МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования, науки и молодежной политики Краснодарского края

Муниципальное образование Новокубанский район в лице администрации муниципального образования Новокубанский район Муниципальное общеобразовательное бюджетное учреждение гимназия №2 им. И.С. Колесникова г. Новокубанска муниципального образования Новокубанский район

PACCMOTPEHO

На методическом объединении учителей физико-математических дисциплин МОБУГ №2 им. И.С. Колесникова г. Новокубанска

Вишнякова К. Д. Протокол№1 от 30.08.2023 г.

Руководитель

СОГЛАСОВАНО

Заместитель директора по научнометодической работе МОБУГ №2 им. И.С. Колесникова г. Новокубанска

E. В. Бондаренко Протокол№1 от 30.08.2023 г.

non

УТВЕРЖДЕНО

Директор МОБУГ №2 им. И.С. Колесникова г. Новокубанска

Д.Д. Еремеев Приказ № 274 от 31.08.2023г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Астрономия» для обучающихся 11 классов

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АСТРОНОМИЯ

Личностными результатами обучения астрономии в средней школе являются:

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 2) сформированность основ саморазвития и самовоспитания; готовность и способность к самостоятельной, творческой и ответственной деятельности (образовательной, коммуникативной и др.);
- 3) сформированность навыков продуктивного сотрудничества со сверстниками, детьми старшего и младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, учебно-инновационной и других видах деятельности;
- 4) готовность и способность к образованию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

Метапредметные результаты:

- 1) умение самостоятельно определять цели и составлять планы, осознавая приоритетные и
- второстепенные задачи;
- 2) умение продуктивно общаться и взаимодействовать с коллегами по совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты;
- 3) владение навыками познавательной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания для изучения различных сторон окружающей действительности;
- 4) готовность и способность к самостоятельной и ответственной информационной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 5) умение самостоятельно оценивать и принимать решения, определяющие стратегию
- поведения, с учётом гражданских и нравственных ценностей;
- 6) владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме, включая составление текста и презентации материалов с использованием информационных и коммуникационных технологий, участвовать в дискуссии;
- 7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные результаты:

Предметные результаты изучения темы «Практические основы астрономии» позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд.

Предметные результаты изучения темы «Строение Солнечной системы» позволяют:

- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Предметные результаты изучения темы «Природа тел Солнечной системы» позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;

- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

Предметные результаты освоения темы «Солнце и звезды» позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;
- описывать механизм вспышек новых и сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Предметные результаты изучения темы «Строение и эволюция Вселенной» позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;

- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла; по светимости сверхновых;
- оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна.

Предметные результаты «Жизнь и разум во Вселенной» позволяют:

— систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной. Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системнодеятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в средней школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:

- 1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;
- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности.

В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

В результате учебно-исследовательской и проектной деятельности выпускник получит представление:

- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
- о таких понятиях, как концепция, научная гипотеза, метод, эксперимент, надежность гипотезы, модель, метод сбора и метод анализа данных;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;
- об истории науки;
- о новейших разработках в области науки и технологий;
- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т. п.);
- о деятельности организаций, сообществ и структур, заинтересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры, краудфандинговые структуры и т. п.).

Выпускник сможет:

- решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные задачи);
- использовать основной алгоритм исследования при решении своих учебно-познавательных задач;
- использовать основные принципы проектной деятельности при решении своих учебно-познавательных задач и задач, возникающих в культурной и социальной жизни;
- использовать элементы математического моделирования при решении исследовательских задач;
- использовать элементы математического анализа для интерпретации результатов, полученных в ходе учебно-исследовательской работы.

С точки зрения формирования универсальных учебных действий в ходе освоения принципов учебно-исследовательской и проектной деятельности выпускник научится:

- формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;
- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;

- оценивать ресурсы, в том числе и нематериальные, такие как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;
- вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;
- самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;
- адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;
- адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет в жизни других людей, сообществ);
- адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.

