например, L298N),- Потенциометр (10 кОм),- Макетная плата,- Провода для соединений,

Ход проекта:

- 1. Подготовка оборудования:
- Соберите схему подключения мотора и потенциометра к Arduino через модуль управления мотором.
- 2. Разработка программы:
 - Напишите код для управления скоростью вращения мотора с помощью потенциометра.

Пример кода:

```
const int motorPin = 9; // Пин для управления мотором const int potPin = A0; // Пин для потенциометра void setup() { pinMode(motorPin, OUTPUT); } void loop() { int potValue = analogRead(potPin); // Чтение значения с потенциометра int motorSpeed = map(potValue, 0, 1023, 0, 255); // Преобразование значения analogWrite(motorPin, motorSpeed); // Установка скорости мотора delay(10); }
```

- 3. Тестирование проекта:
- Загрузите программу на Arduino и проверьте работу миксера при изменении положения потенциометра.
- 4. Заключение:

- Обсудите возможности улучшения проекта, такие как добавление кнопки для включения/выключения или режимов работы.
- 17. Проект «Кнопочный переключатель»

Цель проекта: Создание простого устройства, которое будет включать и выключать светодиод при нажатии кнопки.

Оборудование: - Arduino (например, Arduino Uno), - Светодиод, - Резистор (220 Ом), - Кнопка, -Резистор для кнопки (10 кОм),- Макетная плата,- Провода для соединений, Ход проекта:

- 1. Подготовка оборудования:
 - Соберите схему подключения светодиода и кнопки к Arduino.
- 2. Разработка программы:
 - Напишите код для управления светодиодом с помощью кнопки.

```
Пример кода:
```cpp
const int ledPin = 9; // Пин для светодиода
const int buttonPin = 2; // Пин для кнопки
int buttonState = 0; // Переменная для хранения состояния кнопки
bool ledState = false; // Состояние светодиода
void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT);
void loop() {
 buttonState = digitalRead(buttonPin); // Чтение состояния кнопки
 if (buttonState == HIGH) {
 ledState = !ledState; // Переключение состояния светодиода
 digitalWrite(ledPin, ledState? HIGH: LOW);
 delay(300); // Задержка для предотвращения дребезга контактов
}
```

- 3. Тестирование проекта:
  - Загрузите программу на Arduino и проверьте работу кнопочного переключателя.
- 4. Заключение:
- Обсудите возможности добавления нескольких кнопок для управления несколькими светодиодами.
- 18. Проект «Светильник с кнопочным управлением»

Цель проекта: Создание светильника, который можно включать и выключать с помощью кнопки, а также регулировать яркость.

Оборудование: - Arduino (например, Arduino Uno),- Светодиод или RGB-светодиод,- Резистор (220 Ом),- Кнопка,- Потенциометр (10 кОм),- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
  - Соберите схему подключения светодиода, кнопки и потенциометра к Arduino.
- 2. Разработка программы:
  - Напишите код для управления яркостью светодиода и его включением/выключением.

```
Пример кода:
```

```
```cpp
const int ledPin = 9; // Пин для светодиода
const int buttonPin = 2; // Пин для кнопки
const int potPin = A0; // Пин для потенциометра
```

```
int buttonState = 0;
bool ledState = false;
void setup() {
  pinMode(ledPin, OUTPUT);
  pinMode(buttonPin, INPUT);
void loop() {
  buttonState = digitalRead(buttonPin);
  if (buttonState == HIGH) {
    ledState = !ledState;
    delay(300);
  if (ledState) {
    int potValue = analogRead(potPin);
    int brightness = map(potValue, 0, 1023, 0, 255);
    analogWrite(ledPin, brightness);
  } else {
    digitalWrite(ledPin, LOW);
}
```

- 3. Тестирование проекта:
- Загрузите программу на Arduino и проверьте работу светильника с кнопочным управлением и регулировкой яркости.
- 4. Заключение:
- Обсудите возможности добавления различных режимов освещения или цветовых эффектов с RGB-светодиодами.
- 19. Проект «Секундомер»

Цель проекта: Создание простого секундомера с возможностью начала и остановки отсчета времени.

Оборудование: - Arduino (например, Arduino Uno),- ЖК-дисплей (например, 16х2),- Кнопка,- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
 - Соберите схему подключения ЖК-дисплея и кнопки к Arduino.
- 2. Разработка программы:
 - Напишите код для работы секундомера.

```
Пример кода:
```cpp
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Пины для ЖК-дисплея const int buttonPin = 6; // Пин для кнопки bool running = false; unsigned long startTime; void setup() {
 lcd.begin(16, 2); pinMode(buttonPin, INPUT); lcd.print("Секундомер");
} void loop() {
 if (digitalRead(buttonPin) == HIGH) {
 running = !running; if (running) {
```

```
startTime = millis();
}
delay(300); // Задержка для предотвращения дребезга контактов
}
if (running) {
 unsigned long elapsedTime = millis() - startTime;
 lcd.setCursor(0, 1);
 lcd.print(elapsedTime / 1000); // Отображение времени в секундах lcd.print("s "); // Очистка остатка строки
}

Тактичествичества и по виден.
```

- 3. Тестирование проекта:
  - Загрузите программу на Arduino и проверьте работу секундомера.
- 20. Проект «Счётчик нажатий»

Цель проекта: Создание устройства, которое будет считать количество нажатий кнопки и отображать результат на ЖК-дисплее.

Оборудование: - Arduino (например, Arduino Uno),- ЖК-дисплей (например, 16х2),- Кнопка,- Резистор (10 кОм),- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
  - Соберите схему подключения ЖК-дисплея и кнопки к Arduino.
- 2. Разработка программы:
  - Напишите код для счётчика нажатий.

