

Российская Федерация Республика Дагестан, 368118, г. Кизилюрт, ул. Вишневского, 170.

Тел.: +7(989) 476-00-15 E- mail: <u>omar.g4san@yandex.ru</u>

ОДОБРЕНО $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabul$

ТВЕРЖДЕНО
директор ПОАНО «КМК» г. Кизилюрт
О.М.Гасанов
Приказ№2 -О
от «29» августа 2025 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

(фонд оценочных средств)

для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по учебной дисциплине

ПД. 01 Химия

по специальности 34.02.01 «Сестринское дело» по программе базовой подготовки на базе основного общего образования; форма обучения — очная Квалификация выпускника — медицинская сестра/ медицинский брат

г. Кизилюрт

ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ КИЗИЛЮРТОВСКИЙ МНОГОПРОФИЛЬНЫЙ КОЛЛЕДЖ

Российская Федерация Республика Дагестан, 368118, г. Кизилюрт, ул. Вишневского, 170.

ОДОБРЕНО на педагогическом совете № 1 от «29» августа 2025г.

УТВЕРЖДЕНО директор ПОАНО «КМК» г.Кизилюрт О.М.Гасанов_____ Приказ№2 -О от «29» августа 2025г.

Тел.: +7(989) 476-00-15

E- mail: omar.g4san@yandex.ru

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ (фонд оценочных средств)

для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по учебной дисциплине

ПД. 01 Химия

по специальности 34.02.01 «Сестринское дело» по программе базовой подготовки на базе основного общего образования; форма обучения — очная Квалификация выпускника — медицинская сестра/ медицинский брат

СОДЕРЖАНИЕ

1 Оценочные материалы	2
1.1 Вопросы для самоконтроля	2
1.2 Тесты для самоконтроля	2
1.3 Задания для контрольных работ	8
1.4 Примерные темы рефератов.	8
1.5 Примерные вопросы для подготовки к экзамену	9

1 Оценочные материалы для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине

1.1 Вопросы для самоконтроля

Критерии оценивания

Оценка «отлично» ставится в том случае, если обучающийся глубоко и прочно усвоил весь программный материал, исчерпывающе, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

Оценка «хорошо» ставится, если обучающийся твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка «удовлетворительно» ставится, если обучающийся усвоил только основной материал, но не знает отдельных деталей, допускает неточности, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

Оценка «неудовлетворительно» ставится, если обучающийся не знает отдельных разделов программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания.

Вопросы для устного опроса

- 1. Классификация неорганических веществ
- 2. Способы получения, номенклатура, физические и химические свойства основных, кислотных и амфотерных оксидов; амфотерных гидроксидов кислот, оснований
- 3. Генетическая связь между классами неорганических веществ
- 4. Классификация, строение, номенклатура, получение комплексных соединений
- 5. Виды химической связи в комплексных соединениях
- 6. Понятие о дисперсных системах. Виды дисперсных систем: грубодисперсные системы (суспензии и эмульсии), коллоидные и истинные растворы
- 7. Понятие о растворимом веществе и растворителе
- 8. Гидратная теория растворов Д. И. Менделеева
- 9. Виды растворов
- 10. Способы выражения концентрации растворов. Массовая доля, молярная концентрация и молярная концентрация эквивалента
- 11. Электролиты и неэлектролиты
- 12. Предельные углеводороды: алканы и циклоалканы.
- 13. Определение. Общая формула.
- 14. Номенклатура. sp³ Гибридизация атома углерода.
- 15. Особенности строения циклоалканов с малыми циклами.
- 16. Обоснование реакционной способности на основе анализа строения. Способы получения предельных углеводородов.
- 17. Непредельные углеводороды: алкены, алкины.
- 18. Определение. Общая формула. Номенклатура. ${\rm sp}^2-{\rm u}$ ${\rm sp}$ -гибридизация атома углерода.
- 19. Обоснование реакционной способности на основе анализа
- 20. строения.
- 21. Качественные реакции.
- 22. Способы получения непредельных углеводородов.