Универсальные учебные действия:

Регулятивные УУД:

- 1. Целеполагание как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено и того, что еще неизвестно по данной теме.
- 2. Составление плана и последовательности действий в решении задач.
- 3. Коррекция внесение необходимых дополнений и корректив в план решения задач и способ действия в случае расхождения эталона, реального действия и его продукта.
- 4. Оценка выделение и осознание обучающимися того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения темы.
- 5. Волевая саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию, к выбору ситуации мотивационного конфликта и к преодолению препятствий.

Познавательные УУД:

- 1. Самостоятельное выделение и формулирование познавательной цели.
- 2. Поиск и выделение необходимой информации.
- 3. Выбор наиболее эффективных способов решения задач.
- 4. Смысловое чтение как осмысление цели чтения.
- 5. Умение адекватно, осознано и произвольно строить речевое высказывание в устной и письменной речи.
- 6. Способность и умение обучающихся производить простые логические действия (анализ, синтез, сравнение, обобщение).

Коммуникативные УУД:

- 1. Сознательная ориентация обучающихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем.
- 2. Умение интегрироваться в группу сверстников при работе в группах.

- 3. Умение строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми при изучении темы.
- 4. Умение использовать адекватные языковые средства.
- 5. Умение ясно, логично и точно излагать свою точку зрения.

В результате изучения астрономии на базовом уровне ученик должен знать/понимать

- смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда. Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;
- смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;
- смысл физического закона Хаббла;
- основные этапы освоения космического пространства;
- гипотезы происхождения Солнечной системы;
- основные характеристики и строение Солнца, солнечной атмосферы;
- размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

уметь

- приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;
- описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;
- характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;
- находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;
- использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;

• использовать приобретенные знания и умения в практической деятельности и повседневной жизни для понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии; отделения ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

2.СОДЕРЖАНИЕ КУРСА АСТРОНОМИИ

11 класс (34 часа)

Предмет астрономии (2 ч)

Астрономия, ее связь с другими науками. Роль астрономии в развитии цивилизации. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Наземные и космические телескопы, принцип их работы. Всеволновая астрономия: электромагнитное излучение как источник информации о небесных телах. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю. А. Гагарина.

Основы практической астрономии (5 ч)

Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Видимое движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Строение Солнечной системы (2 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет.

Законы движения небесных тел (5 ч)

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Космические лучи. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты. Астероидная опасность.

Солнце и звезды (6 ч)

Излучение и температура Солнца. Состав и строение Солнца. Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Стефана— Больцмана. Источник энергии Солнца. Атмосфера Солнца. Солнечная активность и ее влияние на Зем-

лю. Роль магнитных полей на Солнце. Солнечно-земные связи. Звезды: основные физико-химические характеристики и их взаимосвязь. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Эффект Доплера. Диаграмма «спектр — светимость» («цвет — светимость»). Массы и размеры звезд. Двойные и кратные звезды. Гравитационные волны. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Закон смещения Вина.

Наша Галактика — Млечный Путь (2 ч)

Наша Галактика. Ее размеры и структура. Звездные скопления. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы (темная материя).

Строение и эволюция Вселенной (2 ч)

Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Эволюция Вселенной. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Примерный перечень наблюдений

Наблюдения невооруженным глазом

- 1. Основные созвездия и наиболее яркие звезды осеннего, зимнего и весеннего неба. Изменение их положения с течением времени.
- 2. Движение Луны и смена ее фаз.

Наблюдения в телескоп

- 1. Рельеф Луны.
- 2. Фазы Венеры. З.Марс.
- 4. Юпитер и его спутники.
- 5. Сатурн, его кольца и спутники.
- 6. Солнечные пятна (на экране).
- 7. Двойные звезды.
- 8. Звездные скопления (Плеяды, Гиады).
- 9. Большая туманность Ориона.
- 10. Туманность Андромеды.
- 1. Первые звездные каталоги Древнего мира.
- 2. Крупнейшие обсерватории Востока.
- 3. Дотелескопическая наблюдательная астрономия Тихо Браге.
- 4. Создание первых государственных обсерваторий в Европе.

- 5. Устройство, принцип действия и применение теодолитов.
- 6. Угломерные инструменты древних вавилонян секстанты и октанты.
- 7. Современные космические обсерватории.
- 8. Современные наземные обсерватории.