```
Пример кода:
```cpp
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Пины для ЖК-дисплея
const int buttonPin = 6; // Пин для кнопки
int count = 0; // Переменная для хранения количества нажатий
int lastButtonState = LOW; // Предыдущее состояние кнопки
void setup() {
  lcd.begin(16, 2);
  pinMode(buttonPin, INPUT);
  lcd.print("Нажатий: ");
void loop() {
  int buttonState = digitalRead(buttonPin);
  if (buttonState == HIGH && lastButtonState == LOW) {
    count++; // Увеличиваем счётчик при нажатии
    delay(200); // Задержка для предотвращения дребезга контактов
  lastButtonState = buttonState;
  lcd.setCursor(0, 1);
  lcd.print(count); // Отображаем количество нажатий
  lcd.print("
              "); // Очистка остатка строки
```

- 3. Тестирование проекта:
 - Загрузите программу на Arduino и проверьте работу счётчика нажатий.
- 4. Заключение:
- Обсудите возможности добавления функции сброса счётчика или сохранения значения в EEPROM.
- 21. Проект «Комнатный термометр»

Цель проекта: Создание устройства, которое будет измерять и отображать температуру в комнате.

Оборудование: - Arduino (например, Arduino Uno),- Датчик температуры (например, LM35 или DHT11),- ЖК-дисплей (например, 16х2),- Макетная плата,- Провода для соединений,

Ход проекта:

- 1. Подготовка оборудования:
 - Соберите схему подключения датчика температуры и ЖК-дисплея к Arduino.
- 2. Разработка программы:
 - Напишите код для считывания температуры и отображения её на дисплее.

```
Пример кода для LM35:
```cpp
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Пины для ЖК-дисплея
const int tempPin = A0; // Пин для датчика температуры
void setup() {
 lcd.begin(16, 2);
 lcd.print("Температура:");
void loop() {
 int sensorValue = analogRead(tempPin);
 float voltage = sensorValue * (5.0 / 1023.0);
 float temperatureC = voltage * 100; // Конвертация в Цельсии
 lcd.setCursor(0, 1);
 lcd.print(temperatureC);
 lcd.print(" С "); // Очистка остатка строки
 delay(1000); // Обновление каждую секунду
```

- 3. Тестирование проекта:
  - Загрузите программу на Arduino и проверьте отображение температуры.
- 4. Заключение:
- Обсудите возможности добавления функции отображения температуры в Фаренгейтах или графика изменения температуры.
- 22. Проект «Метеостанция»

Цель проекта: Создание метеостанции, которая будет измерять температуру, влажность и атмосферное давление.

Оборудование:- Arduino (например, Arduino Uno),- Датчик DHT11 или DHT22 (для температуры и влажности),- Датчик BMP180 (для атмосферного давления),- ЖК-дисплей (например, 16х2),- Макетная плата,- Провода для соединений,

- 1. Подготовка оборудования:
  - Соберите схему подключения датчиков и ЖК-дисплея к Arduino.
- 2. Установка библиотек:
  - Убедитесь, что установлены библиотеки для работы с DHT и BMP180.
- 3. Разработка программы:
  - Напишите код для считывания данных с датчиков и отображения их на дисплее.

```
Пример кода:
```cpp
#include <LiquidCrystal.h>
#include <DHT.h>
#include <Wire.h>
#include <Adafruit Sensor.h>
```

```
#include <Adafruit BMP085 U.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Пины для ЖК-дисплея
#define DHTPIN 7
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
Adafruit BMP085 Unified bmp;
void setup() {
  lcd.begin(16, 2);
  dht.begin();
  bmp.begin();
  lcd.print("Метеостанция");
  delay(2000);
void loop() {
  float temperature = dht.readTemperature();
  float humidity = dht.readHumidity();
  sensors event t event;
  bmp.getEvent(&event);
  float pressure = event.pressure;
  lcd.setCursor(0, 0);
  lcd.print("T:");
  lcd.print(temperature);
  lcd.print("C H:");
  lcd.print(humidity);
  lcd.setCursor(0, 1);
  lcd.print("P:");
  lcd.print(pressure);
  lcd.print("hPa");
      delay(2000); // Обновление каждые 2 секунды
```

4. Тестирование проекта:

- Загрузите программу на Arduino и проверьте отображение данных о температуре, влажности и давлении.