- 23. Сопряжение. Соединения с открытой и замкнутой Системами сопряжения.
- 24. Строение бензола.
- 25. Ароматичность. Правило Хюккеля. Химические свойства и способы получения аренов.

1.2 Тесты для самоконтроля

Критерии оценивания

Оценка 5 (отлично) выставляется в случае, если студент ответил на более 85% вопросов, тем самым показав продвинутый уровень овладения формируемыми компетенциями.

Оценка 4 (хорошо) выставляется в случае, если студент ответил на более 75% вопросов, тем самым продемонстрировав базовый уровень овладения формируемыми компетенциями.

Оценка 3 (удовлетворительно) выставляется в случае, если студент ответил на более 50% вопросов, тем самым продемонстрировав удовлетворительный уровень овладения формируемыми компетенциями.

Оценка 2 (неудовлетворительно) выставляется в случае, если студент ответил менее чем на 50% вопросов, тем самым продемонстрировав неудовлетворительный уровень овладения формируемыми компетенциями.

Часть 1

- 1. К простым веществам относится
- 1) серная кислота
- 2) спирт
- 3) оксид калия
- 4) кислород
- 2. Кислотными свойствами обладает оксид элемента, который в периодической системе находится
 - 1) в 3-м периоде, ІІІА группе
 - 2) во 2-м периоде, IVA группе
 - 3) в 3-м периоде, ПА группе
 - 4) во 2-м периоде, ІА группе
- 3. В атоме фосфора общее число электронов и число электронных слоев соответственно равны
 - 1) 31,3
 - 2) 15,5
 - 3) 15,3
 - 4) 31,5
 - 4. Вещество, в котором степень окисления углерода равна +2,
 - 1) углекислый газ
 - 2) угарный газ
 - 3) известняк
 - 4) угольная кислота
 - 5. Среди всех видов кристаллических решеток самой непрочной является
 - 1) ионная
 - 2) металлическая
 - 3) атомная
 - 4) молекулярная

- 6. Реакция между оксидом меди(II) и серной кислотой относится к реакциям
 - 1) обмена
 - 2) соединения
 - 3) замещения
 - 4) разложения
- 7. Электролитом не является
 - Mg(OH)2
 - 2) Ca(OH)2
 - 3) KOH
 - 4) CsOH
- 8. Реакции ионного обмена соответствует уравнение
 - 1) SO2 + 2NaOH = Na2SO3 + H2O
 - 2) Na2O + SO2 = Na2SO3
 - 3) $Na2SO3 + 2HC1 = 2NaC1 + H2O + SO2\uparrow$
 - 4) $2HCl + Zn = ZnCl2 + H2\uparrow$
- 9. В растворе не могут одновременно находиться ионы
 - 1) Zn2+ и NO-3
 - 2) Al3+ и Cl-
 - 3) Ag+ и Cl-
 - 4) Cu2+ и SO42-
- 10. Основные оксиды состава ЭО образует каждый из металлов, указанных в ряду
 - 1) натрий, калий, рубидий
 - 2) алюминий, барий, кальций
 - 3) магний, кальций, стронций
 - 4) бериллий, литий, цезий
- 11. Оксид углерода(IV) реагирует с каждым из двух веществ
 - 1) с водой и оксидом бария
 - 2) с кислородом и оксидом натрия
 - 3) с сульфатом натрия и гидроксидом калия
 - 4) с оксидом железа(III) и серной кислотой
- 12. Гидроксид бария реагирует
 - 1) хлорид натрия
 - 2) сульфат натрия
 - 3) оксид натрия
 - 4) гидроксид натрия
- 13. Серная кислота не взаимодействует
 - 1) с оксидом азота(V)
 - 2) с оксидом натрия
 - 3) с гидроксидом меди(II)
 - 4) с хлоридом бария
- 14. Сульфат меди(II) взаимодействует с каждым из группы веществ в ряду
 - 1) Mg, KOH, NaCl
 - 2) Zn, NaOH, BaCl2
 - 3) Fe, AgNo3, Mg(OH)2

