

ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ КИЗИЛЮРТОВСКИЙ МНОГОПРОФИЛЬНЫЙ КОЛЛЕДЖ

Российская Федерация Республика Дагестан. 368118, г. Кизилюрт, ул. Вишиевского, 170.

Тел.: +7(989) 476-00-15 E- mail: <u>omar.g4san@vandex.ru</u>

ОДОБРЕНО на педагогическом совете № 1 от «29» августа 2024г.

УТВЕРЖДЕНО ПРОЗ директор ТКО АТО КОМА» г. Кизилюрт О.М.Гасанов от «29» авгаста вобра

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

(фонд оценочных средств)

для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по учебной дисциплине

ОП.9. ЧИСЛЕННЫЕ МЕТОДЫ

по специальности 09.02.07 «Информационные системы и программирование» по программе базовой подготовки на базе основного общего образования; форма обучения — очная Квалификация выпускника — программист

ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ КИЗИЛЮРТОВСКИЙ МНОГОПРОФИЛЬНЫЙ КОЛЛЕДЖ

Российская Федерация Республика Дагестан, 368118, г. Кизилюрт, ул. Вишневского, 170.

ОДОБРЕНО

на педагогическом совете № 1 от «29» августа 2024г.

УТВЕРЖДЕНО директор ПОАНО «КМК» г.Кизилюрт О.М.Гасанов____ от «29» августа 2024г.

Тел.: +7(989) 476-00-15

E- mail: omar.g4san@yandex.ru

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

(фонд оценочных средств)

для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по учебной дисциплине

ОП.9. ЧИСЛЕННЫЕ МЕТОДЫ

по специальности 09.02.07 «Информационные системы и программирование» по программе базовой подготовки на базе основного общего образования; форма обучения — очная Квалификация выпускника — программист

ПАСПОРТ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Численные методы

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Раздел 1. Раздел 1Элементы теории погрешности	ОК 1, 2, 4, 5, 9, 10, ПК 1.1,ПК 3.4, ПК 5.1, ПК 9.2, ПК 10.1, ПК 11.1.	Контрольная работа
2	Раздел 2 Приближение функций	OK 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, , ПК 10.1, ПК 11.1.	Контрольная работа

ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

№ п/п	наименование оценочного средства	характеристика оценочного средства	Представлени еоценочного средства в фонде
1	Контрольная работа	Средство проверки умений применять	комплект
		полученные знания для решения задач	контрольных
		определенного типа по разделу	заданий по
			вариантам

Вопросы к дифференцированному зачету

- 1. Элементарная теория погрешностей
- 2. Абсолютная погрешность вычисления
- 3. Относительная погрешность вычисления
- 4. Основные определения и теоремы теории погрешностей
- 5. Решение систем линейных алгебраических уравнений. Метод Гаусса

- 6. Итерационные методы решения линейных систем. Метод простых итераций
- 7. Метод Зейделя для решения систем линейных уравнений
- 8. Численные методы решения нелинейных уравнений. Графический метод
- 9. Метод половинного деления для решения нелинейных уравнений
- 10. Метод хорд для решения нелинейных уравнений
- 11. Метод касательных для решения нелинейных уравнений
- 12. Метод простой итерации для решения нелинейных уравнений
- 13. Сходимость итерационных методов для решения нелинейных уравнений
- 14. Приближение функций. Задача алгебраической интерполяции
- 15. Существование и единственность алгебраического интерполяционного полинома
- 16. Интерполяционный полином в форме Лагранжа
- 17. Первый интерполяционный полином Ньютона
- 18. Второй интерполяционный полином Ньютона
- 19. Численное интегрирование. Квадратурные формулы Ньютона-Котеса
- 20. Квадратурные формулы прямоугольников. Оценка их погрешности
- 21. Квадратурные формулы трапеций. Оценка их погрешности
- 22. Квадратурные формулы Симпсона. Оценка их погрешности

Контрольная работа №1

Тема: Вычисления с учетом погрешностей

Необходимые сведения из теории

Абсолютная и относительная погрешности приближенных чисел и правило их записи.

- 1. Верные значащие цифры приближенных чисел.
- 2. Нахождение абсолютной погрешности по верным цифрам.
- 3. Правило округления чисел.
- 4. Правило записи приближенных чисел.
- 5. Оценка влияния погрешностей аргументов на значение функции.
- 6. Оценка погрешностей арифметических действий.

Задание

Пусть - приближенные числа с верными в строгом смысле

значащими цифрами, х - точное число. Вычислите

 $\frac{z}{\sin y}$ $\frac{ab \ c^{x}}{\sin y}$

и оцените погрешность результата. Для вычисления значений функций $c\ x$ и $\sin y$ используйте либо математические таблицы, либо микрокалькулятор, либо компьютер.