Планируемые результаты

Предметные результаты

Обучающийся научится: называть и характеризовать актуальные и перспективные технологии нематериальной производить мониторинг и оценку состояния и выявлять возможные перспективы развития технологий в произвольно выбранной отрасли на основе работы с информационными источниками различных требующую формулировать проблему, технологического выявлять И решения; определять цели проектирования субъективно нового продукта или технологического решения; готовить предложения технических или технологических решений с использованием методов и инструментов развития креативного мышления, в том числе с использованием инструментов, таких дизайн-мышление, ТРИЗ планировать этапы выполнения работ и ресурсы для достижения целей проектирования; применять базовые принципы управления проектами; следовать технологическому процессу, в том числе в процессе изготовления субъективно нового продукта; прогнозировать по известной технологии итоговые характеристики продукта в зависимости от изменения параметров и/или ресурсов, проверять прогнозы опытноэкспериментальным путём, в том числе самостоятельно планируя такого рода эксперименты; в зависимости от ситуации оптимизировать базовые технологии, проводить анализ

возможности использования альтернативных ресурсов, соединять в единый технологический

процесс несколько технологий без их видоизменения для получения сложносоставного материального или информационного продукта; проводить оценку испытание полученного продукта; И проводить анализ потребностей в тех или иных материальных или информационных продуктах; описывать технологическое решение с помощью текста, схемы, рисунка, графического изображения сочетаний; ИХ анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации; анализировать разработку и/или реализацию проектов; проводить проводить анализ конструкции и конструирование механизмов, простейших роботов с помощью виртуального выполнять чертежи и эскизы, а также работать в системах автоматизированного проектирования; выполнять базовые операции редактора компьютерного трёхмерного проектирования (на выбор характеризовать группы профессий, относящихся к актуальному технологическому укладу; характеризовать ситуацию на региональном рынке труда, называть тенденции её развития; разъяснять социальное значение групп профессий, востребованных на региональном рынке труда; анализировать и обосновывать свои мотивы и причины принятия тех или иных решений, связанных с выбором и реализацией образовательной траектории; анализировать свои возможности и предпочтения, связанные с освоением определённого уровня образовательных программ и реализацией тех или иных видов деятельности.

Обучающийся получит возможность научиться: осуществлять аргументированный прогноз развития технологий в сферах, рассматриваемых в рамках предметной области; осуществлять анализ и производить оценку вероятных рисков применения перспективных технологий и последствий развития существующих технологий; модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности и в соответствии характеристиками разрабатывать технологию на основе базовой технологизировать свой опыт, представлять на основе ретроспективного анализа и унификации деятельности описание в виде инструкции или иной технологической документации; оценивать коммерческий потенциал продукта и/или предлагать альтернативные варианты образовательной траектории для профессионального характеризовать пипида предприятий региона получать опыт поиска, извлечения, структурирования и обработки информации о перспективах развития современных производств и тенденциях их развития в регионе проживания и в мире, а также информации об актуальном состоянии и перспективах развития регионального и мирового рынка труда.

Личностные результаты

Обучающийся получит возможность для формирования следующих личностных результатов: готовность и способность обучающихся к саморазвитию и самообразованию на основе обучению готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, устойчивых учётом познавательных сформированность ответственного отношения учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде; сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного готовность и способность вести диалог с другими людьми и достигать в нём взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнёра по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, способность готовность К ведению переговоров);

готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов.

Метапредметные результаты

Обучающийся получит возможность для формирования следующих регулятивных УУД: анализировать существующие и планировать будущие образовательные результаты; ставить цель и формулировать задачи собственной образовательной деятельности с учётом выявленных существующих затруднений возможностей; выстраивать жизненные планы на краткосрочное будущее (определять целевые ориентиры, формулировать адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели; составлять план решения проблемы (описывать жизненный цикл выполнения проекта, алгоритм проведения исследования); определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства ДЛЯ ИХ устранения; описывать свой опыт, оформляя его для передачи другим людям в виде алгоритма решения практических задач; планировать и корректировать свою индивидуальную образовательную траекторию; оценивать свою деятельность, анализируя и аргументируя причины достижения или отсутствия планируемого результата; фиксировать собственных И анализировать динамику образовательных соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы о причинах её успешности/эффективности или неуспешности/неэффективности, находить способы выхода из критической ситуации.

РАЗДЕЛ II.«КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ, ВКЛЮЧАЮЩИЙ ФОРМЫ АТТЕСТАЦИИ».

2.1. Календарный учебный график

№ п/ п	Дата	Тема занятия	Кол- во часо в	Время проведени я занятия	Форма занятия	Место проведени я	Форма контроля
1	06.09.202 4	Техника безопасности. Основные законы электричества	2	14:20	группова я	МБОУ СОШ №21	Педагогическ ое наблюдение, опрос
2	13.09.202	Описание микроконроллерн ой платы и набора по робототехнике	2	14:20	группова я	МБОУ СОШ №22	Педагогическ ое наблюдение, опрос
3	20.09.202	Подключение микроконтроллерной платы к компьютеру. Среда разработки Ардуино	2	14:20	группова я	МБОУ СОШ №23	Педагогическ ое наблюдение, опрос
4	27.09.202 4	Основы схемотехники	2	14:20	группова я	МБОУ СОШ №24	Педагогическ ое наблюдение, опрос
5	04.10.202	Основные компоненты: конденсатор, резистор, транзистор, диод	2	14:20	группова я	МБОУ СОШ №25	Педагогическ ое наблюдение, опрос
6	11.10.202 4	Аналоговый сигнал, цифровой сигнал	2	14:20	группова я	МБОУ СОШ №26	Педагогическ ое наблюдение, опрос
7	18.10.202 4	Датчики и сенсоры	2	14:20	группова я	МБОУ СОШ №27	Педагогическ ое наблюдение, опрос
8	01.11.202	Широтно- импульсная модуляция	2	14:20	группова я	МБОУ СОШ №28	Педагогическ ое наблюдение, опрос
9	08.11.202 4	Структура программы на С++ для Arduino	2	14:20	группова я	МБОУ СОШ №29	Педагогическ ое наблюдение, опрос
10	15.11.202 4	Проект «Маячок»	2	14:20	группова я	МБОУ СОШ №30	Педагогическ ое наблюдение, опрос