Примерные темы проектов

- 1. Хранение и передача точного времени.
- 2. Атомный эталон времени.
- 3. Истинное и среднее солнечное время.
- 4. Измерение коротких промежутков времени.
- 5. Лунные календари на Востоке.
- 6. Солнечные календари в Европе.
- 7. Лунно-солнечные календари.
- 8. Обсерватория Улугбека.
- 9. Система мира Аристотеля.
- 10. Античные представления философов о строении мира
- 11. Современные методы геодезических измерений.
- 12. Изучение формы Земли
- 13. Полеты АМС к планетам Солнечной системы.
- 14. Теория происхождения Солнечной системы Канта—Лапласа.
- 15. «Звездная история» АМС «Венера».
- 16. «Звездная история» АМС «Вояджер».
- 17. Сравнительная характеристика рельефа планет земной группы.
- 18. Научные поиски органической жизни на Марсе.
- 19. Органическая жизнь на планетах земной группы в произведениях писателей-фантастов.
- 20. Атмосферное давление на планетах земной группы.
- 21. Современные исследования планет земной группы АМС.
- 22. Научное и практическое значение изучения планет земной группы.
- 23. Кратеры на планетах земной группы: особенности, причины.
- 24. Роль атмосферы в жизни Земли.
- 25. Современные исследования планет-гигантов АМС.
- 26. Исследования Титана зондом «Гюйгенс».
- 27. Современные исследования спутников планет-гигантов АМС.
- 28. Загадка Тунгусского метеорита.
- 29. Падение Челябинского метеорита.
- 30. Особенности образования метеоритных кратеров.
- 31. Следы метеоритной бомбардировки на поверхностях планет и их спутников в Солнечной системе.
- 32. Исследования А. Л. Чижевского.
- 33. История изучения солнечно-земных связей.
- 34. Виды полярных сияний.
- 35. История изучения полярных сияний.
- 36. Современные научные центры по изучению земного магнетизма.

- 37. Космический эксперимент «Генезис».
- 38. Методы обнаружения экзопланет.
- 39. Характеристика обнаруженных экзопланет.
- 40. Изучение затменно-переменных звезд.
- 41. История открытия и изучения цефеид.
- 42. Механизм вспышки новой звезды.
- 43. Механизм взрыва сверхновой.
- 44. Правда и вымысел: белые и серые дыры.
- 45. История открытия и изучения черных дыр.
- 46. А. А. Фридман и его работы в области космологии.
- 47. Значение работ Э. Хаббла для современной астрономии.
- 48. Научная деятельность Г. А. Гамова.
- 49. Нобелевские премии по физике за работы в области космологии.

3. Тематическое планирование по предмету «Астрономия» <u>11 класс</u>

11 КЛАСС (34ч.))
-----------------	---

Раздел	Кол-во часов	Темы	Кол-во часов	Основные виды деятельности обучающихся (на уровне универсальных учебных действий)
Предмет аст- рономии	2	Предмет астрономии	2	 — воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время); — объяснять необходимость введения високосных лет и нового календарного стиля; — объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца; — применять звездную карту для поиска на небе определенных созвездий и звезд.
Основы практической астрономии	5	Основы практической астрономии	5	 воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира; воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица); вычислять расстояние до планет по горизонтальному параллаксу, а их размеры — по угловым размерам и расстоянию; формулировать законы Кеплера, определять массы планет на основе третьего (уточненного)

		1	T	To
				закона Кеплера;
				— описывать особенности движения тел Сол-
				нечной системы под действием сил тяготения по
				орбитам с различным эксцентриситетом;
				— объяснять причины возникновения приливов
				на Земле и возмущений в движении тел Солнеч-
				ной системы
Строение	2	Строение Солнечной системы	2	— воспроизводить исторические сведения о
Солнечной				становлении и развитии гелиоцентрической си-
системы				стемы мира;
				— воспроизводить определения терминов и по-
				нятий (конфигурация планет, синодический и
				сидерический периоды обращения планет, гори-
				зонтальный параллакс, угловые размеры объек-
				та, астрономическая единица);
				— вычислять расстояние до планет по горизон-
				тальному параллаксу, а их размеры — по угло-
				вым размерам и расстоянию;
				— формулировать законы Кеплера, определять
				массы планет на основе третьего (уточненного)
				закона Кеплера;
				— описывать особенности движения тел Сол-
				нечной системы под действием сил тяготения по
				орбитам с различным эксцентриситетом;
				— объяснять причины возникновения приливов
				на Земле и возмущений в движении тел Солнеч-
				ной системы;
				— характеризовать особенности движения и ма-
				невров космических аппаратов для исследова-
				ния тел Солнечной системы.