	4)	Ag, KNO3, KOH					
15. последовател	пьно ис 1) 2)	хемы превращений N2 → NH3 → пользовать вещества, указанные в H2, H2O, HCl, AgNO3 O2, H2O, AgNO3, HCl H2, NaOH, HCl, KNO3 HCl, H2O, KNO3, CuCl2		$H \to N$	H4Cl → AgCl необходимо		
16.	Всхем	ме превращений веществ Cu(NO3).	$2 \rightarrow Cu$	(OH)2	\rightarrow X \rightarrow Cu веществом «Х»		
является							
	1)	CuCl2					
	2)	CuO					
	3)	Cu2O					
	4)	CuSO4					
17.	Синюю окраску лакмус имеет в растворе						
	1)	соляной кислоты					
	2)	хлорида натрия					
	3)	гидроксида натрия					
	4)	азотной кислоты					
Часть	2						
18.	Метал	плические свойства слабее всего вы	іражен	Ы			
	1)	у натрия					
	2)	у магния					
	3)	у кальция					
	4)	у алюминия					
19.	К окислительно-восстановительным реакциям относится						
	1)	Na2O + H2O = 2NaOH					
	2)	CuO + H2SO4 = CuSO4 + H2O					
	3)	CaCO3 = CaO + CO2					
	4)	Zn + 2HCl = ZnCl2 + H2					
20.		овите соответствие между назва			нтов и видом химической		
связи, котора	-	зуется в их соединениях и простых	вещес		un averavoŭ an anv		
		АНИЕ ЭЛЕМЕНТОВ			ХИМИЧЕСКОЙ СВЯЗИ		
	A)	азот и водород	2)	1)	металлическая		
	P)	углерод и кальций	2)		ентная полярная		
	B) Γ)	атомы кислорода атомы стронция		3) 4)	ковалентная неполярная ионная		
	Ответ	-					
1	2	3 4					
1	2	3 4					
21. формулами	Устан	овите соответствие между классам	ии орга	ническ	их веществ и химическими		
	A)	спирт		1)	CH4		
	Б)	предельный углеводород	2)	C2H4			
	B)	карбоновая кислота	3)	CH3O	Н		

		Γ)		цельный углев			НСООН		
	22.			оответствие ме		юй и названием вещества			
		A)	C2H6		1)	этано.	Л		
		Б)		5COOH	2)	метан			
		B)	C2H50	ЭH	3)	этан			
		Γ)	C2H4		4)	_	иновая кислота		
						5)	этилен		
						6)	уксусная кислот		
при ре	23. Вычислить массу цинка, прореагировавшего с раствором соляной кислоты, если ри реакции выделилось 5,6 литров водорода								
		Ответ:							
	Часть 3								
	24.		лите у	равнения реа	кций, с по	мощью	о которых можно осуществить		
превра	ащения	I							
		алюми	иний →	хлорид алюмі	иния \to X \to	оксид	алюминия		
		_		_					
	25.						тировавшего с раствором азотной		
кисло	ты масс	сой 63 і	грамма	и массовой до	лей кислоты	в расть	sope 20%.		
	OTBE	ТЫ							
	Часть	1							
	Ответ	ы на за,	дания с	выбором одно	ого ответа				
	№ зад	ания	Вариал	нт ответа					
	1	4	10	3					
	2	2	11	1					
	3	3	12	2					
	4	2	13	1					
	5	4	14	2					
	6	1	15	1					
	7	1	16	2					
	8	3	17	3					
	9	3							
	Часть								
	Ответ	ы на за,	дания с	кратким ответ	ГОМ				
	№ зад		Ответ						
	18	4							
	19	4							
	20	2 4 3							
	21	3 1 4							
	22	3 4 1	5						

```
Часть 3
Ответы на задания с развернутым ответом
№ задания Содержание верного ответа Баллы
```