11	22.11.202 4	Проект Маячок с нарастающей яркостью	2	14:20	группова я	МБОУ СОШ №31	Педагогическ ое наблюдение, опрос
12	29.11.202 4	Проект Светильник с управляемой яркостью	2	14:20	группова я	МБОУ СОШ №32	Педагогическ ое наблюдение, опрос
13	06.12.202 4	Проект Ночной светильник	1	14:20	группова я	MБОУ СОШ №33	Педагогическ ое наблюдение, опрос
14	13.12.202 4	Проект Пульсар	1	14:20	группова я	МБОУ СОШ №34	Педагогическ ое наблюдение, опрос
15	20.12.202	Проект Бегущий огонёк	1	14:20	группова я	MБОУ СОШ №35	Педагогическ ое наблюдение, опрос
16	27.12.202 4	Проект Миксер	1	14:20	группова я	MБОУ СОШ №36	Педагогическ ое наблюдение, опрос
17	10.01.202 5	Проект Кнопочный переключатель	1	14:20	группова я	МБОУ СОШ №37	Педагогическ ое наблюдение, опрос
18	17.01.202 5	Проект Светильник с кнопочным управлением	1	14:20	группова я	МБОУ СОШ №38	Педагогическ ое наблюдение, опрос
19	24.01.202 5	Проект Секундомер	1	14:20	группова я	МБОУ СОШ №39	Педагогическ ое наблюдение, опрос
20	31.01.202 5	Проект Счётчик нажатий	1	14:20	группова я	МБОУ СОШ №40	Педагогическ ое наблюдение, опрос
21	07.02.202 5	Проект Комнатный термометр	1	14:20	группова я	МБОУ СОШ №41	Педагогическ ое наблюдение, опрос
22	14.02.202 5	Проект Метеостанция	1	14:20	группова я	МБОУ СОШ №42	Педагогическ ое наблюдение, опрос

2.2. Раздел программы «Воспитание»

2.2.1 Аннотация к разделу

Раздел «Воспитание» Программы решает основную идею комплексного подхода в образовательном процессе и непосредственно связан с реализацией Программы «Юный исследователь».

Воспитание ребенка в объединении происходит в процессе обучения и общения его со сверстниками и педагогами. К данному разделу прилагается комплекс мероприятий, позволяющих усилить его воспитательный эффект, достигнуть планируемых результатов Программы, используя разнообразные формы работы, создать условия для реализации творческого потенциала детей в духовной и предметно-продуктивной деятельности.

Формы воспитания. Обучающие занятия для формирования умений соответственно теме занятия, участие в организаторской деятельности по ведению проектов, познавательные игры для развития командного духа.

Методы воспитания.

- 1. Пример (модель поведения): Личный пример взрослых, который служит моделью для подражания.
- 2. Объяснение и разъяснение: Обсуждение норм и правил поведения, объяснение их значимости.
- 3. Поощрение: Позитивное подкрепление желаемого поведения через похвалу или награды.
- 4. Наказание: Применение негативных последствий за нежелательное поведение (в разумных пределах).
- 5. Игровые методы: Использование игр для формирования социальных навыков и ценностей.
- 6. Дискуссии и дебаты: Стимулирование критического мышления и обсуждение различных точек зрения.
- 7. Ролевые игры: Помогают детям осознать различные социальные роли и ситуации.
- 8. Проектная деятельность: Работа над совместными проектами для развития командного духа и ответственности.
- 9. Творческая деятельность: Включение детей в художественную, музыкальную и другую творческую деятельность для развития креативности.

2.2.2 Цель и задачи воспитания

Цель: развитие личности, самоопределение и социализация детей на основе социокультурных, духовно-нравственных ценностей и принятых в российском обществе правил и норм поведения в интересах человека, семьи, общества и государства, формирование чувства патриотизма, гражданственности, уважения к памяти защитников Отечества и подвигов Героев Отечества, закону и правопорядку, человеку труда и старшему поколению.

Задачи воспитания:

- Использовать в воспитании обучающихся возможности учебного занятия по Программе как источника поддержки и развития интереса к познанию и творчеству; содействовать к успеху каждого ребенка
- Способствовать формированию и раскрытию творческой личности каждого ребенка
- Выявление и развитие творческих способностей, обучающихся путем создания творческой атмосферы в объединении и в образовательной организации
- Организовать работу с родителями (законными представителями) обучающихся для совместного решения проблем воспитания и социализации детей и подростков
- Реализовать потенциал наставничества в воспитании детей как основу поддержки и развития мотивации к саморазвитию и самореализации

