Демонстрационный вариант КИМ ПА по химии. 10 класс.

Часть 1

1.	В соединен соответствен	иях: СО, НО но равные	СОН,	CH ₃ OH	углерод	имеет	степени	окисления,
	1) +2; +4; -4 2) +2; 0; -2; 3) -2; -4; +2; 4) -2; 0; +4;	•						
2. 1	Число изомер	оов состава С4Н	I₀CI p	авно:				
3.]		2) 3 ии пропанола-2		дом меди	4) 5 (II) образу	ется		
4. (3) пропанал4) пропанов	овая кислота пь	ирует	; c				
	 бромной водородо сульфато этанолом 	м м натрия						
5.]	В схеме превр	ращений: СН2	= CH ₂	$2 \rightarrow X \rightarrow C$	C ₂ H ₅ NH ₂ Be	ещество	м «Х» явл	іяется
	1) этан	2) этанол	3) y	жсусная к	ислота	4) этин	I	
6.]	К реакциям п	рисоединения	и зам	ещения от	носятся со	ответст	венно	
	2) CH ₃ COO ₂ 3) KBr + CI ₂	$H + NaOH \rightarrow$ $Na + NaOH \rightarrow$ $2 \rightarrow$ $H_2 + H_2 \xrightarrow{t^{\circ}, Ni}$	и и	C_6H_5O Fe + C	$H + Na \rightarrow uCI_2$			
7. 3	Этилен можн	о получить вза	имод	ействием х	клорэтана	c		
	2) спирто3) водоро	м раствором щ вым раствором дом кислотой (кон	и щел					

- 8. Метановая кислота может реагировать с каждым веществом ряда
 - 1) CuO и HNO₃
 - 2) Cu(OH)₂ и [Ag(NH₃)₂]OH
 - 3) CH₃OH и CH₃COOH
 - 4) O₂ и C₆H₅OH
- 9. Белый осадок выпадает при взаимодействии бромной воды с
 - 1) этиленом
 - 2) этанолом
 - 3) фенолом
 - 4) бензолом
- 10. В результате реакции, термохимическое уравнение которой $2SO_2 + O_2 = 2SO_3 + 198$ кДж выделилось 79,2 кДж тепла. Объём (н.у.) израсходованного при этом кислорода равен

- 1) 4,48 л 2) 6,72 л 3) 8,96 л 4) 13,44 л

Часть 2

 $V\Pi\Lambda CC (\Gamma DV\Pi\Pi\Lambda)$

11. Установите соответствие между названием вещества и его принадлежностью к определенному классу (группе) неорганических соединений.

ПАЭВАПИЕ ВЕЩЕСТВА	KJIACC (I F J IIIIA)
	НЕОРГАНИЧЕСКИХ
	СОЕДИНЕНИЙ
А) сернистая кислота	1) амфотерный гидроксид
Б) соляная кислота	2) щелочь
В) гидроксид хрома (III)	3) кислородсодержащая кислота
Г) гидрокарбонат натрия	4) бескислородная кислота
	5) средняя соль
	6) кислая соль

12. Для этана характерны:

HASBAHME BEILIECTRA

- 1) sp²-гибридизация орбиталей всех атомов углерода в молекуле
- 2) sp³-гибридизация орбиталей атомов углерода в молекуле
- 3) окисление раствором перманганата калия
- 4) реакция нитрования
- 5) реакция дегидрирования
- 6) взаимодействие с этанолом

12 Poortuug voorofinguoto portuguo vorotettaruo uug					
13. Реакция «серебряного зеркала» характерна для					
1) уксусной кислоты 2) метановой кислоты 3) формальдегида 4) фенола 5) этилацетата					
6) глюкозы					
 14. С раствором гидроксида калия взаимодействуют: 1) метанол 2) метиламин 3) глицин 4) хлорид метиламмония 5) анилин 6) сульфат фениламмония 					
15. Объём оксида углерода (IV), полученный при взаимодействии 50 л метана (н.у.) 40л кислорода, равен л. (Запишите число с точностью до целых.)					
Часть 3					
16. Напишите уравнения реакций, с помощью которых можно					
осуществить следующие превращения:					
$C_2H_2 \xrightarrow{C_{AKT.}, t^o} X_1 \xrightarrow{+C_2H_5Cl} X_2 \xrightarrow{+Cl_2, hv} X_3 \xrightarrow{+KOH_{(CIIUpT.)}} X_4$					

17. При взаимодействии 18 г неизвестной одноосновной карбоновой кислоты с избытком гидрокарбоната натрия выделилось 6,72л газа (н.у.). Установите

18. В 71,4 мл 10%-ного раствора сульфата меди (II) ($\rho = 1,12$ г/мл) поместили кусочек натрия массой 2,3 г. Рассчитайте массовые доли веществ в

 $+ \text{KMnO}_4, \text{H}_2\text{O} \longrightarrow \text{X}_5$

молекулярную формулу кислоты.

образовавшемся растворе.