23

16,25

```
1) 2A1 + 6HC1 = 2A1C13 + 3H2
2) A1C13 + 3KOH = A1(OH)3 + 3KC1
вещество «Х» - Al(OH)3
3) 2AI(OH)3 = t = A12O3 + 3H2O
1
1
25
      1) Найдена масса кислоты, содержащаяся в растворе
  63r - 100\%
  X\Gamma - 20\%
  X=12.6\Gamma (m(HNO3))
2) Составлено уравнение реакции
  CaCO3 + 2HNO3 = Ca(NO3)2 + H2O + CO2
3) Вычислена масса карбоната кальция
   Χг
            12,6г
  CaCO3 + 2HNO3 = Ca(NO3)2 + H2O + CO2
  1 моль 2 моль
            2*63г
   100г
  X=100\Gamma*12,6\Gamma/2*63\Gamma=10\Gamma
Ответ: m(CaCO3) = 10\Gamma
```

1.3 Задания для контрольных работ

По данной дисциплине проведение контрольных работ учебным планом не предусмотрено.

1.4 Примерные темы рефератов

Критерии оценивания

Оценка «отлично» ставится в том случае, если обучающийся глубоко и прочно усвоил весь программный материал, исчерпывающе, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

Оценка «хорошо» ставится, если обучающийся твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка «удовлетворительно» ставится, если обучающийся усвоил только основной материал, но не знает отдельных деталей, допускает неточности, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

Оценка «неудовлетворительно» ставится, если обучающийся не знает отдельных разделов программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания.

Рекомендуемый перечень тем рефератов по химии:

Водород и его соединения.

Вода и ее биологическое значение.

Соединения серебра и золота.

Жизнь и деятельность Марии Кюри-Складовской.

Алюминий и его соединения.

Медь и его соединения.

Жизнь и деятельность Д.И. Менделеева.

Роль женщин в химии.

Периодический закон и строение атома.

Жизнь и деятельность М.В. Ломоносова.

Роль неорганической химии как науки в развитии сельского хозяйства.

Развитие неорганической химии за рубежом.

Применение удобрений с учетом потребности растений.

Химия «горячих» атомов.

Химия высоких скоростей.

Высокотемпературная химия.

Ультрамикрохимия.

Внутрикомплексные соединения.

Редкоземельные элементы. Синтетические элементы.

Новое учение о коррозии.

Электроны и химическая связь.

Тяжелые металлы и их роль на растения и животные

Основные представления квантовой механики.

История появления карандаша (углерод).

Металлополимерные материалы.

Координационная теория Альфреда Вернера.

Комплексные соединения в науке и технике.

Значение естественной радиоактивности в жизни растений и животных.

Биологическая роль микроэлементов и их применение в сельском хозяйстве и медицине.

История развития электролитической диссоциации Аррениуса (1887).

1.5. Примерные вопросы для подготовки к экзамену (дифференцированному зачёту)

Критерии оценивания

Оценка «отлично» ставится в том случае, если обучающийся глубоко и прочно усвоил весь программный материал, исчерпывающе, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

Оценка «хорошо» ставится, если обучающийся твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка «удовлетворительно» ставится, если обучающийся усвоил только основной материал, но не знает отдельных деталей, допускает неточности, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

Оценка «неудовлетворительно» ставится, если обучающийся не знает отдельных разделов программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания.

БАЗОВЫЙ УРОВЕНЬ

Билет № 1

1. Периодический закон и периодическая система химических элементов Д.И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки.

- 2. Предельные углеводороды, общая формула и химическое строение гомологов данного ряда. Свойства и применение метана.
- 3. Задача. Вычисление массы продукта реакции, если известно количество вещества или масса одного из исходных веществ.

Билет № 2

- 1. Строение атомов химических элементов и закономерности в изменении их свойств на примере: а) элементов одного периода; б) элементов одной главной подгруппы.
- 2. Непредельные углеводороды, общая формула и химическое строение гомологов данного ряда. Свойства и применение этилена.
- 3. Опыт. Определение с помощью характерных реакций каждого из трех предложенных неорганических веществ.