2.2.3 Виды формы и содержание деятельности

№ п/п	Название события, мероприятия	Сроки	Форма проведения	Практический результат и информационный продукт, иллюстрирующий успешное достижение цели события
1	День открытых дверей	Сентябрь	Рекламное мероприятие, предполагающее свободный доступ родителей (законных представителей), обучающихся в учебные кабинеты для участия в открытых мастер-классах	Фото- и видеоматериалы с выступлением детей
2	Наставничество в объединении	Сентябрь	Беседы. Коллективные проекты.	Фото- и видеоматериалы с выступлением детей
3	Групповая игра "Три факта"	Октябрь	Игры на знакомство и сплочение коллектива	Фото- и видеоматериалы с выступлением детей
4	«Накануне Рождества»	Январь	Игровая программа	Фото- и видеоматериалы с выступлением детей
5	«Судьбы, опаленные Афганистаном»	Февраль	Исторический час	Фото- и видеоматериалы с выступлением детей
6	«Как на Масленой неделе»	Март	Игровая программа	Фото- и видеоматериалы с выступлением детей
7	Дети — герои великой Отечественной войны»	Май	Исторический час	Фото- и видеоматериалы с выступлением детей

2.2.4. Оценка результативности реализации раздела «Воспитание»

Форма проведения	Название	Сроки проведения
	Психологопедагогическая диагностика для	
Входная диагностика	изучения детского коллектива.	Сентябрь
	Анкета по изучению потребностей и интересов	
Анкетирование	обучающихся	Ноябрь
	Мониторинг уровня удовлетворённости	
Мониторинг	образовательным процессом в объединении	Апрель
Игровые методики	«Выявление лидера в детском коллективе»	Сентябрь
	«Карта интересов» (профориентация	
Тестирование	обучающихся)	Март

2.3. Условия реализации программы

Материально-техническое обеспечение

- 1. Конструктивные элементы из металла для сборки мобильного робота
- 2. Конструктивные элементы из металла для сборки манипуляционного робота
- 3. Сервопривод тип 1 4 шт
- 4. Сервопривод тип 2 2 шт
- 5. Привод постоянного тока 2 шт
- 6. Фотоэлектрический модуль для числа оборотов 2 шт
- 7. Шаговый двигатель 2 шт
- 8. Шаровая точка опоры 1 шт
- 9. Аккумуляторная батарея 1 шт
- 10. Зарядное устройство 1 шт
- 11. Блок питания 1 шт
- 12. Плата для беспаечного прототипирования 1 ш
- 13. Набор проводов для прототипирования 1 шт
- 14. Набор Светодиодов 1 шт
- 15. Набор резисторов 1 шт
- 16. Робототехнический контроллер 1 шт

Информационное обеспечение:

Интернет-источники: - https://rmc23.ru/

Региональный модельный центр дополнительного образования детей Краснодарского края - https://p23.навигатор.дети/

Навигатор дополнительного образования детей Краснодарского края». - http://dopedu.ru/ Информационно-методический портал системы дополнительного образования.

Кадровое обеспечение: педагог дополнительного образования, имеющей по профилю деятельности профессиональное высшее образование

2.4. Формы аттестации

Виды контроля	Задачи	Сроки	Формы
Входной	Диагностика уровня вновь поступивших детей практических умений и творческих способностей	Сентябрь, октябрь	Педагогическое наблюдение. Практические задания, анкетирование, тестированеи
Текущий	Выявление динамики творческого развития, успехов в практикоориентированной деятельности. Акцент на успехи или недостатки в работе над отдельными темами	На каждом учебном занятии.	Просмотр работ, рефлексия, наблюдение, самооценка и самодиагностика
Промежуточный	Анализ уровня освоения раздела, темы.	Проводится по окончании изучения каждого раздела	участие в конкурсах и акциях, зачеты по разделам.

Итоговый	Анализ уровня освоения материала.	В конце учебного года	презентация, защита проектов на итоговом занятии, в рамках районной творческой олимпиады, внешняя экспертиза,
----------	-----------------------------------	-----------------------------	---

2.5. Оценочные материалы

В качестве оценки творческой деятельности детей по данной программе могут использоваться: - анализ формирования у обучающегося навыка самостоятельно оценивать свои действия; - анализ результатов основных этапов освоения программы; -самостоятельная практическая работа; -опрос, тестирование, собеседование; - количество обучающихся, желающих продолжить дальнейшее обучение по Программе.

Оценка результатов усвоения теоретических знаний и приобретения практических умений и навыков, а также уровень эмоционально-психологической готовности обучающихся к занятиям по программе будет проходить по 3-х бальной системе:

Виды контроля	Низкий	Базовый	Повышенный
Входной	Не может ответить на все вопросы	Отвечает с подсказками педагога	Отвечает самостоятельно
Текущий	Владеет изученным материалом на уровне опознания, различения, соотнесения.	Умеет выполнять Типовые задачи с помощью педагога.	Умеет самостоятельно решать поставленные типовые задачи.
Итоговый	Не сформированы ценностные понятия, не развиты эмоции сочувствия, ребенок не владеет навыками контроля и саморегуляции поведения, не может длительное время держать в голове правило и образец, действовать по инструкции, не умеет договариваться в процессе «совместной деятельности»	Нравственные ценности, нормы и правила декларируются, но не осознаны ребенком, частично проявляются в его поведении и эмоциональных отношениях. Ситуативное Проявление контроля, самоконтроля и саморегуляции, соблюдает правила при напоминании педагога, владеет	Ребенок осознает и применяет во взаимодействии с другими нравственные нормы и правила поведения, эмоционально реагирует на состояния других детей и готов прийти на помощь. Владеет навыками самоконтроля и саморегуляции, способен выполнять правила в деятельности и действовать по предложенной инструкции, владеет навыками

Отслеживание метапредметных результатов по Программе осуществляется через три сферы образовательного, в которых происходит формирование метапредметных компетенций, и соответственно, необходим учет их уровней:

- дополнительная образовательная деятельность (освоение дополнительной общеобразовательной общеразвивающей программы «Юный исследователь»);
- культурно-досуговая деятельность (участие в познавательных программах, праздниках, коллективных творческих делах, культурнообразовательных событиях и пр.);
 - конкурсная деятельность (участие в конкурсных мероприятиях различных уровней).