Данные по вариантам

Вариант	a	b	X	у
1	2,03	-1,670	0,970	0,504
2	0,971	3,26	0,035	-1,061
3	1,510	-1,84	1,115	0,234
4	-0,193	-5,97	0,871	2,060
5	3,112	0,786	2,06	-2,541
6	-1,745	1,090	1,836	-2,541
7	10,7	0,0836	0,755	-1,43

Порядок выполнения работы

Результаты расчетов расположите в таблицах:

a	b	х	У	
а	b	x	у	
а	b	х	у	

Z1	<i>Z</i> ,2	^z 3	<i>Z</i> 4	Z,	
Z 1	z 2	<i>Z</i> ,3	^z 4	z	
z ₁	Z ,2	<i>z</i> 3	<i>Z</i> .4	Z	

Контрольная работа №2

Тема: Метод половинного деления

Необходимые сведения из теории

- 1. Этапы приближенного решения уравнений с одним неизвестным.
- 2. Отделение корней. Графическое отделение корней.
- 3. Условия применения метода половинного деления.
- 4. Алгоритм метода половинного деления.
- 5. Условие окончания процесса деления при данной допустимой погрешности.

Задание

Отделение корни данного уравнения и уточните их методом

половинного деления с точностью до ε 0,5 1 \oplus ⁴ . •

Вариант	Уравнение
1	$x^2 + e^x = 2$
2	$3\sin(x + 0.7) - 0.5x = 0$
3	$\cos x - (x - 1)^2 = 0$
4	$5\sin x = x$
5	$x^2 + \cos(2x) = 1$
6	$x \ln(x+1) = 1$
7	$\ln(x+1) - (x-2)^2 = 0$
8	$2 \ln x - 0.5x + 1 = 0$
9	$(x-2) \ln x = 1$
10	$\sin(x-0.5) - 2x + 0 = 0$
11	$\cos(x + 0.3) = x^2$
12	$x^2 - 3\sin x = 0$
13	$x \ln(x+2) = 2$
14	***************************************
15	$\chi^2 - 0.5 - \sin \chi = 0$
	$\sin(x+1)=0.2x$

Уравнения по вариантам

Контрольная работа №3

Тема: Комбинированный метод хорд и касательных

Необходимые сведения из теории

- 1. Отделение корней уравнений аналитическим способом.
- 2. Условия, при которых для уточнения корней применяются методы хорд и касательных.
- 3. Правила выбора начальных приближений для методов хорд и касательных.
- 4. Алгоритм уточнения корней комбинированным методом хорд и касательных.
- 5. Условие окончания процесса вычислений при заданной допустимой погрешности.

Задание

Отделите аналитически один из корней данного уравнения и определите его с точностью до ε 0,5 10 5 комбинированным методом хорд и касательных.

Уравнения по вариантам

Вариант	Уравнение
1	$2x^3 - 3x^2 - 12x - 5 = 0$
2	$x^3 + 3x^2 - 24x - 10 = 0$
3	$x^3 - 3x^2 + 3 = 0$
4	$x^3 + 3x^2 - 2 = 0$
5	$2x^3 - 3x^2 - 12x + 12 $ \oplus
6	$x^3 + 3x^2 - 1 = 0$
7	$x^3 - 3x^2 - 24x - 3 = 0$
8	$x^3 - 12x + 6 = 0$
9	$x^3 - 3x^2 + 2.5 = 0$
10	$2x^3 + 9x^2 - 21 = 0$
11	$x^3 + 3x^2 - 3.5 = 0$
12	$x^3 - 4x^2 + 2 = 0$
13	$x^3 + 3x^2 - 24x + \ge 0$
14	$2x^3 - 3x^2 - 12x + 8 = 0$
15	$2x^3 + 9x^2 - 6 = 0$

Контрольная работа №4

Тема: Уточнение корней уравнений методом простой итерации

Необходимые сведения из теории

- 1. Методы отделения корней уравнений.
- 2. Алгоритм построения итерационной последовательности, порождаемой уравнением $x \equiv g(x)$.
- 3. Достаточное условие сходимости итерационной последовательности.
- 4. Оценка погрешности п-го приближения к корню.
- 5. Условие окончания итерационного процесса при заданной допустимой погрешности.
- 6. Способы приведения уравнения f(x) = 0 к равносильному уравнению x g(x) с требуемыми для метода свойствами.

Задание

Отделите графически один из корней уравнения и определите его с точностью до ε 0,5 10 методом простой итерации.