Билет № 3

- 1. Виды химической связи: ионная, ковалентная (полярная, неполярная); простые и кратные связи в органических соединениях.
- 2. Циклопарафины, их химическое строение, свойства, нахождение в природе, практическое значение.
- 3. Задача. Вычисление массы по известному количеству вещества одного из исходных или получающихся в реакции продуктов.

Билет № 4

- 1. Классификация химических реакций в неорганической и органической химии.
- 2. Диеновые углеводороды, их химическое строение, свойства, получение и практическое значение. Натуральный и синтетические каучуки.
- 3. Опыт. Определение с помощью характерных реакций каждого из трех предложенных органических веществ.

Билет № 5

- 1. Обратимость реакций. Химическое равновесие и способы его смещения: изменение концентрации реагирующих веществ, температуры, давления.
- 2. Ацетилен представитель углеводородов с тройной связью в молекуле. Свойства, получение и применение ацетилена.
- 3. Задача. Вычисление объема газа, необходимого для реакции с определенным объемом другого газа.

Билет № 6

- 1. Скорость химических реакций. Зависимость скорости от природы, концентрации веществ, температуры, катализатора.
- 2. Ароматические углеводороды. Бензол, структурная формула, свойства и получение. Применение бензола и его гомологов.
- 3. Опыт. Проведение реакций, подтверждающих характерные химические свойства кислот.

Билет № 7

- 1. Основные положения теории химического строения органических веществ А.М. Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах.
- 2. Реакции ионного обмена в водных растворах. Условия их необратимости.
- 3. Задача. Вычисление массы одного из исходных органических веществ по известному количеству вещества продукта реакции.

Билет № 8

- 1. Изомерия органических соединений и ее виды.
- 2. Классификация неорганических соединений.
- 3. Опыт и задача. Получение названного неорганического вещества, вычисление по уравнению реакции массы исходных веществ, необходимых для получения данного количества вещества.

Билет № 9

- 1. Металлы, их положение в периодической системе химических элементов Д.И. Менделеева, строение их атомов, металлическая связь. Общие химические свойства металлов.
- 2. Природные источники углеводородов: нефть, природный газ и их практическое использование.
- 3. Задача. Вычисление количества вещества или массы одного из продуктов реакции по данным об исходных веществах, одно из которых взято в избытке.

Билет № 10

- 1. Неметаллы, их положение в периодической системе химических элементов Д.И. Менделеева, строение их атомов. Окислительно-восстановительные свойства неметаллов на примере элементов подгруппы кислорода.
- 2. Предельные одноатомные спирты, их строение, свойства. Получение и применение этилового спирта.
- 3. Опыт. Проведение реакций, подтверждающих важнейшие химические свойства одного из изученных классов органических соединений.

Билет № 11

- 1. Аллотропия неорганических веществ на примере углерода и кислорода.
- 2. Фенол, его химическое строение, свойства, получение и применение.
- 3. Задача. Нахождение молекулярной формулы газообразного углеводорода по его относительной плотности и массовой доле элементов в соединении.

Билет № 12

- 1. Электрохимический ряд напряжений металлов. Вытеснение металлов из растворов солей другими металлами.
- 2. Альдегиды, их химическое строение и свойства. Получение, применение муравьиного и уксусного альдегидов.
- 3. Задача. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

Билет № 13

- 1. Водородные соединения неметаллов. Закономерности в изменении их свойств в связи с положением химических элементов в периодической системе Д.И. Менделеева.
- 2. Предельные одноосновные карбоновые кислоты, их строение и свойства на примере уксусной кислоты.
- 3. Опыт. Проведение реакций, подтверждающих качественный состав данного неорганического вещества.

Билет № 14

- 1. Высшие оксиды химических элементов третьего периода. Закономерности в изменении их свойств в связи с положением химических элементов в периодической системе.
- 2. Жиры как сложные эфиры глицерина и карбоновых кислот, их состав и свойства. Жиры в природе, превращение жиров в организме. Продукты технической переработки жиров, понятие о синтетических моющих средствах.