2.6. Методические материалы

Отслеживание метапредметных результатов по Программе осуществляется через три сферы образовательного, в которых происходит формирование метапредметных компетенций, и соответственно, необходим учет их уровней: - дополнительная образовательная деятельность - культурно-досуговая деятельность (участие в познавательных программах, праздниках, коллективных творческих делах, культурнообразовательных событиях и пр.); - конкурсная деятельность (участие в конкурсных мероприятиях различных уровней)

- Гуманно-личностные технологии. -Технологии сотрудничества. - Технологии свободного воспитания. 3. По организационным формам: Групповые технологии предполагают фронтальную работу, групповую (одно задание на разные группы), межгрупповую (группы выполняют разные задания в рамках общей цели), работу в статичных парах. Технология дифференцированного обучения предполагает дифференциацию по возрасту, уровню развития; позволяет осуществлять развивающее - дифференцированное обучение с учетом разнообразия состава обучающихся. Основные методы организации деятельности обучающихся на занятиях следующие: групповой, метод индивидуальных занятий.

Групповой метод. Групповой метод более эффективно позволяет контролировать обучающихся и вносить необходимые коррективы: направлять внимание на группу, выполняющую более сложные задания, или на менее подготовленную группу. Наряду с данными методами формирования знаний, умений, навыков применяются методы стимулирования познавательной деятельности: поощрение; опора на положительное; контроль, самоконтроль, самооценка. В основе процесса обучения лежат следующие методические принципы: - единство художественного и технического развития обучающегося; - постепенность и последовательность в овладении навыков актерского мастерства; - применение индивидуального подхода к обучающимся.

Основными формами организации деятельности обучающихся на занятиях являются: - индивидуальные, групповые. Индивидуальная - самостоятельное выполнение заданий; Групповая - предполагает наличие системы «педагог-группа обучающихся»; Формы занятий: - учебное занятие; - открытые занятия; - выступления; - мастер-классы; - репетиция; - творческий отчёт. Организация занятий обеспечивается рядом методических приемов, которые вызывают у детей желание обучаться театральному творчеству. Методы обучения: - Иллюстративный; - Рекомендации. Проводить занятия в форме игры;

Метод аналогий. В программе обучения широко используется метод аналогий с животным и растительным миром (образ, поза, двигательная имитация), где педагог-режиссер, используя игровую атрибутику, образ, активизирует работу правого полушария головного мозга ребенка, егопространственно-образное мышление, способствуя высвобождению скрытых творческих возможностей подсознания. Словесный метод. Это беседа о характере произведения, средствах ее выразительности, объяснение замысла, оценка. Практический метод заключается в выполнении конкретного упражнения, этюда.

2.7. Список литературы

Список литературы для педагогов

Книги:

- 1. "Arduino Cookbook" Michael Margolis, John M. Iovine
 - Практическое руководство с множеством рецептов и проектов.
- 2. "Getting Started with Arduino" Massimo Banzi, Michael Shiloh
 - Основы работы с Arduino от одного из создателей платформы.
- 3. "Arduino Projects Book" Scott Fitzgerald
 - Книга с проектами для начинающих, которая идет в комплекте с набором Arduino.
- 4. "Exploring Arduino: Tools and Techniques for Engineering Wizardry" Jeremy Blum
 - Глубокое погружение в возможности Arduino с практическими проектами.
- 5. "Programming Arduino: Getting Started with Sketches" Simon Monk
 - Введение в программирование на Arduino и написание скетчей.
- 6. "Arduino Robotics" John-David Warren, Josh Adams, and Avery Pennarun
 - Проекты и идеи для создания роботов с использованием Arduino.
- 7. "Arduino for Dummies" John Nussey
 - Легкий и доступный ввод в мир Arduino для новичков.

Онлайн-ресурсы:

- 1. Официальный сайт Arduino [arduino.cc](https://www.arduino.cc)
 - Документация, примеры проектов и форумы.
- 2. Instructables [instructables.com](https://www.instructables.com)
 - Платформа для пошаговых инструкций по проектам с Arduino.
- 3. Hackster.io [hackster.io](https://www.hackster.io)
 - Сообщество для разработчиков, где можно найти множество проектов на основе Arduino.

Видео-курсы:

- 1. Coursera "Introduction to Programming Electronics in Python"
 - Курс, который охватывает основы работы с Arduino и программированием.
- 2. Udemy "Arduino Step by Step More than 200 Programs"
 - Обширный курс по Arduino с множеством примеров и проектов.