Законы дви- жения небес- ных тел	5	Законы движения небесных тел	5	— формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопы-
ных тел				всех тел Солнечнои системы из единого газопылевого облака; — определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеоры, болиды, метеориты); — описывать природу Луны и объяснять причины ее отличия от Земли; — перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
				 проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет; объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли; описывать характерные особенности природы планет-гигантов, их спутников и колец; характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий; описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;

				 — описывать последствия падения на Землю крупных метеоритов; — объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.
Природа тел Солнечной системы	8	Природа тел Солнечной системы	8	 формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака; определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеоры, болиды, метеориты); описывать природу Луны и объяснять причины ее отличия от Земли; перечислять существенные различия природы двух групп планет и объяснять причины их возникновения; проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет; объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли; описывать характерные особенности природы планет-гигантов, их спутников и колец; характеризовать природу малых тел Солнечной системы и объяснять причины их значи-

		1	T	T	
					тельных различий;
					— описывать явления метеора и болида, объяс-
					нять процессы, которые происходят при движе-
					нии тел, влетающих в атмосферу планеты с кос-
					мической скоростью;
					— описывать последствия падения на Землю
					крупных метеоритов;
					— объяснять сущность астероидно-кометной
					опасности, возможности и способы ее предот-
					вращения.
Солнце	И	6	Солнце и звезды	6	— определять и различать понятия (звезда, мо-
звезды					дель звезды, светимость, парсек, световой год);
					— характеризовать физическое состояние веще-
					ства Солнца и звезд и источники их энергии;
					— описывать внутреннее строение Солнца и
					способы передачи энергии из центра к поверх-
					ности;
					— объяснять механизм возникновения на Солн-
					це грануляции и пятен;
					— описывать наблюдаемые проявления солнеч-
					ной активности и их влияние на Землю;
					— вычислять расстояние до звезд по годичному
					параллаксу;
					— называть основные отличительные особенно-
					сти звезд различных последовательностей на
					диаграмме «спектр — светимость»;
					— сравнивать модели различных типов звезд
					с моделью Солнца;
					— объяснять причины изменения светимости
					переменных звезд;

			1	
				 — описывать механизм вспышек новых и сверхновых; — оценивать время существования звезд в зависимости от их массы; — описывать этапы формирования и эволюции звезды; — характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и цери их и пределением.
Наша Галактика — Млечный Путь	2	Наша Галактика — Млечный Путь	2	звезд и черных дыр. — характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
Строение и эволюция Вселенной	2	Строение и эволюция Вселенной	2	 объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение); определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период — светимость»; распознавать типы галактик (спиральные, эллиптические, неправильные); сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной; обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик; формулировать закон Хаббла; определять расстояние до галактик на основе

	ı		ı	
				закона Хаббла; по светимости сверхновых;
				— оценивать возраст Вселенной на основе по-
				стоянной Хаббла;
				— интерпретировать обнаружение реликтового
				излучения как свидетельство в пользу гипотезы
				горячей Вселенной;
				— классифицировать основные периоды эволю-
				ции Вселенной с момента начала ее расшире-
				ния — Большого взрыва;
				— интерпретировать современные данные об
				ускорении расширения Вселенной как результа-
				та действия антитяготения «темной энергии» —
				вида материи, природа которой еще неизвестна.
Жизнь и ра-	2	Жизнь и разум во Вселенной	2	— систематизировать знания о методах иссле-
зум во Все-				дования и современном состоянии проблемы
ленной			_	существования жизни во Вселенной.