3. Задача. Вычисление количества вещества продукта реакции по массе исходного вещества, содержащего примеси.

Билет № 15

- 1. Кислоты, их классификация и свойства на основе представлений об электролитической диссоциации.
- 2. Глицерин многоатомный спирт; состав молекул, физические и химические свойства, применение.
- 3. Опыт. Испытание индикаторами растворов солей, образованных: а) сильным основанием и слабой кислотой; б) сильной кислотой и слабым основанием. Объяснение результатов наблюдений.

Билет № 16

- 1. Основания, их классификация и свойства на основе представлений об электролитической диссоциации.
- 2. Глюкоза представитель моносахаридов, химическое строение, физические и химические свойства, применение.
- 3. Задача. Вычисление массы продукта реакции, если для его получения выдан раствор с определенной массовой долей исходного вещества в процентах.

Билет № 17

- 1. Соли, их состав и названия, взаимодействие с металлами, кислотами, щелочами, друг с другом с учетом особенностей реакций окисления-восстановления и ионного обмена.
- 2. Крахмал, нахождение в природе, практическое значение, гидролиз крахмала.
- 3. Опыт. Получение амфотерного гидроксида и проведение химических реакций, характеризующих его свойства.

Билет №18

- 1. Общая характеристика подгруппы галогенов, строение атомов, возможные степени окисления, физические и химические свойства.
- 2. Аминокислоты, их состав и химические свойства: взаимодействие с соляной кислотой, щелочами, друг с другом. Биологическая роль аминокислот и их применение.
- 3. Задача. Вычисление объема полученного газа, если известна масса исходного вещества.

Билет № 19

- 1. Окислительно-восстановительные реакции (на примере взаимодействия алюминия с оксидами некоторых металлов, концентрированной серной кислоты с медью).
- 2. Анилин представитель аминов; химическое строение и свойства; получение и практическое применение.
- 3. Опыт. Установление принадлежности органического вещества к определенному классу соелинений.

Билет № 20

- 1. Окислительно-восстановительные свойства серы и ее соединений.
- 2. Взаимосвязь между важнейшими классами органических соединений.
- 3. Задача. Вычисление теплового эффекта реакции по известному объему газа и количеству теплоты, выделившейся в результате реакции.

Билет № 21

1. Железо: положение в периодической системе химических элементов Д.И. Менделеева, строение атома, возможные степени окисления, физические свойства, взаимодействие с кислородом, галогенами, растворами кислот и солей. Сплавы железа.

- 2. Белки как биополимеры. Свойства и биологические функции белков.
- 3. Опыт. Определение с помощью характерных реакций каждого из трех выданных неорганических веществ.

Билет № 22

- 1. Общие научные принципы химического производства на примере промышленного способа получения серной кислоты. Защита окружающей среды от химических загрязнений.
- 2. Взаимное влияние атомов в молекулах органических веществ на примере этанола и фенола.
- 3. Опыт. Проведение реакций, подтверждающих качественный состав данного неорганического вещества.

Билет № 23

- 1. Причины многообразия неорганических и органических веществ; взаимосвязь веществ.
- 2. Получение спиртов из предельных и непредельных углеводородов. Промышленный способ получения метанола.
- 3. Опыт. Осуществление превращений: соль нерастворимое основание оксид металла.

Билет № 24

- 1. Высшие кислородсодержащие кислоты химических элементов третьего периода, их состав и сравнительная характеристика свойств.
- 2. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения (на примере полиэтилена или синтетического каучука).
- 3. Задача. Вычисление массы исходного вещества, если известен практический выход продукта и указана массовая доля его в процентах от теоретически возможного выхода.

Билет № 25

- 1. Общие способы получения металлов. Практическое значение электролиза (на примере электролиза солей безкислородных кислот).
- 2. Целлюлоза, состав молекул, физические и химические свойства. Понятие об искусственных волокнах на примере ацетонного волокна.
- 3. Получение названного газообразного вещества и проведение реакций, характеризующих его свойства