Список литературы для обучающихся

Книги:

- 1. "Arduino для начинающих" Скотт Фицджеральд
 - Практическое руководство с простыми проектами для начинающих.
- 2. "Arduino. Уроки программирования" Н. В. Григорьев
 - Основы программирования на Arduino с примерами и заданиями.
- 3. "Arduino. Проекты для начинающих" Игорь Кузнецов
 - Книга с простыми проектами, которые помогут освоить платформу.
- 4. "Arduino. 50 проектов для начинающих" С. М. Шилов
 - Сборник проектов, охватывающий различные аспекты работы с Arduino.
- 5. "Arduino. Искусство электроники" Джулиан Бэйли
 - Углубленное изучение электроники и программирования на Arduino.
- 6. "Робототехника на Arduino" А. А. Сидоров
 - Книга, посвященная созданию роботов с использованием Arduino.
- 7. "Arduino. Практическое руководство" В. И. Михайлов
 - Полное руководство по работе с Arduino, включая схемы и примеры кода.

Онлайн-ресурсы:

- 1. Официальный сайт Arduino [arduino.cc](https://www.arduino.cc) (можно переключить язык на русский)
 - Документация и проекты.
- 2. Форумы и сообщества [Arduino Forum](https://forum.arduino.cc/) (можно найти разделы на русском языке)
 - Обсуждения и помощь от сообщества.
- 3. YouTube-каналы:
 - Поиск по запросу "Arduino для начинающих" даст множество видеоуроков на русском языке.

Список литературы для родителей

Анализ возможностей импортозамещения электронной компонентной базы. Монография Игнатов, Фадеева, Савиных

Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта Паскуале Фрэнк

Англо-русский толковый словарь по искусственному интеллекту и робототехнике

Пройдаков, Теплицкий

Образовательная Робототехника

Марьясина Татьяна Давидовна

Приложение №1

Мониторинг по дополнительной общеобразовательной общеразвивающей программе «Юный исследователь» технического направления

1 год обучения

	Уровень							Итого:				
	(сть)	Результат (процент выполнен										
	Грактическое задание (3 часть)	Проекты										
	ческое зад	и⋊и⊬твД										
	ракти	Компонент										
	П	Техни										
l		Схемо										
I.BIĬ		безопаснос										
		Основы										
Промежуточный контроль	Задание (2 часть)	3 задание										
IIp		эмнадае 2										
		1 задание										
	Тест (1 часть)	эопрос										
		oodnoa /										
		3 вопрос										
	Te	2 вопрос										
		ј вопрос										
кэ	ЦЄГО	ловручаноп	1.	2.	3.	4	5.	 ондә	выполненн	ых заданий	8	процентах

Механизм оценки уровня усвоения знаний:

Максимальный результат (повышенный уровень) 80-100 % (100% высчитывается: max Teopия + max Практика) Допустимый уровень (базовый уровень) - (от 50% до 79%)

Критический уровень (пониженный уровень) - 49% и ниже

(за 1 блок - по 2 балла за вопрос, 2 блок – по 10 баллов за каждое письменное задание, 3 блок – 50 баллов

Мониторинг по дополнительно общеобразовательной общеразвивающей программе «Юный исследователь» технического направления

<u>Назначение КИМ:</u> КИМ промежуточной аттестации для обучающихся 1 года обучения по дополнительной образовательной общеразвивающей программе «Юный исследователь» технического направления предназначены для выявления уровня усвоенных знаний по программе, а также выявления типичных ошибок обучающихся.

Цель: проверка видов деятельности, умений и навыков, которыми должны обладать обучающиеся в соответствии с программой «Юный исследователь»

Форма аттестации:

Оценка образовательных результатов осуществляется в соответствии с режимами занятий - комплексно:

- на аттестационных занятиях (учебных показах) по картам оценки;
- посредством экспертной оценки выступлений на конкурсах.

Оценочные материалы:

Оценка предметных (по актерскому исполнительству) и метапредметных компетенций (регулятивные, познавательные и коммуникативные) обучающихся осуществляется по итогам театрального показа.

Критерии оценки качества выполнения задания по подготовке 1-3 блоков

Предметные Уровень		Баллы	Критерии оценки				
компетенции	освоения						
1 Блок. Владение теоретическим материалом							
1. Владение	Низкий	0	Ответ дан не верно				
теоретическим Базовый 2		2	Ответ дан верно				
материалом	2 Блок	Вполония	э тааратинасиям матариалам				
1 D			е теоретическим материалом				
1. Владение теоретическим	Низкий	1-3	Задание выполнено не верно/есть 1-3 правильных ответа				
материалом	Базовый	4-8	Задание выполнено частично верно				
	Повышенн ый	9-10	Задание выполнено верно				
	3 Блок. Владение практическими умениями						
1. Основы безопасности	Низкий	1-3	Ограниченные знания в области безопасности				
	Базовый	4-8	Приводит основные принципы безопасности				
	Повышенн ый	9-10	Высокий уровень владения технической безопасности				
2.	Низкий	1-3	Неспособность читать схемы				
Схемотехника	Базовый	4-8	Знает как читать схемы				
	<u>I</u>	<u>I</u>	26				

3. Компоненты	Повышенн ый Низкий	9-10	Читает схемы, собирает компоненты по схеме Знает 1-3 компонента
	Базовый	4-8	Знает 4-8 компонентов
	Повышенн ый	9-10	Знает все используемые компоненты на занятиях
4. Датчики	Низкий	1-3	Слабо ориентируется в назначение датчиков
	Базовый	4-8	Ориентируется в назначении датчиков
	Повышенн ый	9-10	Ориентируется в назначении датчиков, приводит примеры их использования
5. Проекты	Низкий	1-3	Может выполнить 1-2 проекта
	Базовый	4-8	Может выполнить 4-5 проектов
	Повышенн ый	9-10	Может выполнить все проекты

Полхолы к отбору солержания. разработке структуры КИМ: Подходы соответствуют возрастным особенностям обучающихся. КИМ составлены в соответствии с содержанием программы и учебного плана. Задания КИМ различаются по форме и уровню трудности, который определяется способом познавательной деятельности, необходимой для выполнения задания.