Уравнения по вариантам

Вариант	Уравнение
1	$x-5\sin x-1=0$
2	$\lim_{x \to 0} x + 2x = 0$
3	$4 \sin x + 2x = -1$
4	$2 x + \ln x + 0.5 = 0$
5	$x + 2 - e^z = 0$
6	$2 \cos x = 1 - x$
7	$\underline{x} = (\underline{x} + 1)^3$
8	$x^3 - 2x + 2 = 0$
9	$3x + \cos x + 1 = 0$

Контрольная работа №5

Тема: Метод простой итерации приближенного решения система линейных алгебраических уравнений

Необходимые сведения из теории

- 1. Способы определения расстояния в пространстве $R \, n$.
- 2. Абсолютная погрешность числового вектора и его координат.

- 3. Сходимость последовательности векторов в R n.
- 4. Приведенная система уравнений, способы преобразования систем к приведенному виду.
- 5. Построение итерационной последовательности.
- 6. Достаточное условие сходимости итерационной последовательности.
- 7. Оценка погрешности приближенного решения.
- 8. Условие окончания итерационного процесса при нахождении решения с заданной точностью.

Задание

Дана система уравнений, коэффициенты при неизвестных и свободные члены которой являются точными числами. Найдите ее приближенное решение с точностью до

$$0.5 \ 10^{\varepsilon}$$
.

Система уравнений по вариантам

Исходная система:

$$\begin{cases} Mx_1 - 0.004x_2 + 0.21x_3 - 18x_4 = -1.24, \\ 0.25x_1 - 1.23x_2 + Nx_3 - 0.09x_4 = P, \\ -0.21x_1 Nx_2 0.80x_3 0.13x_4 2.56, \\ 0.15x_1 0.31x_2 0.06x_3 Px_4 M. \end{cases}$$

Вариант	M	N	P	Вариант	M	N	P
1	-0,77	0,16	1,12	9	-1,13	0,14	0,87
2	0,93	0,07	-0,84	10	0,91	-0,23	-1,04
						'	'
3	-1,14	-0,17	0,95	11	-0,88	0,10	0,91
4	1,08	0,22	-1,16	12	1,25	-0,14	-1,09
5	0,87	-0,19	1,08	13	0,79	0,18	-0,86
6	-1,21	0,20	0,88	14	-1,19	-0,21	1,21
7	1,09	-0,16	0,84	15	0,89	0,12	-1,15
8	0,89	0,08	-1,21				

Контрольная работа №6

Тема: Интерполирование математических таблиц

Необходимые сведения из теории

- 1. Табличная функция.
- 2. Задача интерполирования табличной функции.
- 3. Теорема о единственности задачи полиномиального интерполирования.
 - 4. Конечные разности таблиц.
 - 5. Первый и второй интерполяционные многочлены Ньютона.

Оценка погрешностей интерполяционных формул Ньютона.

- 6. Формула линейного интерполирования и способы оценки ее погрешности.
 - 7. Обратное линейное интерполирование.

Задание

Дана таблица значений функции f: $f(x) = e^x - \sin x$ с верными цифрами:

x.	f(x)	Ŷ	f(x)	Ŷ	f(x)	Ŷ	f(x)	Ŷ	f(x)
0	1	0,4	1,1024	0,8	1,5082	1,2	2,3881	1,6	3,9536
0,1	1,0053	0,5	1,1693	0,9	1,6763	1,3	2,7057	1,7	4,4823
0,2	1,0227	0,6	1,2575	1,0	1,8768	1,4	3,0696	1,8	5,0758
0,3	1,0543	0,7	1,3695	1,1	2,1130	1,5	3,4842	1,9	5,7396

- 1. Вычислите приближенное значение f(a) с помощью первого интерполяционного многочлена Ньютона второй степени, определите его абсолютную погрешность и верные значащие цифры.
- 2. Линейным интерполированием найдите значения функции f для аргументов a, b и определите их верные значащие цифры с помощью таблицы конечных разностей.
- 3. Вычислите значения обратной для f функции φ для аргументов c, d по формуле обратного линейного интерполирования и запишите ответы с двумя цифрами после десятичной запятой.

Все исходные данные a, b, c, d считаются точными числами.

Данные по вариантам

Вариант	а	b	c	d
---------	---	---	---	---

1	0,38	0,35	1,0059	2,3770
2	1,02	1,07	2,6456	1,9245
3	1,15	1,18	2,8775	1,2236
4	1,24	1,24	1,0023	1,3240
5	1,36	1,31	1,1232	1,1601
6	0,59	0,54	1,5222	2,2557
7	0,63	0,68	1,7092	3,3587
8	0,71	0,75	2,0988	1,0460
9	0,85	0,83	1,1847	2,9650
10	0,96	0,92	1,2775	1,0049
11	0,12	0,18	1,4892	1,3764
12	0,23	0,26	2,1232	1,6058
13	1,58	1,55	3,2323	1,8334
14	0,44	0,47	1,0323	2,4590
15	0,06	0,02	1,0974	1,0608