Выполнение задания КИМ предполагает осуществление учебных действий, которые направлены на выявление следующих знаний: распознавание, воспроизведение, классификация, систематизация, сравнение, применение знаний (по образцу или в новом контексте). Задания повышенного и высокого уровня сложности, в отличие от базовых, предполагают более сложную, как правило, комплексную по своему характеру творческую деятельность.

Структура КИМ: контрольно-измерительные материалы состоят из 3-х блоков.

Задания промежуточного контроля - позволяют получить количественные показатели, которые являются объективной мерой уровня освоения теоретической и практической части образовательной программы.

	Блок 1 содержит тестовые задания, позволяющие оценить результативность
ПОЗ	навательной деятельности.
	Блок 2 содержит задание по картинке.
	Блок3 содержит творческое задание.

Распределение заданий КИМ по содержанию, видам умений и способам

деятельности.

В работе задания условно разделены на теоретические задания (тестовые задания, относящиеся к разделу образовательной программы по истории театра и театральной

терминологии), письменные задания второго блока (проверка полученных знаний, умений, навыков) и практические задания (задания третьего блока проверяют формирование навыков театральной деятельности – насколько обучающийся может творчески применять полученные знания).

Распределение заданий по уровням сложности

Уровень сложности	Количество	Максимальный	Процент
заданий	заданий	первичный балл	максимального
			первичного балла за
			всю работу
Низкий			
Базовый			
Повышенный			
Итого:			

Время выполнения варианта КИМ

45 минут

План варианта КИМ

- 1. Тестовое задание по теории Программы (10 мин.)
- 2. Письменные задания (15 мин.)
- 3. Практическое задание (20 мин.)

Дополнительные материалы и оборудование

отсутствуют

Условия проведения (требования к специалистам)

Проверку контрольных работ осуществляет сам педагог

Рекомендации по подготовке к работе.

- 1. Внимательно читать инструкцию, выполнять работу строго по ней.
- 2. В практической работе соблюдать технику безопасности, правила поведения на сцене.

КИМ

мониторинга по дополнительно общеобразовательной общеразвивающей программе «Юный исследователь» технического направления

- 1. Инструкция для обучающихся:
- 1. *Назначение заданий КИМа* внутренний контроль теоретических и практических знаний по театральному искусству.

На выполнение работы дается ограниченное время - 40 мин.

Прежде чем начать отвечать, внимательно прочитайте задание.

Не задерживайтесь слишком долго на одном задании, переходите к другому.

2. *Правила заполнения бланков для ответов*. Вы получили комплект материалов, состоящий из тестовой таблицы с вариантами ответов. Внимательно послушайте правила заполнения бланков.

На бланке ответов запишите: - свою фамилию и имя;

- образовательное учреждение: МБОУ СОШ №21
- заполните дату выполнения работы.
- Для выполнения теоретических заданий вам достаточно простого карандаша и ластика, на тот случай, если вы вдруг ошибётесь.

В задании первого Блока все вопросы в таблице стоят по порядку, в столбце «варианты ответов» - вам нужно подчеркнуть правильный вариант ответа, или обвести его.

В задании № 1 второго Блока нужно дать определение.

В задании \mathcal{N}_2 второго Блока вам нужно выполнить практическое задание: Составить этюд по трем предложенным словам и продемонстрировать его на сцене.

Содержание контрольно-измерительных материалов

Блок № 1

№ п/п	Вопрос	Варианты ответов
1.	Что такое Arduino?	А) Программное обеспечение В) Аппаратная платформа С) Язык программирования D) Сетевой протокол
2.	Какой язык программирования чаще всего используется для программирования Arduino?	A) Python B) C++ C) Java
3.	Какой элемент обычно используется для подключения к Arduino для отображения данных?	А) Мотор В) Светодиод С) Датчик температуры D) ЖК-дисплей
4.	Какая функция используется для выполнения кода один раз при запуске программы на Arduino?	A) loop() B) setup() C) execute() D) start()

5.	Что такое "shield" в контексте Arduino?	А) Программное обеспечение
		В) Защитный корпус
		С) Расширяющая плата
		D) Технический файл)

Блок № 2

Задание: собрать конструкцию "Мигающий огонек" и написать программу для неё

Плата Arduino (например, Arduino Uno) Светодиод (LED)

Резистор (220 Ом) Макетная плата Провода для соединений

Компьютер с установленным Arduino IDE

Сборка схемы:

Подключите анод (длинную ногу) светодиода к цифровому выводу на Arduino (например, D13).

Подключите катод (короткую ногу) светодиода к одному концу резистора. Подключите другой конец резистора к GND на Arduino.

Убедитесь, что все соединения надежны. Настройка среды разработки:

Откройте Arduino IDE.

Убедитесь, что выбрана правильная плата и порт в меню "Инструменты". Написание кода